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a b s t r a c t 

Image encryption is a straightforward strategy to protect digital images by transforming images into un- 

recognized ones. The chaos theory is a widely used technology for image encryption as it has many 

significant properties such as ergodicity and initial state sensitivity. When chaotic systems are used in 

image encryption, their chaos performance highly determines the security level. This paper presents a 

two-dimensional (2D) Logistic-Sine-coupling map (LSCM). Performance estimations demonstrate that it 

has better ergodicity, more complex behavior and larger chaotic range than several newly developed 2D 

chaotic maps. Utilizing the proposed 2D-LSCM, we further propose a 2D-LSCM-based image encryption 

algorithm (LSCM-IEA), which adopts the classical confusion-diffusion structure. A permutation algorithm 

is designed to permutate image pixels to different rows and columns while a diffusion algorithm is devel- 

oped to spread few changes of plain-image to the whole encrypted result. We compare the efficiency of 

LSCM-IEA with several advanced algorithms and the results show that it has higher encryption efficiency. 

To show the superiority of LSCM-IEA, we also analyze the security of LSCM-IEA in terms of key security, 

ability of defending differential attack, local Shannon entropy and contrast analysis. The analysis results 

demonstrate that LSCM-IEA has better security performance than several existing algorithms. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

With the rapid development of digital technology, more and

more multimedia information is generated and spread in the In-

ternet [1] . Among all these multimedia information, digital image

is an information format that can carry information with visual-

ized way. For these digital images transmitted in networks, many

of them are private images. For example, the personal medical im-

ages are usually private images, as they contain the information of

personal healthy conditions. If these private images are obtained

by some unauthorized ways, serious security disasters may hap-

pen. Thus, it is important to protect these private images [2–4] and

image encryption is one efficient technology to protect them [5–8] .

One strategy of encrypting image is to treat an image as a

binary data stream and then use the developed data encryption

algorithms to encrypt the data stream. These algorithms include

the well-known data encryption standard [9] , advanced encryption

standard [10] . However, image data has many unique character-

istics such as large data volume, high correlation and strong re-

dundancy [11,12] . Treating an image as a binary stream will miss

these characteristics, and thus may make the encryption inefficient.
∗ Corresponding author. 
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o address this issue, many image encryption schemes consider-

ng image features have been proposed using various technolo-

ies, such as the chaos theory [13–16] , DNA coding [17,18] , quan-

um theory [19,20] , compressive sensing [21,22] and some mathe-

atics models [23,24] . Among these technologies, chaos theory is

he most popular one. This is because chaotic behavior has many

nique properties that are similar with the principles of image en-

ryption [25–27] . Specifically, the ergodicity and initial state sen-

itivity of chaos theory correspond to the confusion and diffusion

roperties of encryption [28] . Some examples of chaos-based en-

ryption schemes are as follows. In [29] , Zhou et al. first proposed

 new chaotic system that can use existing chaotic maps as seed

aps to generate new chaotic maps, and then used one newly

enerated chaotic map to design an image encryption algorithm.

n [30] , Pak and Huang proposed a new color image encryption

lgorithm using the combination of Logistic, Sine and Chebyshev

aps. In [21] , Zhou et al. proposed a new image security scheme

sing hyperchaotic system and compressive sensing technology.

his scheme can perform image encryption and image compres-

ion simultaneously. 

For these chaos-based image encryption algorithms, their se-

urity is determined by the structure of encryption algorithms

nd the chaos performance of their used chaotic maps. On one

and, if the designed encryption structures are not secure enough,

he encryption algorithms can be successfully broken using dif-

erent security attacks [31–33] . On the other hand, with the fast
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.03.010&domain=pdf
mailto:huazyum@gmail.com
mailto:huazhongyun@hit.edu.cn
mailto:huanghejiao@hit.edu.cn
mailto:hjhuang@aliyun.com
https://doi.org/10.1016/j.sigpro.2018.03.010


Z. Hua et al. / Signal Processing 149 (2018) 148–161 149 

d  

t  

h  

r  

r  

s  

p  

c

 

f  

L  

p  

s  

t  

p  

d  

2  

c  

p  

p  

t  

s  

o  

I  

i

 

t  

m  

r  

e  

S

2

 

L  

c

2

 

n  

m

x  

w

x  

w  

 

s  

t  

t  

c  

2{
w  

f  

L  

f  

1  

m  

b

2

 

f  

w  

n  

i  

m

2

 

s  

i  

c  

p  

o  

o

 

p  

a  

m  

f  

t  

L  

a  

o  

5  

t  

a  

2  

p  

2  

o

2

 

c  

q  

j  

t  

o  

fi

λ

A  

t  

s  

c  

a  

c  

i  

i  

w  

b  

m

 

L  

t  

b  

α  

a  

h  

i  

L  
evelopment of discerning chaos methodology, researchers found

hat some existing chaotic maps have security problems if they

ave weak chaos performance [34–36] . This will also cause secu-

ity problems to the corresponding chaos-based encryption algo-

ithms [37,38] . Thus, designing encryption structures with higher

ecurity and developing new chaotic systems with better chaos

erformance can significantly promote the chaos-based image en-

ryption. 

To design new chaotic map with better chaos performance

or image encryption, this paper presents a two-dimensional (2D)

ogistic-Sine-coupling map (2D-LSCM). It is generated by first cou-

ling the Logistic and Sine maps, and then extending the dimen-

ion from one-dimensional (1D) to 2D. Chaos performance estima-

ions demonstrate that 2D-LSCM has better ergodicity, more com-

lex chaotic behavior and wider chaotic interval than several newly

esigned 2D chaotic maps. Using 2D-LSCM, we further present a

D-LSCM-based image encryption algorithm (LSCM-IEA). The se-

ret key is to obtain the initial states of the 2D-LSCM, and then

roduce chaotic sequences. The chaotic sequences are used to do

ermutation and diffusion operations to the plain-image. Simula-

ion results prove the ability of LSCM-IEA. Efficiency evaluation

hows that it can achieve faster encryption speed than several

ther algorithms. The security analysis demonstrates that LSCM-

EA can outperform several advanced image encryption algorithms

n security performance. 

We organize the rest of this paper as follows. Section 2 in-

roduces the proposed 2D-LSCM and evaluates its chaos perfor-

ance. Section 3 presents the developed image encryption algo-

ithm, LSCM-IEA. Section 4 simulates LSCM-IEA and analyzes its

fficiency. Section 5 analyzes the security level of LSCM-IEA and

ection 6 concludes this paper. 

. 2D Logistic-Sine-coupling map 

This section presents a novel 2D chaotic map, called 2D

ogistic-Sine-coupling map (2D-LSCM), and then discusses its

haotic complexity. 

.1. Definition of 2D-LSCM 

The 2D-LSCM is derived from two existing 1D chaotic maps,

amely the Logistic map [39] and the Sine map [29] . The Logistic

ap is defined as 

 i +1 = 4 ηx i (1 − x i ) , (1)

here its control parameter η ∈ [0, 1]. The Sine map is given as 

 i +1 = β sin (πx i ) , (2)

here β is a control parameter and it also has an interval of [0,1].

The Logistic and Sine maps have many disadvantages such as

imple behaviors and frail chaotic intervals, and these disadvan-

ages may bring negative effects for some chaos-based applica-

ions [40] . However, when coupling the Logistic and Sine maps, we

an obtain a new chaotic map with quite complex chaos, namely

D-LSCM, which can be defined as 

x i +1 = sin (π(4 θx i (1 − x i ) + (1 − θ ) sin (πy i ))) ;
y i +1 = sin (π(4 θy i (1 − y i ) + (1 − θ ) sin (πx i +1 ))) , 

(3) 

here θ is the control parameter and θ ∈ [0, 1]. As can be observed

rom its definition, the 2D-LSCM is obtained by first coupling the

ogistic and Sine maps together, and then performing a sine trans-

orm to the coupling result, and last extending the dimension from

D to 2D. By this way, the complexity of the Logistic map and Sine

ap can be sufficiently mixed, which can obtain complex chaotic

ehavior. 
.2. Performance evaluation 

The proposed 2D-LSCM can inherently enhance the chaos per-

ormance of the Logistic and Sine maps. To show its superiority,

e evaluate its chaos performance and compare it with several

ewly generated 2D chaotic maps. The evaluations are performed

n terms of chaos trajectory, Lyapunov exponent [41] , and Kol-

ogorov entropy [42] . 

.2.1. Chaos trajectory 

Trajectory demonstrates the motion starting from a given initial

tate with the time increases. The trajectory of a periodic motion

s a closed curve and the trajectory of a chaotic behavior will never

lose or repeat in theory. Thus, the chaos trajectory usually occu-

ies a part of phase space and it can reflect the randomness of the

utputs of a chaotic system. A chaotic system has better random

utputs if its chaos trajectory can occupy a larger phase space. 

Fig. 1 shows the trajectories of four 2D chaotic maps. When

lotting these trajectories, all the initial states are set as (0.8,0.5)

nd the control parameters are selected as the settings that can

ake the corresponding chaotic maps obtain their best chaos per-

ormance. Specifically, the control parameters of the 2D Logis-

ic map, 2D Sine Logistic modulation map (2D-SLMM) [40] , 2D

ogistic-adjusted-Sine map (2D-LASM) [43] , and 2D-LSCM are set

s 1.19, 1, 0.9 and 0.99, respectively. To show the actual behaviors

f chaotic systems in stable state, we plot the iteration points from

0 0 0 to 35,0 0 0 in each trajectory. One can see from Fig. 1 that

he trajectories of the 2D Logistic map and 2D-SLMM only occupy

 small space in the phase plane, while that of the 2D-LASM and

D-LSCM can occupy all phase plane. Besides, It is obvious that the

oints of the 2D-LSCM distribute more uniform than that of the

D-LASM. Thus, the proposed 2D-LSCM can generate more random

utput sequences than other three chaotic maps. 

.2.2. Lyapunov exponent 

The initial state sensitivity is the most obvious feature of

haotic behavior. The Lyapunov exponent (LE) [41] can provide a

uantitative description to the initial state sensitivity. For two tra-

ectories of a chaotic system beginning with two close initial states,

he LE describes their average separation rate. For a differentiable

ne-dimensional dynamical system x i +1 = f (x i ) , its LE can be de-

ned as 

= lim 

n →∞ 

1 

n 

n −1 ∑ 

i =0 

ln 

∣∣ f ′ (x i ) 
∣∣. (4) 

 high-dimensional dynamical system has more than one LE and

he maximum LE (MLE) determines whether a high-dimensional

ystem has chaotic behavior or not. A positive MLE means that the

lose trajectories of a dynamical system diverge in each unit time

nd will evolve to completely different trajectories with the in-

reasement of time. Thus, a dynamical system is chaotic if its MLE

s positive and larger MLE means better performance. If a dynam-

cal system can obtain more than one positive LE, its trajectories

ill diverge in multi-directions, which makes it has hyperchaotic

ehavior. The hyperchaotic behavior is a much more complicated

otion than the chaotic behavior. 

A 2D chaotic system has two LEs and Fig. 2 plots the two

Es of different 2D chaotic maps with the change of their con-

rol parameters. One can observe that the 2D-SLMM has chaotic

ehavior when α ∈ (0.84, 1), and has hyperchaotic behavior when

∈ (0.91, 1), the 2D-LASM has chaotic behavior when μ∈ (0.32, 1),

nd has hyperchaotic behavior when μ∈ (0.45, 1), the 2D-LSCM

as chaotic behavior when θ ∈ (0, 1), and has hyperchaotic behav-

or when θ ∈ (0, 0.34) ∪ (0.67, 1). This shows that the proposed 2D-

SCM has much wider chaotic range and hyperchaotic range than
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Fig. 1. Trajectories of four 2D chaotic maps: (a) the 2D Logistic map with parameter r = 1 . 19 ; (b) the 2D-SLMM with parameter α = 1 ; (c) the 2D-LASM with parameter 

μ = 0 . 9 ; (d) the 2D-LSCM with parameter θ = 0 . 99 . 

Fig. 2. The two LEs of different 2D chaotic maps: (a) the 2D-SLMM; (b) the 2D-LASM; (c) the 2D-LSCM; (d) the MLE comparison of 2D-SLMM, 2D-LASM and 2D-LSCM. 
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the other chaotic maps. Besides, Fig. 2 (d) compares the MLEs of

different chaotic maps. It shows that 2D-LSCM has the largest MLE

in most parameter settings. This further demonstrate that the pro-

posed 2D-LSCM has more complex chaotic behavior. 

2.2.3. Kolmogorov entropy 

The Kolmogorov entropy (KE) is a type of entropy that describes

the state evolution of dynamical system [42] . It can be used to

measure the degree of chaos by testing the needed extra informa-

tion of predicting the future trajectory using the previous states.

Dividing the n -dimensional phase space into a number of boxes

( i 0 , i 1 , . . . , i n ) with ε size, the KE can be described as 

K = − lim 

τ→ 0 
lim 

ε→ 0 
lim 

n →∞ 

1 

nτ

∑ 

i 0 ,i 1 , ... ,i n 

p(i 1 , . . . , i n ) ln p(i 1 , . . . , i n ) , (5)

where n is the embedding dimension, τ is the time delay, and

p(i 1 , . . . , i n ) represents the joint probability when the trajectory of

system is in i 0 at the starting time, in i 1 at the time τ , . . . , and

in i n at the time n τ . A positive KE indicates that extra informa-

tion is required to predict the trajectory of the dynamical system

and larger KE demonstrates more required information. Thus, a dy-

namical system is unpredictable if it has a positive KE and larger

KE indicates better unpredictability. 

Our experiment uses the Grassberger method provided

in [42] to calculate the KEs of different chaotic systems and

Fig. 3 plots the obtaining results. One can see that Fig. 3 (a)

plots the KEs of the Logistic map, Sine map and 2D-LSCM, while

Fig. 3 (b) compares the KEs of the 2D Logistic map, 2D-SLMM,

2D-LASM and 2D-LSCM. To provide a better comparison envi-

ronment, we shift the parameter of the 2D Logistic map when

plotting its KEs. As can be seen from Fig. 3 (a), although 2D-LSCM

is derived from the Logistic and Sine maps, it has much better

unpredictability than the Logistic and Sine maps. From Fig. 3 (b),
e can see that the proposed 2D-LSCM has positive KEs in the

hole parameter range. It can achieve larger KEs than 2D-LASM in

ost parameter settings and can outperform 2D Logistic map and

D-SLMM in all the parameter ranges. This sufficiently proves that

he proposed 2D-LSCM has good unpredictability. 

.2.4. Dynamical degradation analysis 

For a dynamical system with chaotic behavior, its trajectory will

ever close or repeat in theory. However, as the finite precision

omain cannot own infinite states, the close states in the phase

lane will overlap when a chaotic map is digitalized in the finite

recision platforms. This phenomenon is known as the dynami-

al degradation [44] . The dynamical degradation is unavoidable for

igitalized chaotic maps and it causes many negative effects for

haos-based applications. However, many chaos-based applications

nly use finite states of a chaotic trajectory. Chaotic maps with dy-

amical degradation are still available to these applications if the

ycle lengths of the digitalized chaotic maps are larger than the

equired cycle lengths. 

To investigate the dynamical degradation of different chaotic

aps, we calculate the cycle lengths of these chaotic maps using

ifferent precisions. For each chaotic map, we first randomly gener-

te a number groups of initial states, where the control parameters

re all within the chaotic ranges, and then generate trajectories us-

ng these initial states under different precisions, and finally calcu-

ate the average cycle lengths of these trajectories. Table 1 lists the

verage cycle lengths of different chaotic maps under various pre-

isions. One can observe that our proposed 2D-LSCM can obtain

he largest average cycle lengths under most precisions. Its cycle

ength fast increases with the increasement of precision and it can

chieve 4,455,734 under the precision 10 −8 . As the precisions of

he commonly used platforms are usually much higher than 10 −8 ,

he cycle lengths of 2D-LSCM in these platforms are far larger than

455734. On the other hand, when chaotic map is used in im-
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Fig. 3. KE comparison of (a) the Logistic map, Sine map and 2D-LSCM; (b) the 2D Logistic map, 2D-SLMM, 2D-LASM and 2D-LSCM. 

Table 1 

The average cycle lengths of different chaotic maps with different 

precisions. 

Precisions 10 −4 10 −5 10 −6 10 −7 10 −8 

2D Logistic 324 1432 8215 45,266 259,535 

2D-SLMM 796 4858 36,959 339,576 3,127,743 

2D-LASM 74 555 4474 39,522 195,389 

2D-LSCM 666 5431 40,544 413,618 4,455,734 
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Table 2 

NIST SP800-22 test results of binary sequences generated using 2D-LSCM. 

P -v alue Result 

Sub-tests ≥ 0.01 

Approximate Entropy( m = 10 ) 0.704009 Pass 

Block Frequency( M = 128 ) 0.993633 Pass 

Cumulative Sums Forward 0.069202 Pass 

Reverse 0.077280 Pass 

FFT 0.840 0 06 Pass 

Frequency 0.076727 Pass 

Linear Complexity( M = 500 ) 0.504113 Pass 

Longest Run 0.447729 Pass 

Non-Overlapping Template( m = 9 ) a 0.472143 Pass 

Overlapping Template( m = 9 ) 0.936519 Pass 

Random Excursions a 0.217525 Pass 

Random Excursions Variant a 0.416696 Pass 

Rank 0.151412 Pass 

Runs 0.740543 Pass 

Serial( m = 16 ) P -value1 0.163838 Pass 

P -value2 0.400104 Pass 

Universal 0.958368 Pass 

a The average values of multiple tests. 
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ge encryption, the number of required chaotic outputs approxi-

ates to the size of the image, e.g. almost 1,0 0 0,0 0 0 chaotic out-

uts for an image of size 10 0 0 × 10 0 0. Thus, in the commonly used

latforms, the cycle lengths of 2D-LSCM are larger than the cycle

engths required in image encryption. 

To further show that the proposed 2D-LSCM is suitable for de-

igning image encryption algorithm, we use the National Institute

f Standards and Technology (NIST) SP800-22 [45] to test the ran-

omness of the output sequences of 2D-LSCM. The NIST SP800-

2 has 15 sub-tests and each sub-test can generate a P -value. Ac-

ording to the recommendation of Bassham et al. [45] , 100 binary

treams with 1,0 0 0,0 0 0 bits are suggested as input and the gen-

rated P -value is expected to fall into the range [0.01,1] to pass

he corresponding sub-test. Our experiment uses the double float

ata format to present the iterative outputs of 2D-LSCM. For each

utput of 2D-LSCM, we transform its fractional part to be a bi-

ary stream with 49 bits. The input binary streams are obtained by

ombining these binary streams from the outputs. Table 2 shows

he test results and one can see that binary streams obtained from

he outputs of 2D-LSCM can pass all the sub-tests. This indicates

hat 2D-LSCM can generate a long sequence of aperiodic outputs,

hich are suitable for image encryption. 

. 2D-LSCM-based image encryption algorithm 

Using the developed 2D-LSCM, this section presents a 2D-

SCM-based image encryption algorithm (LSCM-IEA) and its struc-

ure is shown in Fig. 4 . The secret key is to generate initial state of

he 2D-LSCM, and the chaotic matrices generated by 2D-LSCM are

sed to do 2D-LSCM permutation and 2D-LSCM diffusion. The 2D-

SCM permutation can efficiently shuffle pixel positions and the

D-LSCM diffusion can completely change pixel values and spread

ew changes in plain-image to the whole cipher-image. As the 2D-

SCM permutation can achieve excellent confusion property and

he 2D-LSCM diffusion can obtain good diffusion, two rounds of

ermutation and diffusion can obtain a high security encryption
esult in theory. However, more encryption rounds can achieve

igher security results. Our proposed LSCM-IEA uses four encryp-

ion rounds, as four encryption rounds can obtain high security

ncryption results and can balance the trade-off between the effi-

iency and security. Next, we will describe each of the encryption

rocesses in detail. 

.1. Initial state generation 

According to the discussion in [46] , the key length of a chaos-

ased encryption algorithm should be larger than 100 bits to resist

rute-force attack. We set the length of secret key as 256 bits in

SCM-IEA, considering the rapid enhancement of computer com-

uting ability. Specially, K = { x 0 , y 0 , r, a 1 , a 2 , a 3 , a 4 } , where ( x 0 , y 0 )

re the initial values, r is the control parameter and a 1 ∼ a 4 are the

erturbation coefficients to change r in the four encryption rounds.

he x 0 , y 0 and r have size of 52 bits, and they can be converted to

oat numbers using the IEEE 754 Floating-Point standard. Suppose

 1 b 2 . . . b 52 is a 52-bit binary string, the conversion equation is as

ollows, 

 = 

52 ∑ 

i =1 

b i 2 

−i . (6) 
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Fig. 4. The structure of LSCM-IEA. 
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The a i (i = 1 , 2 , 3 , 4) is an integer that can be obtained by directly

transforming a 25-bit binary string to a decimal integer. 

The secret key is to generate four initial states for 2D-LSCM. The

initial value of the first encryption round (x (1) 
0 

, y (1) 
0 

) is directly set

as ( x 0 , y 0 ), and the initial values of the second, third and fourth

encryption rounds are set as the last iteration state of 2D-LSCM in

previous encryption round. The control parameters in four encryp-

tion rounds can be generated as ⎧ ⎪ ⎨ 

⎪ ⎩ 

r (1) = (r × a 1 ) mod 1 ;
r (2) = (r × a 2 ) mod 1 ;
r (3) = (r × a 3 ) mod 1 ;
r (4) = (r × a 4 ) mod 1 . 

(7)

Using the four initial states (x (i ) 
0 

, y (i ) 
0 

, r (i ) ) ( i = 1 , 2 , 3 , 4 ), the 2D-

LSCM can generate chaotic matrices for the following 2D-LSCM

permutation and 2D-LSCM diffusion. 

3.2. 2D-LSCM permutation 

High correlations and data redundancy may exist between ad-

jacent pixels of a natural image, as the image pixel is usually rep-

resented using 8 or even more bits. An efficient image encryption

algorithm should de-correlate these high correlations. Pixel permu-

tation can randomly shuffle adjacent pixels to different positions

and it can de-correlate their high correlations. 

Most of the existing permutation operations shuffle image pix-

els row-by-row or column-by-column. Then each operation can

only change a pixel’s row position or column position. Multiple

permutation operations are required to obtain a totally shuffled re-

sult. To obtain better shuffling efficiency, we designed a new 2D-

LSCM permutation that can simultaneously shuffle the image’s row

and column positions in one operation. The detail procedure can

be described as follows, 

• Step 1 : Suppose the plain-image P is of size M × N , a chaotic

matrix S of size M × N is generated using the 2D-LSCM with

the initial state; 
• Step 2 : Sort each column of S and obtain the index matrix O ; 
• Step 3 : Set row index m = 1 ; 
• Step 4 : Select the pixels in P with positions

{ ( O m, 1 , 1) , ( O m, 2 , 2) , . . . , ( O m,N , N) } ; 
• Step 5 : Sort the values in S with positions

{ ( O m, 1 , 1) , ( O m, 2 , 2) , . . . , ( O m,N , N) } and obtain an index vector

v ; 
• Step 6 : Shuffle these selected pixels in P using v ; 
• Step 7 : Iterate Step 3 to Step 6 for m = 2 ∼ M. 

To better explain the procedure of 2D-LSCM permutation, we

provide a numeral example with the image size of 4 × 5 and it is

shown in Fig. 5 . Fig. 5 (a) shows the generation of permutation ma-

trix PM from the chaotic sequence S . First, sort each column of
 with ascending order to obtain the sorted result S ′ and an in-

ex matrix O , where S ′ i, j = S O i, j , j . Using the index matrix O as the

ow position, we can obtain a position matrix PM . Fig. 5 (b) shows

he detail pixel shuffling using PM and S . The detail pixel shuffling

rocedure can be described as follows. 

• The 1-st row of PM is {(3, 1), (2, 2), (4, 3), (4, 4), (4, 5)}. Se-

lect the values in S with these positions and sort them with as-

cending order to obtain the index vector v = { 2 , 1 , 3 , 4 , 5 } . Then

use the obtained v to shuffle the pixels in P with these po-

sitions, namely T 3 , 1 = P 2 , 2 , T 2 , 2 = P 3 , 1 , T 4 , 3 = P 4 , 3 , T 4 , 4 = P 4 , 4 ,

T 4 , 5 = P 4 , 5 . 
• The 2-nd row of PM is {(2, 1), (4, 2), (1, 3), (3, 4), (2, 5)}. Se-

lect the values in S with these positions and sort them with as-

cending order to obtain the index vector v = { 3 , 5 , 1 , 2 , 4 } . Then

use the obtained v to shuffle the pixels in P with these po-

sitions, namely T 2 , 1 = P 1 , 3 , T 4 , 2 = P 2 , 5 , T 1 , 3 = P 2 , 1 , T 3 , 4 = P 4 , 2 ,

T 2 , 5 = P 3 , 4 . 
• The 3-rd row of PM is {(4, 1), (1, 2), (2, 3), (2, 4), (3, 5)}. Se-

lect the values in S with these positions and sort them with as-

cending order to obtain the index vector v = { 5 , 2 , 1 , 4 , 3 } . Then

use the obtained v to shuffle the pixels in P with these po-

sitions, namely T 4 , 1 = P 3 , 5 , T 1 , 2 = P 1 , 2 , T 2 , 3 = P 4 , 1 , T 2 , 4 = P 2 , 4 ,

T 3 , 5 = P 2 , 3 . 
• The 4-th row of PM is {(1, 1), (3, 2), (3, 3), (1, 4), (1, 5)}. Se-

lect the values in S with these positions and sort them with as-

cending order to obtain the index vector v = { 2 , 4 , 1 , 5 , 3 } . Then

use the obtained v to shuffle the pixels in P with these po-

sitions, namely T 1 , 1 = P 3 , 2 , T 3 , 2 = P 1 , 4 , T 3 , 3 = P 1 , 1 , T 1 , 4 = P 1 , 5 ,

T 1 , 5 = P 3 , 3 . 

Algorithm 1 shows the pseudo-code of the 2D-LSCM permuta-

lgorithm 1 The 2D-LSCM permutation. 

nput: The plain-image P and the chaotic matrix S . Both have the

size M × N. 

1: Sort each column of S with ascending order and obtain O and

S ′ , where S ′ i, j = S O i, j , j ; 

2: Set T ∈ N 

M×N , b ∈ N 

1 ×N , t ∈ N 

1 ×N ; 

3: for i = 1 to M do 

4: for j = 1 to N do 

5: t j = P O i, j , j , b j = S O i, j , j ; 

6: end for 

7: Sort b with ascending order and obtain v and b 

′ 
, where b 

′ =
b v ; 

8: for j = 1 to N do 

9: T O i, j , j = t v j ; 

10: end for 

11: end for 

utput: The permuted result T . 
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Fig. 5. An example of 2D-LSCM permutation using the image P of size 4 × 5: (a) the generation procedure of permutation matrix PM from chaotic sequence S ; (b) permu- 

tation to P using PM and S . 
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.3. 2D-LSCM diffusion 

An image encryption algorithm should have diffusion property,

hich means that slight change in plain-image can cause total dif-

erence in cipher-image. In the proposed LSCM-IEA, we designed

 2D-LSCM diffusion to achieve the diffusion property. Using the

haotic sequence generated by 2D-LSCM, the image pixels can be

andomly changed. Using the two previous pixel values to change
he current one, the 2D-LSCM diffusion can efficiently spread few

hanges of plain-image to the whole cipher-image. Suppose both

he permutation result T and chaotic matrix R are with the size of

 × N , the 2D-LSCM diffusion is described as 

 i = 

{ 

( T 1 + T G + T G −1 + 
 R i × 2 

32 � ) mod F if i = 1 ;
( T 2 + C 1 + T G + 
 R i × 2 

32 � ) mod F if i = 2 ;
( T i + C i −1 + C i −2 + 
 R i × 2 

32 � ) mod F if i ∈ [3 , G ] , 

(8) 

here F is the number of allowed pixel values in plain-image P ,

.g. F = 256 if P is 8-bit grayscale image, and the operation 
 x �
s to obtain the largest integer that is smaller than or equals to x .
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Fig. 6. Demonstration of 2D-LSCM diffusion: (a) plain-image I 1 ; (b) 2D-LSCM diffusion result of I 1 ; (c) the difference of 2D-LSCM diffusion results to I 1 and I 2 , where I 2 is 

another plain-image that has one pixel difference with I 1 in position (64,64); (d) the difference of two rounds of 2D-LSCM diffusion to I 1 and I 2 . 
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The 2D-LSCM diffusion can be divided into two steps: row diffu-

sion and column diffusion. When doing the row diffusion, G = N

and Eq. (8) is applied to each row. When performing the column

diffusion, G = M and Eq. (8) is applied to each column. 

The 2D-LSCM diffusion in the decryption process is the inverse

of the forward operation. The inverse 2D-LSCM diffusion is defined

as 

T i = 

{ 

( C i − C i −1 − C i −2 − 
 R i × 2 

32 � ) mod F if i ∈ [3 , G ] ;
( C 2 − C 1 − T G − 
 R i × 2 

32 � ) mod F if i = 2 ;
( C 1 − T G − T G −1 − 
 R i × 2 

32 � ) mod F if i = 1 . 

(9)

To show the performance of the 2D-LSCM diffusion, we pro-

vide an image example, which is shown in Fig. 6 . One can see that

the 2D-LSCM diffusion can randomly change pixel values, which is

shown in Fig. 6 (b). When using the same secret key to do the 2D-

LSCM diffusion to two plain-images with only one bit difference,

the difference can be spread to all the pixels behind the different

pixel, which is shown in Fig. 6 (c). After two rounds of diffusion, the

change of one pixel can be spread all over the image, which can be

seen from Fig. 6 (d). Thus, the 2D-LSCM diffusion can achieve good

diffusion property. 

4. Simulation results and efficiency analysis 

This section simulates the proposed LSCM-IEA and analyzes its

efficiency. Most of test images in our experiments are selected

from the USC-SIPI image dataset 1 (grayscale images and color im-

ages) and Brown Univ Large Binary image database 2 (binary im-

ages). 

4.1. Simulation results 

An efficient image encryption algorithm must have the abil-

ity to encrypt different types of digital images into unrecognized

cipher-images. Only with the correct key, one can completely de-

crypt the cipher-image. Without key or with a wrong key, one

can’t obtain any useful information about the original image. Fig. 7

shows the encryption procedures of the binary, grayscale and color

images. One can observe that all the plain-images have many pat-

terns that make them hard to be processed. However, their cipher-

images are all random-like and their pixel values distribute very

randomly, which can be seen from Fig. 7 (c) and (d). Attackers can’t

obtain any useful information about the original images from their

pixel distributions. Using the same secret key, the decryption pro-

cess can totally recover the original images, which can be seen in

Fig. 7 (e). 
1 http://sipi.usc.edu/database/ . 
2 http://vision.lems.brown.edu/content/available-software- and- databases/ . 

l  

h  

s  

g

.2. Efficiency analysis 

The high efficiency of image encryption is required, as a large

umber of digital images with high resolutions are generated ev-

ry moment. The proposed LSCM-IEA has low time complexity, as

t can achieve the following properties: (1) the used chaotic map is

 2D discrete-time map and has low implementation cost; (2) the

D-LSCM permutation can shuffle the pixel column and row po-

itions simultaneously, and thus has high shuffling efficiency; (3)

our rounds of encryption processes can guarantee a high secu-

ity level. Table 3 compares the time complexity and encryption

ime of several advanced image encryption algorithms using im-

ges of different sizes. For Xu et al. and Diaconu et al.s’ [47] algo-

ithms, the time complexity is reported in their papers and thus

e directly refer their results. To provide a fair comparison, we

dopt the same principle with Diaconu et al.’s algorithm to cal-

ulate the time complexity of our proposed LSCM-IEA and Zhou

t al.’s [29] algorithm. The second column of Table 3 lists the time

omplexity of different algorithms and the results show that our

roposed LSCM-IEA has the lowest time complexity. To compare

he actual encryption time of these encryption algorithms, we im-

lement these algorithms using Matlab R2015b and use images of

ifferent sizes to test their actual encryption time. The experimen-

al environments are as follows: Intel(R) Core(TM) i5-3320M CPU

 2.6 GHz with 8GB memory, Windows 7 Operation system. One

an see that the proposed LSCM-IEA requires the least time when

ncrypting images with different sizes. This further indicates that

t has the higher encryption efficiency than other three algorithms.

. Security analysis 

The security performance is the most important indictor of an

mage encryption algorithm. This section analyzes the security of

he proposed LSCM-IEA in terms of key security, ability of defend-

ng differential attack, local Shannon entropy and contrast analysis.

.1. Key security 

The secret key plays an important role in an encryption algo-

ithm. On one hand, the secret key should have proper size to re-

ist the brute-force attack. As mentioned in Section 3.1 that the

ength of secure key should be bigger than 100 bits. Considering

he rapid enhancement of computer computing ability, we set the

ength of the secret key of LSCM-IEA as 256 bits. On the other

and, the secret key must be very sensitive. If a secret key isn’t

ensitive, an equivalent secure key can be obtained and this will

reatly reduce the actual key space. 

http://sipi.usc.edu/database/
http://vision.lems.brown.edu/content/available-software-and-databases/
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Fig. 7. Simulation results of LSCM-LEA: (a) the binary, 8-bit grayscale, and 24-bit color images; (b) histograms of (a); (c) encrypted results of (a); (d) histograms of (c); (e) 

decrypted results of (c). 

Table 3 

Time complexity and encryption time (second) of different image encryption algorithms for images with different 

sizes. 

Image size Time complexity 128 × 128 256 × 256 512 × 512 1024 × 1024 

Xu’s [25] O (M log (8 N) + 8 N log M + M + 8 N) 0.0321 0.1484 0.6921 2.8115 

Diaconu’s [47] O (9 MN ) 0.0687 0.2637 1.1003 4.3618 

Zhou’s [29] O (8 MN ) 0.0814 0.3042 1.2030 4.8264 

LSCM-IEA O (4(M log N + M + N)) 0.0196 0.0800 0.4842 2.2848 
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To visually display the key sensitivity of LSCM-IEA, we first ran-

omly generate a secret key K 1 , 

 1 = EF C796 D 47 F DF F F E9 AB 7 DF 3 DF F F 3 CE7 AF DEF EF C6977757 

F C9 DA 69 D 93 F 4 D 76 F C7 F , 

nd then change one bit of K 1 to obtain two other keys, K 2 and

 3 . Fig. 8 shows the key sensitivity in the encryption process and

ig. 9 demonstrates the key sensitivity in decryption process. One

an see that when encrypting a plain-image using two secret keys

ith only one bit difference, the two obtained cipher-images are

ompletely different (see Fig. 8 (d)). Only the correct key can to-

ally recover the original image (see Fig. 9 (b)). When decrypting

 cipher-image with two slightly different keys, the obtained two

ecrypted results are random-like (see Fig. 9 (c) and (d)), and also

otally different (see Fig. 9 (e)). 
To quantitatively test the key sensitivity, we use the number of

it change rate (NBCR) to calculate the difference of images. For

wo sequences S 1 and S 2 with the same length, their NBCR can be

escribed as 

BCR = 

Hm [ S 1 , S 2 ] 

L b 
× 100% , (10) 

here L b is the length of S 1 or S 2 and Hm [ S 1 , S 2 ] is to calcu-

ate their Hamming distance [48] . If S 1 and S 2 are two statistic-

ndependent data sequences, their NBCR will approach to 50%. 

For each of the 256 bits in K 1 , we set the experiments as fol-

ows. (1) Change the bit to obtain a slightly different key; (2) use

he two secret keys to encrypt a same plain-image and calculate

he NBCR of the two encrypted results; (3) use the two secret keys

o decrypt a same cipher-image and calculate the NBCR of two de-
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Fig. 8. Key sensitivity analysis in encryption process: (a) plain-image P ; (b) cipher-image C 1 = Enc( P , K 1 ) ; (c) cipher-image C 2 = Enc( P , K 2 ) ; (d) the difference between C 1 
and C 2 , | C 1 − C 2 | . 

Fig. 9. Key sensitivity analysis in decryption process: (a) cipher-image C 1 ; (b) decrypted result D 1 = Dec( C 1 , K 1 ) ; (c) decrypted result D 2 = Dec( C 1 , K 2 ) ; (d) decrypted result 

D 3 = Dec( C 1 , K 3 ) ; (e) the difference between D 2 and D 3 , | D 2 − D 3 | . 
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crypted results. Fig. 10 shows the test results. One can see that

when changing any one bit of a randomly generated secret key, the

two obtained encrypted results are totally different (see Fig. 10 (a))

and the two obtained decrypted results are also independent (see

Fig. 10 (b)). This means that LSCM-IEA has quite sensitive encryp-

tion and decryption keys. 

5.2. Ability of defending differential attack 

The differential attack is a kind of chosen-plaintext attacks. By

tracing how the slight change in plaintexts can affect the cipher-

texts, the differential attack tries to find the connections between

the plaintexts and ciphertexts, and uses the built connections to

recover the ciphertext without secret key. For an image encryption

algorithm, its ability of defending differential attack can be tested
sing the number of pixel changing rate (NPCR) and the unified

veraged changed intensity (UACI). For two cipher-images, C 1 and

 2 , encrypted from two plain-images with one bit difference, their

PCR and UACI are defined as 

P CR ( C 1 , C 2 ) = 

M ∑ 

i =1 

N ∑ 

j=1 

W (i, j) 

H 

× 100% , (11)

nd 

ACI( C 1 , C 2 ) = 

M ∑ 

i =1 

N ∑ 

j=1 

| C 1 (i, j) − C 2 (i, j) | 
H × Q 

× 100% , (12)
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Fig. 10. NBCR in encryption and decryption processes: (a) NBCR between C 1 and C 2 , which C 1 and C 2 are two cipher-images encrypted from a same plain-image and two 

secret keys with only one bit difference; (b) NBCR between D 1 and D 2 , which D 1 and D 2 are two decrypted images from cipher-image C 1 and two secret keys with only one 

bit difference. 
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espectively, where H is the total number of pixels in an im-

ge, Q represents the largest allowed pixel value in the image, and

 (i, j) = 

{
0 if C 1 (i, j) = C 2 (i, j) ;
1 if C 1 (i, j) � = C 2 (i, j) . 

(13) 

Recently, more strict criterions about the NPCR and UACI were

eveloped in [49] . For a significance level α, a critical NPCR score

 

∗
α is obtained by 

 

∗
α = 

Q − 
−1 (α) 
√ 

Q/H 

Q + 1 

. (14) 

An image encryption scheme can be considered to pass the

PCR if the obtained NPCR is larger than N 

∗
α . The critical UACI in-

erval (U ∗−
α , U ∗+ 

α ) can be calculated by 

U 

∗−
α = μU − 
−1 (α/ 2) σU ;

U 

∗+ 
α = μU + 
−1 (α/ 2) σU , 

(15) 

here 

U = 

Q + 2 

3 Q + 3 

, (16) 

nd 

2 
U = 

(Q + 2)(Q 

2 + 2 Q + 3) 

18(Q + 1) 2 QH 

. (17) 

f the obtained UACI falls into range (U ∗−
α , U ∗+ 

α ) , the corresponding

ncryption algorithm is considered to have high security level. 

A number of 28 grayscale images in USC-SIPI image database

re selected in our experiment. Among these 28 images, six

mages have size of 256 × 256; eighteen images have size of

12 × 512 and four images have size of 1024 × 1024. According

o the discussions in [49] , we set the significance level α =
 . 05 , then for images of size 256 × 256, N 

∗
α = 99 . 5693% and

(U ∗−
α , U ∗+ 

α ) = (33 . 2824% , 33 . 6447%) ; for images of size 512 × 512,

 

∗
α = 99 . 5893% and (U ∗−

α , U ∗+ 
α ) = (33 . 3730% , 33 . 5541%) ; and for

mages of size 1024 × 1024, N 

∗
α = 99 . 5994% and (U ∗−

α , U ∗+ 
α ) =

(33 . 4183% , 33 . 5088%) . In each test, we randomly change one bit

f an image to obtain another image, and then encrypt the two

mages using a same secret key to get two encrypted results, and

alculate the NPCR and UACI scores of the two encrypted results.
ig. 11 plots the NPCR scores of different image encryption algo-

ithms and Fig. 12 shows their UACI scores. The LSCM-IEA can ob-

ain NPCR and UACI scores that are all within the accepted inter-

als. On the other hand, other image encryption schemes fail to

ass some tests. This indicates that the proposed LSCM-IEA can

chieve higher ability of defending differential attack than these

ther encryption algorithms. 

.3. Local Shannon entropy 

The pixels of a cipher-image are expected to randomly dis-

ribute to resist various security attacks. The local Shannon entropy

LSE) can provide a strict description to the randomness of image

ixel [50] . For an image I , randomly select k non-overlapping im-

ge blocks S 1 , S 2 , . . . , S k with T B pixels, the LSE can be defined as

 k,T B ( I ) = 

k ∑ 

i =1 

H( S i ) 

k 
, (18) 

here H( S i ) is the Shannon entropy of image block S i and can be

efined as 

( S i ) −
L ∑ 

l=1 

P (l) log (P (l)) , (19)

here L is the total number of pixel values and P ( l ) is the proba-

ility of l th values. 

Our experiment also uses the images from USC-SIPI image

ataset to do the simulation. According to the recommendation

n [50] , we set the parameters (k, T B ) = (30 , 1936) and significance

= 0 . 05 , then the ideal LSE is 7.902469317 and an image is con-

idered to pass the test if the obtained LSE falls into the interval

7.901901305, 7.903037329). Table 4 lists the LSE scores of cipher-

mages encrypted by several image encryption schemes. One can

ee that LSCM-IEA has 20 cipher-images that are within the ac-

epted interval and its pass rate is the highest. This means that the

roposed LSCM-IEA can encrypt images into cipher-images with

igh randomness. 

.4. Contrast analysis 

Contrast feature is a kind of statistical texture characteristic and

t can reflect the clarity degree of image and the texture of the
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Table 4 

The LSE scores of cipher-images encrypted by different image encryption schemes. 

Images LSE scores 

Wu’s [51] Zhou’s [26] Wang’s [4] Liu’s [5] Zhou’s [29] Xu’s [25] LSCM-IEA 

5.1.09 7.903223 7.903595 7.902682 7.901914 7.903032 7.903543 7.902281 

5.1.10 7.903087 7.902314 7.903397 7.900288 7.901979 7.903137 7.902198 

5.1.11 7.906766 7.903901 7.904131 7.900441 7.901630 7.905119 7.899982 

5.1.12 7.903390 7.900834 7.902789 7.900276 7.904191 7.904896 7.902827 

5.1.13 7.899016 7.902525 7.903841 7.904302 7.901417 7.901933 7.902281 

5.1.14 7.901087 7.903649 7.901668 7.899342 7.905588 7.901559 7.903117 

5.2.08 7.900827 7.901765 7.903854 7.902088 7.904109 7.902714 7.902304 

5.2.09 7.903732 7.900433 7.905012 7.905057 7.899799 7.898275 7.902022 

5.2.10 7.901648 7.901966 7.902882 7.900481 7.900969 7.904609 7.906701 

7.1.01 7.898618 7.901058 7.902966 7.901860 7.900260 7.903507 7.902191 

7.1.02 7.904654 7.903413 7.906349 7.901194 7.900644 7.902496 7.902047 

7.1.03 7.901633 7.904178 7.900470 7.901148 7.901404 7.899554 7.902584 

7.1.04 7.905116 7.902179 7.900964 7.903347 7.902802 7.900657 7.901913 

7.1.05 7.902414 7.902124 7.901991 7.901434 7.90 0 019 7.902717 7.902392 

7.1.06 7.901472 7.904908 7.902182 7.903007 7.904535 7.903967 7.902565 

7.1.07 7.902247 7.903210 7.900828 7.901576 7.903704 7.902364 7.904015 

7.1.08 7.903583 7.904767 7.901676 7.901945 7.901698 7.902537 7.901096 

7.1.09 7.905126 7.902820 7.901032 7.903082 7.901889 7.902012 7.902933 

7.1.10 7.904126 7.904401 7.903549 7.902345 7.901574 7.900796 7.902534 

boat.512 7.902755 7.900889 7.901836 7.902716 7.903704 7.899492 7.901782 

elaine.512 7.902115 7.902934 7.902525 7.904935 7.901016 7.902890 7.902569 

gray21.512 7.904832 7.902972 7.901614 7.900796 7.901009 7.901349 7.902593 

numbers.512 7.901345 7.900308 7.901442 7.901988 7.901481 7.904014 7.902295 

ruler.512 7.902244 7.900604 7.915057 7.901759 7.900907 7.902885 7.904102 

5.3.01 7.899751 7.904291 7.902397 7.899133 7.906108 7.900850 7.902119 

5.3.02 7.903496 7.903330 7.902727 7.903761 7.903088 7.904658 7.902658 

7.2.01 7.903118 7.902309 7.897698 7.903574 7.901969 7.902648 7.902529 

testpat.1k 7.901350 7.903963 7.905429 7.900457 7.900552 7.902370 7.904472 

Mean 7.902599 7.902701 7.902964 7.901937 7.902181 7.902412 7.902611 

Std 0.0019 0.0014 0.0029 0.0016 0.0017 0.0017 0.0012 

Pass/All 5/28 9/28 9/28 6/28 4/28 11/28 20/28 

Table 5 

The average contrast feature scores of plain-images and cipher-images encrypted by different encryption schemes. 

Image names Plain-images Cipher-images 

Wu’s [51] Zhou’s [26] Wang’s [4] Liu’s [5] Zhou’s [29] Xu’s [25] LSCM-IEA 

5.1.09 146.58 10,990.18 10,825.09 10,893.38 10,931.11 10,895.04 10,864.31 10,918.65 

5.1.10 643.59 10,928.06 10,759.94 10,899.89 10,903.62 10,932.14 10,921.68 10,971.56 

5.1.11 162.52 10,970.74 10,951.97 11,208.19 11,013.58 10,910.65 10,879.77 10,892.87 

5.1.12 319.59 10,947.53 10,984.96 10,878.80 10,907.35 10,916.19 10,887.21 10,906.51 

5.1.13 2156.50 10,970.09 11,063.32 10,673.72 10,968.20 10,961.14 10,915.41 10,918.48 

5.1.14 373.42 10,915.49 10,822.34 10,882.79 10,957.51 10,948.08 10,888.47 10,935.12 

5.2.08 365.48 10,924.60 10,825.03 10,950.11 10,941.72 10,920.95 10,958.19 10,930.46 

5.2.09 495.37 10,874.32 10,913.67 10,620.65 10,934.30 10,940.19 10,923.55 10,912.54 

5.2.10 500.50 10,883.53 10,862.59 10,927.80 10,914.24 10,921.69 10,912.08 10,894.26 

7.1.01 112.71 10,939.47 10,779.52 10,828.41 10,901.89 10,873.45 10,904.39 10,869.71 

7.1.02 66.00 10,890.05 10,967.52 11,053.26 10,920.88 10,891.17 10,924.32 10,925.80 

7.1.03 111.90 10,930.22 10,831.80 10,799.62 10,929.77 10,955.71 10,936.30 10,934.25 

7.1.04 87.06 10,953.86 10,794.12 10,783.33 10,906.88 10,938.24 10,925.36 10,927.72 

7.1.05 223.11 10,920.42 10,779.67 10,727.20 10,956.37 10,923.36 10,893.59 10,944.33 

7.1.06 214.00 10,909.55 10,814.31 10,983.37 10,927.87 10,918.13 10,902.22 10,908.84 

7.1.07 169.91 10,938.58 10,778.70 10,816.53 10,934.56 10,889.13 10,881.50 10,939.20 

7.1.08 80.87 10,925.85 10,748.99 10,689.40 10,960.78 10,916.22 10,873.91 10,879.07 

7.1.09 173.58 10,908.33 10,811.99 10,800.38 10,959.07 10,952.96 10,870.78 10,901.27 

7.1.10 82.16 10,931.56 10,733.89 10,756.54 10,944.49 10,911.70 10,914.01 10,958.93 

boat.512 264.54 10,916.86 10,815.90 10,808.99 10,908.80 10,938.30 10,920.49 10,908.76 

elaine.512 118.06 10,952.38 10,849.81 10,873.72 10,951.17 10,938.32 10,940.97 10,913.04 

gray21.512 32.12 10,918.52 10,920.27 10,780.19 10,946.62 10,943.65 10,890.10 10,932.86 

numbers.512 2412.02 10,938.82 10,878.45 10,842.31 10,928.22 10,912.27 10,914.78 10,922.89 

ruler.512 9887.66 10,969.83 11,132.50 10,964.11 10,918.64 10,917.91 10,918.19 10,915.47 

5.3.01 180.32 10,910.96 10,886.72 10,893.26 10,919.96 10,918.70 10,940.02 10,931.70 

5.3.02 294.80 10,931.86 10,818.72 10,765.51 10,926.88 10,937.98 10,928.71 10,919.60 

7.2.01 65.67 10,933.63 11,005.99 10,888.40 10,925.96 10,891.52 10,929.63 10,911.24 

testpat.1k 3004.42 10,928.63 10,906.06 10,785.69 10,922.59 10,917.30 10,916.52 10,908.33 

Mean 10,930.50 10,866.56 10,849.13 10,934.39 10,922.57 10,909.87 10,919.05 

Std 26.4372 97.3630 120.0099 24.2624 21.7385 23.6144 21.7588 
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Fig. 11. NPCR scores of several image encryption schemes using different size of images: (a) images of size 256 × 256; (b) images of size 512 × 512; (c) images of size 

1024 × 1024. 

Fig. 12. UACI scores of several image encryption schemes using different size of images: (a) images of size 256 × 256; (b) images of size 512 × 512; (c) images of size 

1024 × 1024. 

Fig. 13. An example of generating the gray level co-occurrence matrix. 
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roove depth [52] . It can be used to measure pixel distribution and

ixel local variation of an image matrix and its mathematical defi-

ition is shown as 

 = 

∑ 

i, j 

| i − j | 2 G 

′ (i, j ) , (20)

here G 

′ is gray level co-occurrence matrix, which indicates the

robability of fixed patterns with a predefined distance and direc-

ion. Fig. 13 shows an example of generating a unnormalized gray
evel co-occurrence matrix G from an image Q with 1 distance and

orizontal direction. One can see that the size of G is 4 × 4 as the

rayscale level of Q is 4. G (0 , 1) = 3 as the number of pattern (0,1)

see the blue cells) in horizontal direction is 3. By this way, we

an obtain each value of G , which can be seen from the figure. As

he total number of patterns with distance 1 and horizontal direc-

ion in Q is 20, we can obtain the gray level co-occurrence matrix,

amely G 

′ = G / 20 . 
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In our experiments, the test images are all 8-bit grayscale im-

ages, and thus we can obtain the size of G 

′ as 256 × 256. For an

ideally random image, each of its patterns is expected to be the

same, namely G 

′ (i, j) = 1 / (256 × 256) , where i ∈ [0, 255] and j ∈ [0,

255]. Thus, the contrast feature of an ideally random image is

 expected = 

∑ 256 
i =1 

∑ 256 
j=1 | i − j| 2 / (256 × 256) = 10 , 922 . 50 . In each ex-

periment, we first calculate four gray level co-occurrence matrices

from four directions 0 °, 45 °, 90 °, 135 ° with 1 distance, and then

obtain four feature contrast values and get their average score.

Table 5 lists the average feature contrast scores of plain-images and

their cipher-images encrypted by different encryption algorithms.

One can see that Zhou’s [29] algorithm can achieve the mean value

score that is closest to the expected value and our proposed LSCM-

IMA can achieve the second-best performance. Besides, LSCM-IMA

can obtain a pretty small standard deviation. 

6. Conclusion 

In this paper, we presented a new chaotic map called 2D-LSCM.

It is derived from the existing Logistic and Sine maps. First, couple

the outputs of the Logistic and Sine maps using the sine trans-

form and then extend the phase plane from 1D to 2D to en-

hance the complexity. The chaos performance of 2D-LSCM was an-

alyzed using trajectory, Lyapunov exponent, Kolmogorov entropy

and dynamical degradation. The analysis results demonstrate that

it has better chaos performance than several newly developed 2D

chaotic maps, and is suitable for designing encryption algorithms.

To show the applications of 2D-LSCM, we further designed a 2D-

LSCM-based image encryption algorithm (LSCM-IEA). It has two

main components, the 2D-LSCM permutation and 2D-LSCM diffu-

sion. The former can fast shuffle pixel row and column positions si-

multaneously to achieve confusion property, and the latter is able

to spread few changes of plain-image to the whole cipher-image

to obtain diffusion property. Simulation results show that LSCM-

IEA can encrypt different types of images into unrecognized cipher-

images with high efficiency. We have also analyzed the security of

LSCM-IEA in terms of key security, ability of defending differential

attack, local Shannon entropy and contrast analysis. The analysis

results show that LSCM-IEA has a high security level and can out-

perform some advanced image encryption algorithms. As the pro-

posed LSCM-IEA has high efficiency and security level, our future

work will investigate its application in video encryption. 
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