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Figure 1: An image is processed by two kinds of manipulation chains consisting of five operations. The above chain is
Gaussian Blur—Media Filter—Resampling—JPEG—AWGN, while the below chain is AWGN—JPEG—Resampling—Media

Filter—Gaussian Blur.

ABSTRACT

Image manipulation chain detection aims to identify the existence
of involved operations and also their orders, playing an important
role in multimedia forensics and image analysis. However, all the
existing algorithms model the manipulation chain detection as a
classification problem, and can only detect chains containing up to
two operations. Due to the exponentially increased solution space
and the complex interactions among operations, how to reveal a
long chain from a processed image remains a long-standing problem
in the multimedia forensic community. To address this challenge,
in this paper, we propose a new direction for manipulation chain
detection. Different from previous works, we treat the manipula-
tion chain detection as a machine translation problem rather than
a classification one, where we model the chains as the sentences
of a target language, and each word serves as one possible image
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operation. Specifically, we first transform the manipulated image
into a deep feature space, and further model the traces left by the
manipulation chain as a sentence of a latent source language. Then,
we propose to detect the manipulation chain through learning the
mapping from the source language to the target one under a ma-
chine translation framework. Our method can detect manipulation
chains consisting of up to five operations, and we obtain promis-
ing results on both the short-chain detection and the long-chain
detection.
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1 INTRODUCTION

With the development of powerful and user-friendly image edit-
ing techniques, users can make visually realistic image forgeries
at a very low cost. Nowadays, the forged images are becoming
widespread in fake news, insurance fraud, Internet rumors and
dishonest academic publications, negatively affecting many aspects
of our lives [23]. When altering a digital image, different types of
image operations are usually applied sequentially, either to make
the forged image look realistic or to hide the traces of previous
manipulations. The widely used operations include Gaussian blur,
median filtering, resampling, JPEG compression, etc. As a result,
detecting the manipulation chain becomes a very critical problem
in determining the authenticity and the processing history of digital
images [17].

It has been observed that different types of operations would
leave unique tampering fingerprints on the processed images. Dur-
ing the past decade, the majority of the efforts focused on design-
ing forensic algorithms to detect a single targeted manipulation
[6, 15, 16, 18-20]. Through extracting the features related to those
fingerprints and modeling their statistical behaviors, a large num-
ber of forensic techniques have been devised for the detection of
particular manipulation types. Some representative examples are
median filtering [6, 13], contrast enhancement [4], JPEG compres-
sion [3, 18] and resampling [19, 20, 26]. Though these methods have
achieved noticeable advances, they suffer from an important draw-
back. Namely, in practical scenarios, we generally have no prior
information on which operation has been applied to the forged
image. Then, an analyzer needs to run multiple forensic tests to
ensure the image authenticity. However, it is rather challenging to
fuse the results of multiple detectors for a reliable decision.

To address the above issue, recent researches focused on devel-
oping general-purpose image forensic methods, which aimed to
determine whether an image was tampered from a set of possible
image manipulations in a single test. Some examples include the
methods based on hand-crafted features [11, 14, 21], and the ones
based on deep features [2, 9, 24]. Such methods, though achieved a
great success in the development of general purpose image manip-
ulation detection, they can only identify the existence of a single
operation.

In practice, forging an image commonly involves multiple pro-
cessing operations. Fig. 1 gives two examples to show that an image
is processed by five operations from a set of possible operations.
This brings new challenges for the previous forensic methods. First,
it requires the methods to identify all the operations applied to
the image, which exceeds the ability of previous algorithms for a
single operation detection. It should be noted that though it seems
possible to run multiple tests to identify potential operations, it is
very difficult to control the overall false alarm rate among several
detectors. Besides, since the traces left by previous operations could
be weakened or even erased by the following ones, the performance
of each detector will also be highly degraded. Second, in order to
obtain the complete manipulation history, thus to know how the
forged image has undergone processing, investigators also expect to
reveal the order of the involved operations. This makes the solution
space grow exponentially as the number of operations increases.
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Due to these challenges, limited progress has been made to the
problem of manipulations chain detection. The works [8, 22] for-
mulated the problem of detecting the order of operations into a
multiple hypotheses testing problem, and then studied the ques-
tion of when we can or cannot detect the operation order through
an information theoretical framework. Bayar et al. [2] proposed a
constrained convolutional neural network to detect the image ma-
nipulation chain consisting of up to two image operations, where
the first layer was forced to learn the prediction filters. Recently,
Liao et al. [17] devised a two-stream convolutional neural network
for detecting a chain of two image operations, where one stream
detected the tampering artifacts in the spatial domain, while the
other stream extracted the local residual features in the transform
domain. The major drawbacks of the existing manipulation chain
detection methods can be summarized below:

o All the existing algorithms only focused on identifying the
chain containing up to two operations. How to reveal the
longer chain is still an open problem. It should be noted
that the solution space will exponentially increase as the
chain getting longer. For example, two operations yield only
Z%:o A; = 5 possible solutions, while five operations result
in Z?:o Aé = 326 possible solutions. Even worse, the later
applied operations may affect and disguise the traces left by
the previous operations. This interplay further makes it hard
(or even impossible) to detect the long chains.

o All the previous algorithms formulated the chain detection
as a classification problem. Though this seems very straight-
forward by assigning each case with a unique label, such a
strategy cannot fully exploit and utilize the partial order in
a long manipulation chain. For example, in Fig. 1, if we can
reveal some partial orders such as Gaussian Blur—Median
Filter in the tampered image, then the problem of detecting
the remaining sub-chains could be significantly simplified.

In this paper, we propose a novel deep framework for image
manipulation chain detection. Different from existing algorithms
treating it as a classification problem, we strategically formulate
it into a machine translation problem. Basically, we regard the
manipulation chain as a sentence of the target language, where the
words of the language denote the possible image operations, such
as median filtering, resampling and JPEG compression. Our goal
is to seek a mapping from the tampered image space to the target
language space. To this end, we first transform the tampered image
into a deep feature space, and further model the traces of each
manipulation chain as a fixed-length sentence of a latent language.
Then, the obtained sentence of the source language are translated
into a sentence of our target language, and finally the manipulation
chain is decoded.

To the best of our knowledge, this is the first work capable of
detecting various lengths of the manipulation chains (from 0 to 5 in
our experiment). Also, this is the first work to model the detection
of manipulation chain as a machine translation problem rather
than a classification one. The main contributions of our work are
summarized below:

e We propose a novel image manipulation chain detection algo-
rithm based on machine translation. Different from existing
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algorithms that only considered the detection of manipula-
tion chain containing at most two operations, our method is
able to detect much longer chains.

e Compared with those classification based methods, our ap-
proach detects the manipulation chain one operation by one
operation. The former detected operations and their orders
will be regraded as the prior information for the next opera-
tion detection, thus facilitating the detection process. Such
a progressively detecting manner also makes our method
more intuitive.

o Experimental results show that our method achieves promis-
ing performance for both the short chain detect and the long
chain detection.

2 PROPOSED METHOD

2.1 Problem Formulation

In this paper, we define the manipulation chain as an ordered se-
quence of operations applied to an image I', and we suppose that
operations are from a set {O1, Ox, ..., Ops}. Obviously, for a manip-
ulation chain of length N, the number of possible chains is A%.
Considering a chain detection problem with the maximum length
of the chains being N (N < M), the number of possible distinctive
chains is

_ 40 1 2 N
K_AM+AM+AM+...+AM,NsM.

1)

Note that Eq. (1) counts the chains of length 0, i.e., no operation
has been applied to the image.

Let Tohgin = {Th, T2, ..., T } be the set containing all the possible
chains. Then, the goal of manipulation chain detection is to find the
exact operations and their orders for a tampered image. For a given
chain T;, we define its sub-chains as consecutive sub-sequences of
T;. For example, the sub-chains of T; = O; — Oz — O3 are Oy,
Oz, 03, 01 — Oz, Oz — 03, and 01 i 02 4 03. We should
emphasize that usually, finding out some long sub-chains of the
complete one is also helpful for forensic analysis.

It can be readily seen that the length of 7,,,;,, will exponentially
increase as N and M getting larger. In fact, previous works can
only identify the chain of at most two operations. To address this
challenging problem, we strategically formulate the manipulation
chain detection as a machine translation problem. In our paper,
we consider 5 kinds of operations, which totally results in 326
possible manipulation chains. Table. 1 summarizes all the operations
and their parameters, which are consistent with the work [2]. For
example, < 3,4,5,6,7 > means that an image is applied with the
manipulation chain GB>MF—RS—JPEG—AWGN. In addition to
these the operations, the other three auxiliary symbols list in Table
1 are used for a translator.

2.2 Manipulation Chain Detection Framework
based on Transformer

The framework of our proposed algorithm is illustrated in Fig. 2,
which mainly contains three components: 1) hierarchical feature
extraction; 2) source language construction and embedding; and 3)
source-to-target language translation.

IFor simplicity, we assume that the operations of the chain are not repetitive.

3512

MM 21, October 20-24, 2021, Virtual Event, China

Table 1: Operation dictionary.

index Operation Parameter
0 Padding Symbol
1 Start Symbol
2 End Symbol
3 Gaussian Blur (GB) with o = 1.1 kernel size = 5
4 Median Filter (MF) kernel size = 5
5 Resampling using bilinear interpolation (RS) Scaling = 1.5
6 JPEG Compression (JPEG) QF =70
7 Addictive White Gaussian Noise (AWGN) o=2

2.2.1 Hierarchical Feature Extraction. Learning a good feature rep-
resentation is crucial for the manipulation chain detection. Due to
the interactions between different operations, some traces could
be highly weakened. In this paper, we adopt a deep architecture
for extracting the feature representation of the traces left by mixed
operations. As shown in Fig. 3, our feature extractor has tree types
of layers marked in different colors. (1) Conv+BN+ReLU: for the
first layer, we adopt 64 filters of size 3 X 3 to produce 64 feature
maps. Then the batch normalization (BN) and the rectified linear
units (ReLU) are applied for the feature normalization and nonlinear
mapping. (2) MaxPool: in order to generate more compact features,
the MaxPooling of size 2 X 2 with a stride 2 is employed, where
each of them will reduce the size of the input feature maps to the
quarter size. (3) ResBlock: a set of residual blocks are stacked to
learn the hierarchical feature representation of different operations.
According to [12], each residual block consists of two Conv layers
of C kernels with a skip connection.

For simplicity, we write the feature extractor as #,(-). Then
given an input image x, we can generate its deep representation as

@)

The dimension of Fy is Cx H’ X W’, where the C is the channel size,
H’ and W’ denote the height and the width of the feature maps,
respectively.

Fo = T}e(x)

2.2.2  Source Language Construction and Embedding. Transforming
the deep feature Fy into a time series signal, carrying the trace
information left by the chain is necessary and also important for the
machine translation procedure. Define the transformation function
as Tsource(-), and then the time series signal can be formulated as

So = Tsource (F0)~ (3)

Intuitively, the function 7 () maps features into a latent source
language space, where the time series signal S, can be regarded as a
sentence of the source language. In our work, we simply implement
the function T5oyrce(-) as a Conv+BN+ReLu layer concatenated
with channel flattening. The convolutional layer has 32 filters of
size 3 X 3. Each flattened channel is then treated as a word of the
latent source language. Namely, the function T5ource () eventually
maps the deep feature into a fixed length sentence of 32 words.
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Figure 2: The framework of our proposed method.

Denote S, = [Wot, ..., W32 ], where each word W; € RE'W’ Then,
we further embed W; into a word vector of dimension 512. Mathe-
matically,

o = Embeds(W;), i € {01,...,32}. 4)

In our work, we implement the embedding function for the con-
structed source language using a fully connected layer. With the
first two components of our framework, we finally transform an im-
age to an embedded sentence of 32 words of the source language. We
write the embedded sentence as V* = [0§,05,0..03,] € R?#7%12,
2.2.3 Source-to-Target Language Translation. Different from the
previous classification based algorithms, which assigned each ma-
nipulation chain as a unique label. In this work, we model the
manipulation chain as a sentence in the target language domain,
where each word of the sentence serves as an operation. Note that
the length of the target sentence is varying as the manipulation
chain changes.

Recently, Transformer [25] has become a prevalent model in
Natural Language Processing(NLP), and also has been successfully
employed in a wide range of computer vision tasks, such as image
enhancement [7] and object detection [5, 10]. In this work, we adopt
Transformer [25] as the translator from the source language to the
target language. Similar to other machine translation frameworks,
Transformer consists of an encoder and a decoder as shown in Fig.
2.

At the encoder side, each embedded vector is first added to a
position embedding, thus to maintain the relative position of the
words of a sentence. In this work, we simply use the positional
encoding strategy proposed in [25], where the position is encoded
by sine and cosine functions of different frequencies. For the i-th

position, its position embedding vector f; € R1*312 is calculated as

fi(2)) = sin(i/10000%//512),

. 5
£(2j+1) = cos(i/10000%//512), )
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Figure 3: Illustration of the feature extractor.

where j = 0, ..., 255. The resulting vectors with the position coding
are then input to the encoder. According to [25], we build Trans-
former encoder as L blocks, each of which consists of a multi-head
self-attention module (MSA) and a feed forward network (FFN)
with residual connections. The procedure can be written as

Vs = [0 + f1,05 + fo. .03, + faz],
TS | = LN(MSA(VS VS, VE ) +VE ), £=1,.,L,
VS = IN(FEN(TS ) + TS ), €=1,..,L,

[21,22,23...232] = Zs = VI“S‘

Here f; is the embedded position, LN denotes the Layernorm, and
FFN is composed of two fully-connected layers with the ReLU
activation. Z5 € R32%%12 js the output of the encoder. The decoder
of Transformer takes Z° as the inputs, and outputs the probability
of each operation of the target manipulation chain. Similar to the
word embedding process of the source language, we embed the
words, i.e., the operations of a manipulation chain, into a vector
space of dimension 512. Mathematically,

of = Embed;(H'), i € {1,.., N}. @)
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Figure 4: Training behaviors of MISLnet [2] and our proposed method. (a) the curves of the training loss; (b) the curves of the

accuracy for the testing data.

In the training stage, H! denotes the i-th operation of the target
manipulation chain, while in the testing stage, it is the decoded
i-th operation of our predicted chain. Since the number of possible
operations is fixed, we implement the Embed; (-) function using the
nn.embedding provided by the Pytorch framework.

The decoder of Transformer has L blocks, where each block
contains a masked MSA module (MMSA), a MSA module and a FFN
with residual connections. The MMSA ensures that the prediction
for the i-th word only depends on the previously decoded i — 1
words. The decoding procedure can be mathematically written as

Vot = [vi +f1,v§ + f2, U}t\] + fnl,

Jo—1 = LN(MMSA(V/_ |, V/_, VL) + VL), £=1,..,L
Tf | = LN(MSA(Je-1,Z°,Z°) + Jp-1), £=1,.... L,

V) =LN(FFN(T ) +T/_,), t=1,...L,

g= Softmax(FC(VLt)).

®

Here, FC denotes the Fully Connected Layer. In the testing stage,
Transformer decodes the chain (sentence) one operation (word) by
one operation, and thus the previously decoded sub-chains will be
used as prior information for decoding the next operations. Inter-
ested readers can refer to [25] for more details about Transformer.
Upon having the probability of each operation, the predicted oper-
ation is then selected as the one with the maximum probability.

2.3 Loss Function

In our work, we train our proposed framework end-to-end by min-
imizing the following cross entropy loss

©

Here, y denotes the ground truth manipulated chain encoded with
the indexes shown in Table. 1 (with one-hot encoding), and ¢ is our
predicted chain with the predicted probability of each operation.

loss = CrossEntropyLoss(3, y).
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3 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed method,
which is implemented by the Pytorch framework. All the experi-
ments are conducted on a desktop running Ubuntu 18.04 with two
Nvidia 3090 GPUs.

3.1 Implementation Details

We now give the implementation details of our proposed framework.
The number of the filters in the ResBlocks is set as 64. Both the
Transformer encoder and decoder have 6 layers, i.e., L = 6. When
training the network, we set the batch size as 128, and the number
of epochs as 150. We adopt Adam optimizer with the initial learning
rate le-4.

3.2 Dataset

We adopt the RAISE-1k dataset ? to evaluate the performance of
our method [1]. The RAISE-1k dataset provides 900 high resolution
images, where 800 images for training, and 100 images for validation.
The resolution of the images is about 3200 x 4800. All the images
are converted into grayscale and down-sampled by a factor 0.5. We
use the 800 images in the train folder for training, while the other
100 images for testing. For the training set, we crop the images
into image patches of 256 X 256 with a stride of 256, and remove
those patches without textures. This results in about 30,800 image
patches in the train set. For the testing set, we similarly generate
about 3,500 image patches.

In each training epoch, we randomly select a varying number of
operations from the dictionary shown in Table. 1, and consecutively
apply them to an image patch.

Zhttp://loki.disi.unitn.it/RAISE/
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Table 2: Confusion matrices for identifying manipulation chains for MISLnet [2] and our proposed method
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MISLnet [2]: ACC = 93.07%

OR MF GB RS MF-GB | GB-MF | MF-RS | RS-MF | GB-RS | RS-GB

OR 99.16% 0.42% 0.00% 0.39% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%
MF 0.09% 88.40% 0.00% 0.00% 0.00% 0.20% 0.66% 10.37% 0.29% 0.00%
GB 0.00% 0.00% 89.76% 0.18% 0.44% 0.00% 0.21% 0.00% 0.00% 9.42%
RS 0.03% 0.00% 0.55% 99.25% 0.00% 0.00% 0.14% 0.03% 0.00% 0.00%
MF-GB 0.00% 0.00% 0.11% 0.00% 94.21% 1.67% 0.58% 0.00% 2.64% 0.78%
GB-MF 0.00% 0.03% 0.00% 0.00% 0.60% 91.41% 1.75% 5.49% 0.72% 0.00%
MF-RS 0.00% 0.00% 0.00% 0.14% 0.00% 0.03% 99.80% 0.00% 0.03% 0.00%
RS-MF 0.00% 2.97% 0.06% 0.06% 0.00% 16.28% 2.17% 76.01% 2.45% 0.00%
GB-RS 0.00% 0.00% 0.00% 0.00% 0.15% 0.09% 0.15% 0.00% 99.44% 0.18%
RS-GB 0.00% 0.00% 2.95% 0.00% 0.09% 0.00% 0.00% 0.00% 0.79% 96.17%

Proposed Method: ACC = 97.47%

OR MF GB RS MF-GB | GB-MF | MF-RS | RS-MF | GB-RS | RS-GB

OR 100.00% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MF 0.00% 96.06% | 0.00% 0.00% 0.00% 0.16% 0.13% 3.65% 0.00% 0.00%
GB 0.00% 0.00% | 94.97% | 0.17% 0.10% 0.00% 0.00% 0.00% 0.00% 4.76%
RS 0.00% 0.00% 0.19% | 99.68% | 0.00% 0.00% 0.13% 0.00% 0.00% 0.00%
MF-GB 0.00% 0.00% 0.03% 0.00% | 98.69% 1.25% 0.00% 0.00% 0.00% 0.03%
GB-MF 0.00% 0.13% 0.00% 0.00% 0.58% | 96.96% | 0.00% 2.23% 0.10% 0.00%
MF-RS 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% | 99.90% | 0.00% 0.00% 0.00%
RS-MF 0.00% 3.36% 0.00% 0.00% 0.00% 4.65% 0.13% | 91.72% | 0.13% 0.00%
GB-RS 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.03% | 99.78% | 0.06%
RS-GB 0.00% 0.00% 2.68% 0.00% 0.03% 0.00% 0.00% 0.03% 0.32% | 96.94%

3.3 Metrics
We adopt two metrics for the evaluation of our method. The first
metric is Accuracy (ACC), which is calculated by

number of correctly predicted chains

ACC = (10)

number of testing chains

Note that a chain is correctly predicted only when the predicted
chain exactly matches the ground-truth one.

In many scenarios, revealing some long sub-chains from the
complete one is helpful for image analysis. In this work, we also
employ another metric, called the accuracy of longest matched
sub-chain (ALMS) for the performance evaluation. Formally, the
ALMS metric is defined as

len(longest matched sub-chain) )

ALMS = Average( (11)

len(target chain)

where len(-) computes the length of a chain, and Average(-) calcu-
lates the average over all the testing chains. For example, given a
target manipulation chain < 7,5, 6, 3,4 >, and our predicted chain
< 6,3,4 >, this prediction result assigns a zero score to ACC metric,
but contributes a value 0.6 when computing ALMS.

3.4 Results

3.4.1 Detecting Chain of Two Operations. For the comparison pur-
pose, in the first experiment, we aim to detect the manipulation
chain of at most two operations as studied in [2, 17]. In our work,
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we compare our method with MISLnet proposed in [2], since its
source code is available. Note that MISLnet modeled the chain detec-
tion as a classification problem, while we formulate it as a machine
translation problem.

To be consistent with [2], three operations are considered in this
experiment, i.e., median filtering, Gaussian blurring and resampling.
The parameters of these operations are list in Table. 1. For each
image patch, it is manipulated using an operation chain consisted
of up to two of these three operations. This totally results in Ag +
A% + Ag = 10 different kinds of chains.

Fig. 4 depicts the training curves of different algorithms. Different
from MISLnet directly assigning each chain with a unique label,
we treat the chain as a sequence, thus successfully revealing sub-
chains can also decrease the loss. As can been seen from Fig. 4(a),
our converged training loss is much smaller than that of MISLnet.
Fig. 4(b) exhibits the ACC curves of different algorithms, where we
can observe that our method performs much better than MISLnet.
Furthermore, our method also exhibits a more stable ACC curve at
the tail. Overall, MISLnet achieves 93.07% ACC, while our method
obtains 97.47%. Table 2 summarizes the detailed numerical results
in confusion matrices. It can be observed that our method beats
MISLnet on all the cases. Specifically, MISLnet performs bad on the
chains MF and RS—MF, where our method outperforms it by above
7% and 15% in terms of ACC, respectively. The results shown in
Table 2 demonstrate the superiority of modeling the chain detection
as a machine translation problem.
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Table 3: Results for known-length manipulation chain detection.

1 2 3 4 5
Model As AL Az As A7
ACC 99.98% | 99.02% | 90.58% | 81.56% | 76.78%
ALMS | 99.98% | 99.51% | 95.64% | 91.72% | 88.59%

Table 4: Results for unknown-length manipulation chain detection.

ACC = 71.78%, ALMS = 90.29%
L Lp 0 1 2 3 4 5
0 98.45%(0.00%) 1.53% 0.02% 0.00% 0.00% 0.00%
1 2.46% 94.44%(0.00%) 2.93% 0.12% 0.06% 0.00%
2 0.00% 11.32% 80.34%(0.41%) 5.97% 1.52% 0.45%
3 0.00% 2.34% 17.74% 61.22%(3.66%) 11.15% 3.89%
4 0.00% 0.08% 2.97% 24.35% 44.73%(8.11%) 19.76%
5 0.00% 0.00% 0.20% 455% 28.01% 51.00%(16.23%)

3.4.2 Detecting Chain of Known Length. In this section, we eval-
uate the manipulation chain detection performance with a fixed
known length. Specifically, we consider five cases where the length
of manipulation chains ranges from 1 to 5. For each image from
the training set, we manipulate it by applying the chain of a given
length, where the operations are randomly selected from Table. 1.
The number of possible chains are A;, Ag, Ag, Ag and Ag, respec-
tively, for these five cases.

We summarize the results in Table 3. We can see that ACC drops
as L. increases. However, considering the exponentially increased
solution space, the ACC performance is still promising even when
L. is large. For example, our method achieves 76.78% ACC when
L. = 5. Note that our method detects the manipulation chain pro-
gressively, where the previously detected operations could greatly
help the next operation detection. This desirable property endows
our method the capability to reveal sub-chains. The experimental
results shown in Table 3 also validate our conclusion. Compared
with ACC, the performance degradation of ALMS is much more
graceful. For example, when L. = 5, our method still obtains 88.59%
ALMS, which is much larger than the corresponding ACC. Such a
phenomenon implies that though our method may fail to correctly
detect the complete chains in some cases, it can still reveal many
long sub-chains, especially when L is large.

3.4.3 Detecting Chain of Unknown Length. In many practical sce-
narios, the length of the manipulation chain is generally unknown.
In this paper, we also evaluate the performance of our method for
the manipulation chain detection of unknown length, where L,
is randomly selected from 0 to 5. This yields Z?:o Aé number of
possible chains. In order to balance different lengths of chains, we
generate the same number of manipulated images for each length
during training and testing.

Table 4 reports the experimental results. It should be noted that
this is the first work to address the problem of detecting manipula-
tion chain up to five operations, and our method obtains an overall

71.78% ACC and 90.29% ALMS, which are promising. For a deep
analysis, we also report the probability of a manipulation chain of
one length to be detected as a chain of another length. L, in Table 4
denotes the length of the detected chain, and L. is the length of the
target chain. The bold numbers on the diagonal represent the ACCs
for each length, while the numbers in parentheses denote the error
rates that the detected chain has the correct length but incorrect
operations or orders. For example, in the case of L, = 2, 80.34% ma-
nipulation chains have been correctly detected, and 11.32%, 5.97%,
1.52% and 0.45% chains have been wrongly detected as other lengths.
Besides, there are 0.41% number of detected chains though have the
same length, but the operations or orders are incorrect. It can be
observed that when L, > 3, our method tends to detect the chain
with one more or one less operation. This is reasonable due to the
complex interactions between operations in a long manipulation
chain. An interesting phenomenon is that the ACC of L, = 4 is
lower than that of L. = 5. This is because that in the case of L, = 5,
only a few number of chains will be wrongly detected as chains of
Le = 3.

Before concluding this section, we give some detection examples
in Fig. 5. Images in different columns are manipulated with the
same chains of length L. = 3, L = 4 and L. = 5, respectively. Figs.
5(a-c) present the cases that our method successfully reveals the
complete manipulation chains, while Figs. 5(d-f) give examples that
our method unsuccessfully to detect the complete chains. From
Figs. 5(d-f), we can observe that though our method fails to reveal
the complete chains, it can still detect many long sub-chains. For
example, in Fig. 5(e), the trace of GB operation is weakened by the
later operations, making our method fails to detect GB. However,
our method can still detect all the other operations and orders. We
should note that a full analysis between the chain detectability and
the image content seems challenging; but it could be an interesting
research direction in the further study.
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Figure 5: Some detection examples between the manipula-
tion chain and the image content.

4 CONCLUSION

This paper has presented a new direction of the manipulation chain
detection. Different from previous algorithms, we treat the manip-
ulation chain detection as a machine translation problem rather
than a classification one. Specifically, we model the manipulation
chain as a sentence of the target language, and seek a mapping from
the image space to the target language space. To this end, we first
propose to transform the image to a latent source language space,
where the traces left by the manipulation chain are properly de-
scribed as sentences. Then, we propose to learn the mapping from
the source language to the target language, and finally decode out
the manipulation chain. Our method can detect chains containing
up to five operations, and extensive experimental results have been
provided to show the superiority of our scheme.
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