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ABSTRACT

This paper introduces a series-wound framework to generate
a large number of new one-dimensional (1D) chaotic maps
using a combination of two different 1D chaotic maps (called
seed maps). Examples and experimental analysis demonstrate
that the newly generated chaotic maps have more parameters,
larger chaotic ranges, and better chaotic behaviors than their
corresponding seed maps.

Index Terms— series-wound, chaotic system, chaotic
map.

1. INTRODUCTION

The chaotic map generally has several significant proper-
ties such as ergodicity and unpredictability. It can generate
random-like sequences. And it is extremely sensitive to its
initial value and control parameters. Chaotic maps have been
widely used in spread spectrum communication [1], data
compression [2], image encryption [3] and so on. For image
encryption, chaotic maps are used to generate pseudo-random
sequences with specific settings for their initial values and
control parameters. These random sequences are then used
to encrypt a digital image into a random-like one such that
the original image information is protected with a high level
of security. Recent application examples of chaotic maps in
image encryption can be found in [4][5].

There are two problems with the existing chaotic maps.
The first one is that their trajectories are easy to be predict-
ed [6]. The other is that traditional 1D chaotic maps based
encryption algorithms have been reported to be vulnerable
for low computational attacks [7]. Therefore, developing new
chaotic maps with more complex structures, more parameters
and better chaos performance becomes significative.

In this paper, we propose a new series-wound framework
of 1D chaotic map. It can generate many new 1D chaotic
maps from different combinations of two seed maps. The
new 1D chaotic maps generated by this framework have more
complex structures, more parameters and better chaos perfor-
mance. Examples and experimental analysis are provided.

The rest of this paper is organized as follows: in Section 2,
three traditional 1D chaotic maps and their properties will be
reviewed as background. In Section 3, the new series-wound
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framework of 1D chaotic map will be introduced. In Sec-
tion 4, three examples of new chaotic maps using this frame-
work will be introduced and their chaos performance will be
discussed in Section 5. Section 6 will give a conclusion.

2. BACKGROUND

This section reviews three traditional 1D chaotic maps which
will be used as seed maps to generate new 1D chaotic maps
in the series-wound framework proposed in Section 3.

2.1. Logistic map

The Logistic map is one of the most popular chaotic maps
used in many fields. Its good chaos performance has been
verified [4]. Mathematically, the Logistic map is defined as
Eqn. (1)

Tnt1 = axn (1l —2y) )]

where a is a parameter and a €[0, 4], z,, is the nth

(n + 1)* input with range the of [0, 1].

It is well known that the Logistic map has chaotic behav-
ior when a €[3.57, 4]. Its bifurcation diagram is shown in
Fig. 1(a). As can be seen, when the parameter a is close to
4, the output of the Logistic map dynamically changes in the
entire data range. Its chaotic behaviors become better.

output and

2.2. Sine map

The Sine map is another useful chaotic map that is similar to
the Logistic map, but its mathematic function is totally differ-
ent, as shown in Eqn. (2)

Tpt1 =7 - sin(mwzy,) 2)

where r is a parameter between 0 and 1, x,, is the iteration
output/input with a range of [0, 1].

When the parameter » €[0.867, 1], the Sine map has
chaotic behaviors. Its bifurcation diagram is shown in
Fig. 1(b). We can see that the Sine map shows better chaotic
behaviors when the parameter r is close to 1.
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2.3. Gaussian Map

The Gaussian map is an 1D chaotic map that is based on the
1D Gaussian function. It is defined as Eqn. (3)
3

Tpe1 = exp(—ba?) +c

where b and ¢ are two parameters and z,, is the output/input
of the Gaussian map.

When b = 6.2 and ¢ € [—0.71,—0.3], the Gaussian map
has chaotic behaviors. Its bifurcation diagram is shown in
Fig. 1(c). The chaotic ranges of the Gaussian map are clearly
shown.
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Fig. 1: Bifurcation diagrams of three traditional 1D chaotic maps. (a) the
Logistic map; (b) the Sine map; (c) the Gaussian map with the parameters b
=6.2.
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3. THE NEW SERIES-WOUND FRAMEWORK

In this section, a series-wound framework is proposed. Using
this framework, new 1D chaotic maps can be generated from
any two existing 1D chaotic maps. The proposed framework
is shown in Fig. 2. G(x) and F'(z) are two 1D chaotic maps
which are considered as seed maps. The output of G(x) is fed
into the input of F(x). The output of F(x) is then fed back into
the input of G(x) for recursive iterations and is also the output
of the proposed framework, generating new chaotic maps.

XH G(x) }—’{ F(x) }:Ti’

Fig. 2: The proposed series-wound framework for generating 1D chaotic
maps.
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The mathematic representation is defined in Eqn. (4),
where G(z) and F'(x) are two 1D chaotic maps.

Tny1 = F(G(an)) “)

The proposed framework links two chaotic maps G(x) and
F(x) in series. Its output chaotic sequences have the structure
of G(x), F(x), or both. In the hardware implementation, a time
compensation circuit may be required in its feedback path to
eliminate the time delay in the series connection of G(x) and
F(x). Using a different pair of seed maps G(x) and F(x), the
proposed framework generates a completely different chaot-
ic sequence, and thus becomes a new chaotic map. These
sequences have chaotic behaviors in a larger dynamic range
than those of their corresponding seed maps. The parame-
ters of the proposed framework include all parameters in two
seed maps. This offers new chaotic maps more complicate
properties than their corresponding seed maps, and thus more
suitable for security applications.

4. EXAMPLES OF NEW CHAOTIC MAPS

The output of the proposed framework is dependent on the
combination of two seed maps. Using different seed map-
s G(x) and F(x), the proposed framework is able to generate
new chaotic maps. This section provides three examples to
demonstrate robustness of the proposed framework and ex-
cellent properties of its newly generated chaotic maps.

4.1. The Logistic-Sine map

When the Logistic and Sine maps are selected as the seed
maps, the proposed framework becomes a new chaotic map,
called the Logistic-Sine map. Its block diagram is shown in
Fig. 3, in which the output of the Logistic map is used as the
input of the Sine map, and the output of the Sine map is the
output of the new Logistic-Sine map.

n X1
—P{ Logistic map }—b{ Sine map }7—>

X.

Fig. 3: The structure of the Logistic-Sine map.

Mathematically, the Logistic-Sine map is defined as E-
qn. (5)
&)

Tpt1 =7 -sin(raz, (1 — z,))

where r and a are parameters, and r €[0, 1], a €[0,4].

The bifurcation diagram is a straightforward way to show
the characteristics of a chaotic map. It plots the output se-
quence of a chaotic map versus its parameter changes.

The bifurcation diagrams of the Logistic-Sine map are
shown in Fig. 4. From these bifurcation diagrams, we can



see that the Logistic-Sine map has a large chaotic ranges on
both parameters a and r, especially on the parameter a.

Fig. 4: The bifurcation diagrams of the Logistic-Sine map with different
parameter settings. (a) the 3D bifurcation diagram with parameters r €[0.5,
1land a €[2,4]; (b)r=1,a €[0,4]; (c) a=4,r €[0, 1].

4.2. The Gaussian-Logistic map

Here we use the Logistic map and Gaussian map as two seed
maps to generate a new 1D chaotic map, called the Gaussian-
Logistic map. Its structure is described in Fig. 5. The out-
put of the Gaussian map is used as the input of the Logistic
map, and the output of the Logistic map is the output of the
Gaussian-Logistic map.

n Xn+1
4’{Gaussianmap }—P{ Logistic map }——»

Fig. 5: The structure of the Gaussian-Logistic map.

Its mathematic representation is defined by Eqn. (6)

Tas1 = alexp(—ba2) + )(1 — (exp(~ba2) +¢)  (6)
where a, b, and c are parameters, and a €[0, 4], ¢ €[-1, 1],
and for parameter b, we usually set b = 6.2, where the map
keeps good chaos performance.

Fig. 6 shows the bifurcation diagrams of the Gaussian-
Logistic map both in the 2D and 3D spaces. From these b-
ifurcation diagrams, we can see that the Gaussian-Logistic
map has a much larger dynamic ranges than its seed maps,
the Gaussian and Logistic maps.
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Fig. 6: The bifurcation diagrams of the Gaussian-Logistic map with different
parameter settings. (a) the 3D bifurcation diagram with parameters a €[0,
4], c €l-1,11and b=6.2; (b) a =3.49, b=6.2, c €[-0.5, 0.5]; (c) c = -0.05,
b=6.2,a €[0, 4].

4.3. The Gaussian-Sine map

Here is another example of the series-wound framework
where the Sine and Gaussian maps are used as seed maps.
The new chaotic map is called the Gaussian-Sine map. Its
structure is shown in Fig. 7. The output of the Gaussian map
is used as the input of the Sine map, and the output of the
Sine map is the output of the Gaussian-Sine map.

X.

Xn n+l
AP{Gaussian map }—b{ Sine map }——»

Fig. 7: The structure of the Gaussian-Sine map.

The Gaussian-Sine map is defined as Eqn. (7)

Tpy1 =1 - sin(m(exp(—bz?) + ¢)) (7)
where 7, b, ¢ are parameters and b= 6.2, r €[0, 1], and cis a
real number.

The 2D and 3D bifurcation diagrams of the Gaussian-Sine
map are shown in Fig. 8. These plots give us straightforward
representations about chaos performance of the Gaussian-
Sine map. There is an interesting observation that its chaotic
behaviors along with the parameter ¢ are periodic as shown
in Fig. 8(a) and (b).

5. PERFORMANCE COMPARISONS AND ANALYSIS

This section discusses some properties of three new chaot-
ic maps introduced in Section 4. Comparisons and analysis



Fig. 8: The bifurcation diagrams of the Gaussian-Sine map with different
parameter settings. (a) the 3D bifurcation diagram with parameters r» €[0,
1], ¢ €[-0.8,2.2] and b =6.2; (b) r =0.84, b= 6.2, ¢ €[-0.8,2.2]; (c) c =
-0.07,6=6.2,r €[0, 1].

show that these new chaotic maps have better chaos perfor-
mance than their corresponding seed maps.

5.1. Lyapunov Exponent

The Lyapunov exponent [8] is an important quantitative stan-
dard to evaluate the chaos feature of a dynamical system. It
denotes the exponential divergences between two infinitesi-
mally close trajectories in the phase space. A positive Lya-
punov exponent value means that the differences between two
trajectories, no matter how small differences their initial val-
ues are, will increase exponentially along the time and thus
make their trajectories unpredictable. In other words, a sys-
tem with one or more positive Lyaponov exponents is chaotic.

The Lyapunov exponent for a 1D discrete time system
ZTn+1 = f(x,) is defined as Eqn. (8)

n—1
. 1 ’
A= nll)ngo - E_O In |f'(z;)] 8)

where n denotes the total number of iterations and f’(z) is
the first-order derivative of f(x).

The Lyapunov exponent values of three new chaotic maps
are shown in Fig. 9. As can be seen in Fig. 9(a) and (b), the
Lyapunov exponent distributions of the Logistic-Sine map a-
long with parameter a and with parameter r are similar. This
is because chaotic behaviors of the Logistic and Sine maps are
similar as shown in Fig. 1(a) and (b). In Fig. 9(d), the Lya-
punov exponent distribution of the Gaussian-Sine map along
with the parameter c is periodic. Compared with its Lyapunov
exponent distribution in Fig. 9(d) with its bifurcation diagram

in Fig. 8(b), the Gaussian-Sine map has the same chaotic be-
haviors in the parameter ranges ¢ €[-0.5, 0.5] and ¢ €[0.5,
1.5].
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Fig. 9: The Lyapunov exponent values of the newly generated chaotic maps.
(a) the Logistic-Sine map: r = 1, a €[0, 4]; (b) the Logistic-Sine map: a =
4, r €[0, 1]; (c) the Gaussian-Logistic map: a = 3.49, b=6.2, ¢ €[-0.5, 0.5];
(d) the Gaussian-Sine map: 7 = 0.84, b= 6.2, ¢ €[-0.8, 2.2].

5.2. Iteration function diagram

For an iteration map x,+1 = f(z,), the iteration function
diagram is to show the iteration outputs x,, 1 along with dif-
ferent inputs x,,.
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Fig. 10: The iteration function diagrams. (a) the Logistic, Sine and Gaussian
maps; (b) the Logistic-Sine, Gaussian-Logistic and Gaussian-Sine maps.

The iteration function diagrams of newly generated maps
are shown in Fig. 10(b). As can be seen, the iteration function
diagram of the Gaussian-Logistic map is similar with that of
the Gaussian-Sine map. This is because the Logistic and Sine
maps have similar iteration function diagrams which can be
seen in Fig. 10(a). The results in Fig. 10(b) show that the iter-
ation functions of newly generated maps have more complex
structures compared with their seed maps. It makes the output
of new chaotic maps difficult to be predicted. This property is
useful for security applications.
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Table 1: The correlation comparisons of the output sequences generated by the new chaotic maps and their seed maps.

Parameters (7, a) (0.949, 3.64) (0.981, 3.95)
Correlation of S1, S3  Correlation of S3, Sy | Correlation of S1, S Correlation of S3, Sy

Logistic map (a) 0.811877 0.799098 -0.010366 -0.030699
Sine map (r) -0.096664 -0.098244 -0.033337 -0.006322
Logistic-Sine map (r, a) 0.025092 0.001360 -0.001901 -0.001561

Parameters (a, b, ¢) (3.49,6.2, —0.05) (1.58,6.2, —0.62)
Gaussian map (b, ¢) 1 0.993685 -0.060466 0.043801
Logistic map (a) 0.999999 0.995623 0.999816 0.045439
Gaussian-Logistic map (a, b, ¢) -0.000757 -0.029911 0.033942 0.000725

Parameters (r, b, ¢) (0.88,6.2, —0.07) (0.5,6.2,—0.6)

Gaussian map (b, ¢) 1 0.991556 -0.003322 0.040779
Sine map (r) 0.856123 0.889449 0.999898 -0.009045
Gaussian-Sine map (7, b, ¢) 0.0224385 -0.005757 0.000801 0.000393

5.3. Correlation

The correlation is a measure that can reflect the distance be-
tween two sequences. It is defined as Eqn. (9)

E[(X - MX)(Y - MY)]

Co= ©)
where X and Y are two sequences, p is the mean value and
o is the standard deviation. From the definition we can see
that, if the correlation value between two sequences, gener-
ated by a chaotic map with infinitesimally different settings
of control parameters or initial values, is close to 0, the map
will have chaotic behaviors, and smaller absolute correlation
value indicates better chaos performance.

Experiments in Fig. 11 and Table 1 are to evaluate how the
output sequences of a chaotic map are sensitive to its initial
values and parameters. In Fig. 11, two sequences S7 and .S,
in each plot are obtained by applying a tiny change to their
initial values of the chaotic maps, and two sequences S3 and
S, are obtained by applying a tiny change to their parameters.
As can be seen in Fig. 11, the correlations of all sequences
dynamically change in the entire data range. This means that
they all have no correlation with each other, and that these
chaotic maps are extremely sensitive to their initial values and
parameters.

Table 1 also shows the quantitative results of the corre-
lation comparisons between the new chaotic maps and their
corresponding seed maps. From Table 1, we can see that the
absolute correlation scores of the new chaotic maps are small-
er than those of their corresponding seed maps. This further
verifies that the new chaotic maps are extremely sensitive to
their initial values and parameters.

5.4. Shannon entropy

Shannon entropy [9] is a quantitative measure of distributivity
for a signal. It can be used to measure the distribution of
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Fig. 11: The correlations of sequences generated by different chaotic maps.
The first, second and third rows plot the corrections of sequences generated
by the Logistic-Sine, Gaussian-Logistic and Gaussian-Sine maps, respective-
ly, with a tiny change applied to (a) initial values; and (b) parameters.



chaotic sequence. Mathematically, the Shannon entropy is
defined as Eqn. (10)

H(X)=- Z Pr(z;)loga Pr(x;)

i=1

(10)

where X represents a collection of data, z; is the i possible
value of the data and Pr(z;) is the probability of x;. In our
test, we set #Bin:256 means that we uniformly separate our
testing data into 256 different levels. Table 2 shows the Shan-

Table 2: The Shannon entropy comparisons between the new chaotic maps
and their seed maps (#Bins:256).

Parameters (7, a) (0.949, 3.64) (0.981, 3.95)
Logistic map (a) 6.6043 7.6714
Sine map (r) 6.8658 7.6720
Logistic-Sine map 72120 77120

(r,0)

Parameters (a,b,c) | (3.49,6.2,—0.05) | (1.58,6.2,—0.62)

Gaussian map (b, ¢) 2 0
Logistic map (a) 1 6.9836
Gaussian-Logistic 76636 72466
map (a, b, ¢)
Parameters (r, b,c) | (0.88,6.2,—0.07) (0.5,6.2,—0.6)
Gaussian map (b, ¢) 6.4565 0
Sine map (r) 1 6.9521
Gaussian-Sine 7.5677 7.4743

map (7, b, ¢)

non entropy results between the new chaotic maps and their
seed maps. The bigger Shannon entropy value means that
the chaotic sequence shows better randomness. We can see
from Table 2 that the Shannon entropy values of the chaotic
sequences generated by the new chaotic maps are bigger than
those of their seed maps. This means that the newly gener-
ated chaotic maps have a better chaos performance than their
corresponding seed maps.

6. CONCLUSION

In this paper, a new series-wound framework was proposed.
Using this framework, a large number of new 1D chaotic
maps can be generated from different pair of two seed maps.
Three examples of the new 1D chaotic maps, the Logistic-
Sine, Gaussian-Logistic and Gaussian-Sine maps, were also
introduced to demonstrate the performance of the proposed
framework.

Experimental analysis and quantitative measures between
three presented chaotic maps and their seed maps have shown
that new chaotic maps have better chaos performance and
more complex structures than their corresponding seed maps.
The proposed framework can be use for communication and
security applications.
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