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Abstract—Recently, deep convolutional neural networks have
been applied to image compressive sensing (CS) to improve
reconstruction quality while reducing computation cost. Exist-
ing deep learning-based CS methods can be divided into two
classes: sampling image at single scale and sampling image
across multiple scales. However, these existing methods treat the
image low-frequency and high-frequency components equally,
which is an obstruction to get a high reconstruction quality.
This paper proposes an adaptive multi-scale image CS network
in wavelet domain called AMS-Net, which fully exploits the
different importance of image low-frequency and high-frequency
components. First, the discrete wavelet transform is used to
decompose an image into four sub-bands, namely the low-low
(LL), low-high (LH), high-low (HL), and high-high (HH) sub-
bands. Considering that the LL sub-band is more important
to the final reconstruction quality, the AMS-Net allocates it
a larger sampling ratio, while allocating the other three sub-
bands a smaller one. Since different blocks in each sub-band
have different sparsity, the sampling ratio is further allocated
block-by-block within the four sub-bands. Then a dual-channel
scalable sampling model is developed to adaptively sample the
LL and the other three sub-bands at arbitrary sampling ratios.
Finally, by unfolding the iterative reconstruction process of
the traditional multi-scale block CS algorithm, we construct a
multi-stage reconstruction model to utilize multi-scale features
for further improving the reconstruction quality. Experimental
results demonstrate that the proposed model outperforms both
the traditional and state-of-the-art deep learning-based methods.

Index Terms—Compressive sensing, convolutional neural net-
works, discrete wavelet transform, block compressive sampling

I. INTRODUCTION

Compressive sensing (CS) is a new signal acquisition tech-
nique [1], [2]. It can sample a signal using a measurement
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matrix at a far lower ratio than the requirement of Nyquist
sampling theory and can construct the original signal from its
measurements [3]. Because the sampling and compressing op-
erations is performed simultaneously, the CS shows good per-
formance in data acquisition, storage, and transmission [4], [5].
Researchers have applied the CS theory to many fields such
as magnetic resonance imaging [6], video compression [7],
image coding [8] and snapshot compressive imaging [9].

There are two main tasks in studying the CS: signal sam-
pling and signal reconstruction. For traditional CS schemes,
although their measurement matrices can satisfy the restricted
isometry property [10], they have low reconstruction perfor-
mance due to the lack of adaptability for signals with different
features. Besides, their reconstruction algorithms [11]—[13]
were developed by considering the prior knowledge of the
original signal and applying iterative non-linear optimization
approaches for reconstruction. These reconstruction algorithms
have some disadvantages such as low reconstruction quality,
high complexity, and blocking artifacts.

Recently, some deep learning-based image CS models
have been proposed to solve the limitations of traditional
CS methods. These models implement the reconstruction
process using the convolutional neural networks (CNNs) to
replace the time-consuming optimization process, and their
measurement matrices can be learned adaptively [14]-[17].
Besides, some works first decompose an image using different
multi-scale decomposition approaches and then sample these
decomposed images across scales to sufficiently utilize the
multi-scale features [18]-[20]. Compared with traditional iter-
ative optimization-based algorithms, these deep learning-based
methods can significantly improve the reconstruction quality
and reduce the time complexity of reconstruction. However,
these methods directly sample images at single scale [14]-
[17] or across multiple scales [18]-[20] by equally treating
the image low-frequency and high-frequency components with
the same resources. This limits the reconstruction quality,
since the low-frequency components are more important to
the reconstruction quality of an image than the high-frequency
components, especially at a low sampling ratio [12].

In this paper, we propose a wavelet domain-based adaptive
multi-scale image CS network (AMS-Net) by considering
the different importance of the image low-frequency and
high-frequency components. It can adaptively sample images
in the multi-scale domain. Specifically, the discrete wavelet
transform (DWT) is used to decompose an image from the
spatial domain to the frequency domain, generating the low-
low (LL), low-high (LH), high-low (HL), and high-high (HH)
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sub-bands. Considering that the LL sub-band is the low-
frequency components and is more important to the recon-
struction quality than the other three sub-bands, we design
a dual-channel scalable sampling model that assigns the LL
sub-band a larger sampling ratio while assigning the other
three sub-bands a smaller one. As different blocks in the
sub-bands have different sparsity, we apply a linear sampling
resource assigning (LSRA) strategy to these two channels to
further adjust the sampling ratios according to block sparsity.
By unfolding the reconstruction process of the multi-scale
block CS (MS-BCS) strategy [12] using CNN, we construct
a multi-stage reconstruction architecture. In each stage, the
reconstruction model first applies a dual-channel projection
operation in the wavelet domain on the reconstructed image
block-by-block, and then implements a full-image denoising
operation in the spatial domain to remove the noise and
blocking artifacts.

The contributions and novelty of this paper are summarized
as follows:

o We present a wavelet domain-based adaptive multi-scale

image CS network, which is the first deep learning-based
CS network that considers the different importance of
image low-frequency and high-frequency components.

e« We develop an LSRA strategy to adjust the sampling
ratios according to block sparsity and propose a dual-
channel scalable sampling model to perform the adaptive
sampling tasks at arbitrary sampling ratios.

o Unfolding the traditional reconstruction strategy with
CNN, we design a multi-stage reconstruction architecture
to exploit the multi-scale features, which can further
improve the reconstruction quality.

¢ We conduct a comprehensive evaluation and the results
show that our model outperforms both the traditional and
state-of-the-art deep learning-based CS methods.

The rest of this paper is organized as follows. Section II
introduces the CS theory and the traditional MS-BCS algo-
rithm. Section III reviews the deep learning-based CS models.
Section IV presents the network structure of our AMS-Net.
Section V evaluates the performance of the proposed model
and compares it with state-of-the-art methods. Section VI gives
a conclusion of this paper.

II. PREREQUISITE KNOWLEDGE
A. Compressive Sensing

For a given measurement matrix ® € R™*" with n >> m,
the CS theory specifies that the sparse signal x € R™"*! can be
sampled as y = ®x and it can be reconstructed using some
reconstruction algorithms [11], [13] from the measurements
y € R™*1 The CS methods can be divided into two classes:
single-scale CS methods and multi-scale CS methods. The
single-scale CS methods sample and reconstruct images in
the spatial domain, while the multi-scale CS methods sample
images in the multi-level decomposition domain or reconstruct
images using multi-scale information.

B. Multi-Scale Block Compressive Sensing

When processing a two-dimensional (2D) image, the size of
the measurement matrix will be quite large if transforming the

2D image into a one-dimensional (1D) signal. To solve this
problem, block-based sampling (BCS) methods [12], [21] have
been widely used to separately sample each non-overlapping
image block with constant size B x B.

Let z; represent the 1D vector transformed from the i-th
block of the image X, and the sampling process is written as

yi = ®pai, (1)

where ®p € R"2%B” is a measurement matrix and Y; €
R"5*1 is the measurements of ;. The sampling ratio (sr)
is sr = nB/B2. The authors in [21] proposed a BCS-SPL
method that directly samples image blocks in the spatial do-
main and uses projected Landweber reconstruction mechanism
to reduce blocking artifacts. To utilize the multi-scale features
of images, the authors in [12] further proposed the MS-BCS to
deploy the BCS-SPL in the multi-level decomposition domain.

1) Multi-Scale Sampling: To sample an image in multi-
scale domain, one should first decompose the image to produce
L levels of wavelet decomposition coefficients. Then each
block x; s ; of a sub-band s at level [ is sampled as

Yisi = ®1Xi s, 2

where s € {LH,HL,HH}, 1 <1 < L and ®, means the
measurement matrix for the level [. Since a lower level of
the decomposition coefficients is more important to the final
reconstruction quality, the sampling resources are adaptively
adjusted for each level [.

2) Multi-Scale Reconstruction: First, the initial estimation
of each image block is generated by linearly mapping the
measurements, which is shown as

%) = By, 3)
where ®; represents the linear mapping matrix and it is the
pseudo-inverse matrix of ®;. Then the reconstruction process
is an iterative process and each iterative step contains the
following two operations.

e Projection in the wavelet domain. This operation is to
find a vector that is closer than the current vector i:l(ts) ;
on the hyperplane H = {%;,; : ®;2;5; = 1.5} The
projection operation is defined as
NG NG

= ajl(zz + @) (?Jl,s}i - (I)lxl(s)z)

=af) + 2, — ®; o))

l,s,1 l,s,i"

.’i‘(t+1)

l,s,1

4)

o Deblocking and Denoising. Block-based reconstruction
and projection may generate some blocking artifacts and
noises. Thus, a non-linear mapping

X+ — gy (X(tJrl)/) (5)

is employed to remove the blocking artifacts and noises
of the reconstructed image X (t+1) where H donates the
Wiener filtering in the spatial domain or the thresholding
operation in the frequency domain, and X+’ is the
full image generated by applying inverse DWT (IDWT)

to the reconstructed blocks :%l(.t:_il).
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Fig. 1. The framework of the AMS-Net. The X donates the original image and the X(T) represents the reconstructed image.

III. DEEP LEARNING-BASED CS METHODS

Since deep learning-based methods can show great effect
in image restoration tasks, they were used to solve the sig-
nal sampling and reconstruction problems [14], [15], [22]-
[24]. The authors in [22] proposed the first model that uses
an stacked denoising autoencoder to reconstruct the image
patches from the sampled measurements. Later, the authors
in [23] constructed a deep CNN architecture to implement the
non-iterative reconstruction process from the sampled mea-
surements. However, the two works use constant measurement
matrices to sample images. This limits the reconstruction qual-
ity because the constant measurement matrices may lose the
generality and adaptability for images with different features.
Thus, some models were proposed to simultaneously train
the sampling network and reconstruction network [14], [15],
[24]. For example, the CSNet* [24] and CSNet™ [14] use
learnable convolutional layers without overlapping to mimic
the sampling process. Then the measurements are transmitted
into the reconstruction network to get the final reconstructed
image. All these models are single-scale CS methods and they
apply sampling and reconstruction in the spatial domain.

To utilize the multi-scale features in the deep learning-based
CS methods, the models LAPRAN [25] and SCSNet [16]
divide CS measurements into multiple levels. The CS mea-
surements at the lowest level are used to generate the initial re-
construction of the image, while those at higher levels are pro-
gressively fused to generate a high-frequency image residual
for enhancing the quality of the initial reconstruction. Besides,
the model MSRNet [17] applies three parallel channels with
different convolution kernel sizes in the reconstruction stage
to fuse multi-scale features. The models in [16], [17], [25]
exploit multi-scale features in the reconstruction stage but still
sample images at single scale in the spatial domain. To directly
learn multi-scale features in the sampling stage, the model MS-
DCSNet [18] samples the decomposed images block-by-block
across multiple wavelet scales. Moreover, it integrates a multi-
level wavelet convolutional neural network to further utilize
the multi-scale information in the reconstruction stage. Using
the same reconstruction architecture but different multi-scale
decomposition methods with the MS-DCSNet [18], the models
DoC-DCS [19], SS-DCI [20] and P-DCI [20] also develop
multi-scale CS architectures to utilize multi-scale features
in both the sampling and reconstruction stages. Specifically,
the multi-scale decomposition methods in the models DoC-
DCS [19], SS-DCI [20] and P-DCI [20] are the difference of
convolution, scale-space and pyramid, respectively.

These existing single-scale and multi-scale deep learning-
based CS methods equally treat the image low-frequency and
high-frequency components by sampling them using the same
resources. However, the low-frequency components are usually
more important to the final reconstruction quality than the
high-frequency components [12]. Sampling the image low-
frequency and high-frequency components equally may lead to
a low reconstruction quality, especially at low sampling ratios.

IV. AMS-NET

In this section, we present the AMS-Net and Fig. 1 shows
its framework. It is an end-to-end structure that contains a
dual-channel sampling model and a multi-stage reconstruction
model. To demonstrate the sampling and reconstruction pro-
cesses, we assume that the input image is X € R2#*2Wx1,
and the image block size is B x B.

A. Sampling Model

The framework of the sampling model is shown as Fig. 2.
The original image X is decomposed by DWT and then
sampled by a dual-channel scalable sampling model with
LSRA strategy.

1) DWT Decomposition: We use the DWT to decompose
the original image X into four sub-figures, namely the LL, LH,
HL and HH sub-bands, and each sub-band is of size RH*Wx1,
Because the image low-frequency and high-frequency com-
ponents have different importance to the final reconstruction
quality, we use different sampling ratios to sample them.
Specifically, we set the LL sub-band as the first channel and
denote it as P € RF*Wx1 and set the LH, HL and HH sub-
bands as the second channel and denote it as Q € R *Wx3,

Assuming that the target sampling ratio of the input image
X is sr, we set the sampling ratio in sub-band P as sr, and
that in sub-bands Q as sry. The sr, sr, and sr, should satisfy
the following equation:

srp X HW 4 srq x SHW
2H x 2W

sr =

(6)

—8rp + =87y
srp X HW ST

4 4
Let the allocation ratio ar = _=%7——w = -2 represent the
ratio of the measurement number in P to the total measure-
ment number in X. Then one can obtain that sr, = 4sr x ar
and sr, = M. When sr is very low, the low-
frequency components are critical, and we set a large ar to

reconstruct more image approximations. When sr is high,
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Fig. 2. The sampling model of the AMS-Net. The original image X is
decomposed by DWT to generate LL, LH, HL and HH sub-bands. A dual-
channel architecture is used to assign sampling resources for sampling the
LL sub-band and the other three sub-bands. The Y7 and Y2 denote the
measurements of the LL sub-band and the other three sub-bands, respectively.

the high-frequency components become important, and we
set a relatively small ar to reconstruct more image details.
Besides, from the global view, the low-frequency components
are more important to the final reconstruction quality than the
high-frequency components, since the image approximations
contain most of the image information [12]. Thus, the ar
should be not smaller than 0.25 to ensure that sr, > sr,.

2) LSRA Strategy: The sampling resources are linearly
assigned according to the block sparsity in P and Q, respec-
tively. Specifically, the saliency information [26] is used to
measure the block sparsity. The larger saliency information
indicates that the corresponding image block is less sparse
and thus should be assigned more sampling resources.

For P, its saliency map [26] is defined as:

D= Slgn(ct(P))7
F =abs (C; 1 (D)), (7
S=GxF?

where C; and C} ! are the 2D discrete cosine transform and its
inverse transform, respectively, and G is a 2D Gaussian low-
pass filter. To smooth the calculation results, we further nor-
malize the values of S into [0, 1]. Assume that P;; € RB*Bx1
represents an image block in P, where ¢ € {1,2,--- ,h} and
j € {1,2,--+,w} with h = H/B and w = W/B. The
quantified saliency information v;; of each image block P;;

is calculated as
vig= Y s/ Y5 (8)

SES;; sES

where S;; is the corresponding region of P;; in S, and
21};1 Z;ﬂ=1 v;; = 1. For simplicity, we assume that the
sub-bands P and Q have the same saliency information
distribution within blocks.

Algorithm 1 shows the linear sampling resource assigning
process. We first initialize the measurements for each image
block to avoid the final number of measurements of some
blocks being too small, and then linearly assign the rest sam-
pling resources according to the saliency information. Using
Algorithm 1 with two group of inputs {v, sr,, B, (H,W, 1)}
and {v,srq, B,(H,W,3)}, we can obtain the measurement
number m?, for each image block P;; and measurement

number mgj for each image block Q;;, respectively. Note that

Algorithm 1 The LSRA strategy.

Input: Saliency information v, sampling ratio sr’, block size
B, image size (H,W,C)
Output: The measurement number m;; for each image block
. pizels_per_block = B x B x C
s total = |sr’' x Hx W x C|
. base = [sr' /3 * pizels_per_block|
. rest = total — (base x % x 1)
fori=1:%4 do
for j=1: % do
m;; = base + |rest X v;;]
end for
: end for

the actual total measurements are less than the target total
measurements because of the floor function in Algorithm 1.
Then we use these reserved sampling resources to save the
saliency information v and include it in the actual sampling
results. Due to the errors that may be caused by the floor
operation, the actual sampling ratio (sr,) and target sampling
ratio (sr;) may have some slight difference. Table I lists the
average errors between the sr, and sr; for images in Setl1
at different sampling ratios.

To illustrate the advantage of our adaptive sampling, we
present the measurement allocation maps in the LL coefficients
of two images “Cameraman” and “Parrots” in Fig. 3. The
image block size is set as 16 x 16. Each value indicates the
measurement number to the image block and a larger value
means more allocated measurement resources. It can be seen
that the image blocks with more details are allocated more
measurement resources. For example, the camera in the image
“Cameraman” and the eyes in the image “Parrots” have more
details, and thus their related image blocks are allocated more
measurement resources.

3) Dual-Channel Scalable Sampling: Following existing
deep learning-based CS methods [14], [15], we also use the
BCS strategy to reduce the memory and computational burden
rather than directly sampling the whole image. When applying
different sampling ratios to different image blocks, one usually
constructs a measurement matrix for each sampling ratio and
this will highly increase the parameter number of the model.
To solve the problem, we apply a scalable deep compressive
sensing method that can perform different sampling tasks with
only one measurement matrix. The convolution operation is
used to mimic the compressive sampling process on the image
block-by-block. Note that our method samples image blocks
without overlapping, and thus the kernels of each convolution
layer have the same size as the image block.

Specifically, to sample P with an adaptive sampling ratio,
we replace the measurement matrix with a convolutional layer
Ay with weights wy, € RBX(BxBx1) and the scalable
sampling process is defined as

Y1 =(A1xP) O My, (€))

where * denotes the convolution operation with stride size

B x B, © represents the element-wise multiplication, M 4, €
2, .

RM*wxB” iq the mask to control the activities of measurements

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:13:35 UTC from IEEE Xplore. Restrictions apply.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3198323

TABLE I
THE AVERAGE ERRORS BETWEEN THE ACTUAL SAMPLING RATIO (STG) AND TARGET SAMPLING RATIO (ST’t) ON SET11 DATASET.
Target sr 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5
STq — STt +9e % +8e~ P +6e O —6e© +3e~° +1le % +1le % —2e %
(srq — sre)/sre 9.58% 0.23% 0.006%  -0.01% 0.01% 0.05% 0.03% -0.02%

1759213 163 BE13

2562567213

115 210M256%256
-

(a) Sampling ratio = 0.1 (b) Sampling ratio = 0.3

Fig. 3. Tllustration of the measurement allocation map. The first row shows
the LL coefficients of the two images and the second row shows their
measurement allocation maps.

for each image block and Y; € RPXwxB* s the final
sampling results. For each sub-tensor of the mask M 4,,
My, [4,5,1 : mi;] = 1 and other elements are zeros. Thus,
for the measurements of the image block P;;, only Y1[é, j, 1 :

m};] are valid measurements and Y1 [i, j, mj; + 1 : B? =0.

ij
Similarly, uzsing a convolutional layer A, with weights
wy, € R3BXBXBEX3)  the sampling process for Q is

calculated as

Y2 = (A2 Q) © Ma,, (10)
where MLy, € R?"*wx3B” i the corresponding sampling mask
2

and Yo € RP*wX3B” ig the sampling results of Q. For each

sub-tensor of the mask ML 4,, M 4,[i, j, 1 : m{;] = 1 and other

elements are zeros. Thus, for the measurements of the image

block Q;;, only Y2li, 7,1 : mgj] are valid measurements and
Yali,j,m{; +1:3B%] =0.

Formally, the whole sampling process can be expressed as

Y1, Y, :fsamp(X73T7A17A2)~ (1)

To ensure that each image block has at least one measurement,

hw o and MZ—WW are the smallest sampling ratios that the

HW
sampling model can perform on P and Q, respectively. Thus,
the target sampling ratio of the input image should be not
smaller than y’;—ww When the target sampling ratio is smaller
than this threshold, we set it as the threshold.

B. Reconstruction Model

We construct the reconstruction model by unfolding the
reconstruction process of the traditional MS-BCS method. In
the traditional MS-BCS method, the matrix ®; in Eq. (3) and
Eq. (4) is the pseudo-inverse matrix of ®;. However, since
the measurement matrix in our method is generated using
learning strategy, the measurement matrix is not orthogonal in
the training process, and the real-time calculation of pseudo-
inverse will interrupt the backward propagation of gradients.
Thus, for simplicity, we set the matrix ®; learnable in Eq. (3)
and Eq. (4) to ensure that the model can be trained.

To improve the denoising and deblocking ability, we use
a feed-forward learnable denoising block to replace the tra-
ditional denoising method in Eq. (5). This can also solve the
problem that traditional denoising algorithms cannot propagate
backward gradients in the training process. The full-image
denoising and deblocking operation is expressed as

X(tJrl) —_ X(t+1)/ + D(X(t+1),)7 (12)

where D indicates the denoising block containing convolu-
tional layers. The residual learning is used to speed up the
training process and improve the reconstruction performance.

The reconstruction model is shown as Fig. 4 and it contains
an initial reconstruction module f;,;; and a deep reconstruc-
tion module fgje.p. The original image can be reconstructed
from its dual-channel measurements.

1) Initial Reconstruction: Our module f;,;; applies the
initial reconstruction illustrated in Eq. (3) on the sampled
measurements in the wavelet domain. Similar to the sam-
pling module, the learnable convolutional layers are used
to implement the linear mapping matrix to get the initial
reconstruction. Specifically, the measurements Y in the first
channel is connected to a convolutional layer .A] containing
B? kernels of size 1 x 1 x B2. A tensor of size R"*wxB"
is generated by convolving these B2 kernels on the Y; with
stride size 1 x 1. By reshaping the tensor into hw feature
maps of size B x B x 1 and concatenating them into an
H x W x 1 feature map, the initial reconstruction PO of P in
the first channel can be generated. Using the similar operation,
the initial reconstruction Q(O) of Q in the second channel
can be obtained by connecting the measurements Yo to a
convolutional layer A% with 3B? kernels of size 1 x 1 x 3B2.

The process of the initial reconstruction can be expressed

as .
PO =Z(4; xY))

. 13
QY = E(45 + Yo), (1

where = is the reshaping and concatenation operations, and
the linear mapping in Eq. (3) is separately implemented using
convolution operations with A7 and A3. The final initial
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Fig. 4. The reconstruction model of the AMS-Net. The initial reconstruction image X0 js generated by first linearly mapping the measurements Y; and Yo
and then performing IDWT to the mapping results. Then the deep reconstruction module processes X for T stages to obtain the final reconstructed image
X(T) | A dual-channel projection operation and a full-image denoising operation are used in each stage, in which the dual-channel projection is performed in
the wavelet domain while the denoising operation is performed in spatial domain using d convolutional layers.

reconstruction X(© is generated by applying the inverse DWT
to the combination of P(®) and Q(O).

2) Deep Reconstruction: The deep reconstruction process
is performed to the initial reconstruction result X© to im-
prove its quality. By unfolding the iterative process in tradi-
tional MS-BCS reconstruction algorithm, we divide the mod-
ule fgeep into 1" stages. Each stage alternatively implements
the projection (see Eq. (4)) in the wavelet domain and the
full-image denoising (see Eq. (12)) in the spatial domain.

At the (¢ + 1)-th stage, let X(*) be the reconstruction result
of the previous stage. To perform the projection in Eq. (4) in
the wavelet domain, we first decompose the image X® into
sub-images P(®) and Q®), in which P(®) represents the LL
sub-band and Q(t) represents the stacking of the LH, HL and
HH sub-bands. The projection operations for P(!) and Q)
are expressed as

P = PO 4 PO Z(4f « ((y + PY) 0 My, ))
QY = QW + QO — E(A; + (A2 + QW) © Mo,)).
14
By applying the IDWT on the combination of P(*1) and
Q(+1D), we can obtain the projection result X+ of the
(t + 1)-th stage.

For the full-image denoising operation in Eq. (12), we use
the denoising block to remove the noise of X+ to get
the (¢ + 1)-th reconstruction result X (1) In each denoising
block, the first (d — 1) layers generate w feature maps using
3 x 3 convolution and the ReLLU activation function, and the
last layer generates a feature map using 3 x 3 convolution
without activation function. The architecture of the denoising
block is designed by removing the batch normalization layer

between the convolutional layer and ReLU activation function
in the feed-forward denoising model [27].

After finishing all the T stages, the final reconstructed
image X™) can be generated. Formally, let Sg@ =
{©®1,0,, -+ ,0Or} represent the learnable weights of all the
denoising blocks. Then the total process of the reconstruction
model can be expressed as

X(T) = fTEC(Y17Y27S@aA17 ;3A27'A§)' (15)

C. Loss Function

The forward propagation process of the AMS-Net is shown
in Algorithm 2, where the whole model can be trained end-
to-end and all the parameters are adaptively learned through
backward propagation.

The mean squared error (MSE) is widely used as the
loss function in many state-of-the-art deep learning-based CS
methods [14], [15], [20], since it is differentiable and has faster
convergence speed than other loss functions such as [ loss and
perceptual loss [28]. To obtain the fastest convergence speed
and best reconstruction performance, we also use MSE as the
loss function to calculate the difference between the original
image and its corresponding reconstructed image. Given N
training images {X;}¥ ,, the loss function is calculated by

N
1
L= IN E ||f’rec(fsamp(xi7Sri7A17A2)7
i=1

Se, A1, Az, Aj, A3) — X3

where sr; is the target sampling ratio of the ¢-th original image
X; in the training set. Using this loss function, the AMS-

;o (16)
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Algorithm 2 The forward propagation of the AMS-Net.
Input: X, sr, A1, A2, A7, A5, Se, T
Output: X7T
1: procedure SAMPLING(X, s, Ay, A2)
srp, s = SR_Assign(sr)
P,Q = DWT(X)
M, = LSRA(srp, P)
M, = LSRA(srq, Q)
Y, = (A *P) ® M,
Y2 = (A2 % Q) © My,
return Yl, Y2
9: end procedure
10: procedure RECONSTRUCTION(Y 1, Y5, A}, A%, Se,T)
1. PO ==Z(A45 +Y))
122 QO =Z(As xYy)
13 XO = 1pwT (PO Q)

o S I U S i

14: t=20

15: while (¢t +1) < T do > In the (¢ + 1)th stage
16: PO, QW = DWT(X?)

17: PUD = PO L PO _=(Af + (A1 xPY)OM.a,))
18: QU = QW+ QO —=(As # ((A2+ QM) ©OM.ay))
19: XV — rpwT Pt QUHY)

20: X(t+1) — x(t+1y + D()A((t-q—l)/7 @(t+1))

21: t=t+1

22: end while

23: return X (*)

24: end procedure

Net can quickly minimize the error between the reconstructed
image and the original image in the training process.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATIONS

In this section, we first design the training method to
evaluate the performance of the AMS-Net, and then compare
it with state-of-the-art schemes in terms of reconstruction
quality, visual effect, and model complexity.

A. Experiment Settings

The image block size in the sampling model is set as
B = 16 and the number of reconstruction stage 7' is set as
10. The width w and depth d of the denoising block in each
reconstruction stage are set as 64 and 5, respectively. For the
target sampling ratio sr in the original image, the allocation
ratio ar is set as ar = 0.95 when sr < 0.05, and set as
ar = max(0.25,0.95 — sr) when sr > 0.05. The parameter
studies about the stage 7', the width w and depth d, and the
allocation ratio ar are shown in Section V-D.

1) Training: Our experiment uses the same database with
other models [14], [16] to build the training dataset. Specifi-
cally, the training set is constructed using the training set (200
images) and testing set (200 images) of the BSD500 [29]-[31]
dataset. We randomly flip and rotate these original images to
extend our dataset, which is the same with the CSNett [14].
Then we randomly crop 400 x 224 = 89600 gray-scale sub-
images of size 128 x 128 as the training set.

To speed up the training process and improve the recon-
struction performance, we use a pre-trained denoising block
to initialize the weights of all the denoising blocks in the
proposed model. Specifically, following the settings in [27], we
pretrain a single denoising block for blind Gaussian denoising
task with random noise levels o € [0, 55]. The training epochs
are 50 and the batch size is 64. The Adam optimization
strategy [32] with a learning rate of 0.0001 is employed to
optimize the parameters of the denoising block. Our AMS-Net
is trained with batch size 1 for 10 epochs. For every mini-
batch, a random sampling ratio within [0.01,0.50] is set for
the used image. The optimizer is the Adam optimizer, and the
learning rate decays linearly from 0.0001 to 0.00001 on these
ten epochs. The TensorFlow framework is used to implement
the proposed model, and all the experiments are implemented
on a workstation with two GeForce RTX3090 GPUs and an
Intel(R) Core(TM) i9-10920X CPU. It takes about one hour
for one epoch in the training process.

2) Testing: Four widely used benchmark datasets, including
the Set5 (5 images) [35], Setll (11 images) [23], Setl4 (14
images) [36], and the validating dataset of BSD500 called
BSD100 (100 images), are used for evaluation. These widely
used datasets contain different image features and can fairly
reflect the reconstruction performance of different models. To
keep consistency with the training process, we also convert all
the color images in these four datasets into gray-scale images
and use the obtained gray-scale images as the testing images.

The competing methods contain six traditional CS methods,
including the DAMP [33], BCS-FOCUSS [13], TV [11],
MH [34], BCS-SPL [21] and MS-BCS [12], five single-scale
deep learning-based CS models, including the ReconNet [23],
ISTA-Net [37], CSNet™ [14], ISTA-Net™* [38] and AMP-
Net [15], and six multi-scale deep learning-based CS models,
including the SCSNet [16], MSRNet [17], MS-DCSNet [18],
DoC-DCS [19], P-DCI [20] and SS-DCI [20]. The reconstruc-
tion performance is tested by calculating the Peak Signal-
to-Noise Ratio (PSNR) [39] and Structural Similarity Index
(SSIM) [40] between the reconstructed image and original
image. A higher PSNR or SSIM score means the better recon-
struction quality. Besides, the visual quality is also compared
by showing the reconstruction results of different methods.

B. Comparison with Traditional CS Methods

First, we compare our AMS-Net with six traditional CS
methods, DAMP [33], BCS-FOCUSS [13], TV [11], MH [34],
BCS-SPL [21] and MS-BCS [12]. All codes of the traditional
CS methods are directly downloaded from the authors’ web-
sites, and the default parameters are used for evaluation. Two
kinds of measurement matrices are used, including the random
measurement matrices (i.e. Gaussian matrices) and learned
measurement matrices. The learned measurement matrices are
generated as follows. First, two convolutional layers are used
to sample the image and recover the initial reconstruction
results from the sampled measurements, respectively. Then,
using these two learnable layers, we construct a small model
and train it using the training set. By converting the learned
weights of the sampling layer into matrix, we can get the
learned measurement matrices.
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TABLE 11
PSNR AND SSIM COMPARISONS OF OUR AMS-NET WITH THE TRADITIONAL CS METHODS UNDER MULTIPLE SAMPLING RATIOS (sT).

Set5 (PSNR/SSIM)
Methods 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 Avg.

DAMP-R [33] 6.54/0.0491 12.08/0.2859 17.73/0.4424 23.24/0.6431 25.12/0.8092 31.65/0.8860 34.46/0.9197 30.97/0.9310 22.72/0.6208
DAMP-L [33] 10.97/0.2967 19.92/0.6062 24.20/0.7293 28.77/0.8426 32.44/0.9181 32.32/0.9413 36.23/0.9557 33.39/0.9605 27.28/0.7813
FOCUSS-R [13] |17.09/0.4531 20.27/0.5737 22.71/0.6439 25.86/0.7356 29.40/0.8267 31.62/0.8741 33.46/0.9045 35.12/0.9262 26.94/0.7422
FOCUSS-L [13] |21.88/0.5520 25.01/0.6863 26.89/0.7630 29.59/0.8481 32.87/0.9136 35.33/0.9429 37.47/0.9595 39.37/0.9699 31.05/0.8294

ST

MH-R [34] 15.70/0.3936 21.21/0.5791 23.93/0.6726 27.44/0.7923 30.63/0.8686 32.60/0.9016 34.25/0.9245 35.77/0.9411 27.69/0.7592
MH-L [34] 19.12/0.5047 25.29/0.7142 27.30/0.7840 30.08/0.8656 33.28/0.9252 35.72/0.9508 37.86/0.9660 39.94/0.9759 31.07/0.8358
TV-R [11] 17.09/0.4135 18.81/0.4788 21.13/0.5550 24.63/0.6939 28.24/0.8182 30.83/0.8795 33.04/0.9172 35.11/0.9423 26.11/0.7123
TV-L [11] 21.40/0.5295 24.53/0.6862 26.34/0.7678 28.89/0.8531 31.65/0.9143 33.63/0.9419 35.45/0.9588 37.27/0.9704 29.89/0.8277

BCS-SPL-R [21] |17.50/0.4705 20.44/0.5744 22.58/0.6492 25.61/0.7376 29.00/0.8219 31.17/0.8675 33.00/0.8984 34.70/0.9212 26.75/0.7426
BCS-SPL-L [21] |22.20/0.5712 25.59/0.7126 27.53/0.7870 30.41/0.8685 33.71/0.9250 36.05/0.9502 38.14/0.9652 40.16/0.9750 31.72/0.8443

MS-BCS-R [12] /- 24.63/0.6613 26.27/0.7188 29.46/0.8372 32.65/0.8919 34.90/0.9402 36.15/0.9432 37.40/0.9491 /-
AMS-Net-R 20.47/0.5529 24.71/0.7050 27.83/0.8013 31.61/0.8778 35.34/0.9314 37.69/0.9526 39.67/0.9643 41.51/0.9716 32.35/0.8446
AMS-Net 23.00/0.6261 27.97/0.7987 30.37/0.8563 33.41/0.9066 36.64/0.9445 39.01/0.9616 41.25/0.9722 43.28/0.9793 34.37/0.8807
Set14 (PSNR/SSIM)
ST
Methods 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 Avg.
DAMPR [33] 6.14/0.0424 12.06/0.2656 17.49/0.3987 21.95/0.5557 25.65/0.6995 28.20/0.7800 30.63/0.8361 33.41/0.8813 21.94/0.5574

DAMP-L [33] 11.37/0.2864 18.92/0.5323 22.97/0.6463 26.20/0.7605 29.47/0.8535 31.77/0.8982 33.70/0.9244 35.53/0.9427 26.24/0.7305
FOCUSS-R [13] |17.89/0.4269 20.01/0.5073 21.48/0.5623 23.91/0.6534 26.76/0.7569 28.76/0.8191 30.46/0.8617 32.07/0.8942 25.17/0.6852
FOCUSS-L [13] |20.85/0.4847 23.30/0.5997 24.60/0.6685 26.73/0.7697 29.57/0.8638 31.82/0.9088 33.81/0.9350 35.69/0.9515 28.30/0.7727

MH-R [34] 16.26/0.3594 20.40/0.5074 22.33/0.5869 25.36/0.7011 28.28/0.8070 30.17/0.8572 31.74/0.8896 33.37/0.9169 25.99/0.7032
MH-L [34] 18.54/0.4402 23.49/0.6133 24.86/0.6803 27.04/0.7811 29.99/0.8737 32.14/0.9158 34.44/0.9426 36.38/0.9585 28.36/0.7757
TV-R [11] 17.22/0.3809 18.78/0.4363 20.46/0.4993 23.11/0.6173 26.15/0.7406 28.36/0.8137 30.38/0.8643 32.34/0.9020 24.60/0.6568
TV-L [11] 20.55/0.4738 23.12/0.5994 24.40/0.6681 26.43/0.7685 29.17/0.8599 31.14/0.9044 33.01/0.9321 34.89/0.9512 27.84/0.7697

BCS-SPL-R [21] | 17.72/0.4347 19.77/0.5056 21.22/0.5598 23.67/0.6498 26.52/0.7494 28.55/0.8116 30.26/0.8558 31.91/0.8904 24.95/0.6821
BCS-SPL-L [21] |21.06/0.5003 23.66/0.6179 25.05/0.6875 27.30/0.7866 30.30/0.8744 32.47/0.9159 34.43/0.9408 36.39/0.9571 28.83/0.7850

MS-BCS-R [12] -/- 22.97/0.5729 24.29/0.6343 26.55/0.7430 29.27/0.8274 31.25/0.8945 32.70/0.9064 34.04/0.9198 -/-
AMS-Net-R 19.89/0.4864 23.64/0.6117 25.73/0.6861 28.58/0.7795 32.08/0.8697 34.39/0.9122 36.21/0.9354 37.77/0.9490 29.79/0.7788
AMS-Net 22.20/0.5470 25.63/0.6720 27.38/0.7350 30.12/0.8182 33.34/0.8945 35.59/0.9298 37.54/0.9499 39.23/0.9619 31.38/0.8135

Original image DAMP-R [33] MH-L [34]

PSNR/SSIM 13.74/0.3487 19.23/0.6651 17.52/0.5135 20.90/0.6646 17.64/0.5333 21.01/0.6906
TV-R [11] TV-L [11] BCS-SPL-R [21] BCS-SPL-L [21] MS-BCS-R [12] AMS-Net-R

B

DI

>
ALY

15.95/0.4528 21.25/0.7556 17.25/0.5163 21.45/0.7028 19.91/0.5912 22.25/0.7795 26.02/0.8704

Fig. 5. Reconstructed results of image “butterfly” by our AMS-Net and the traditional CS methods under sampling ratio 0.05.

1) Reconstruction Quality: Table II shows the comparison generated while the suffix ‘-’ means that the measurement
results of our AMS-Net with traditional CS methods on Set5 matrices are learned. For our AMS-Net, the suffix ‘-R’ means
and Setl14, respectively. For traditional CS methods, the suffix that the measurement matrices are non-learnable in the training
‘-R’ denotes that the measurement matrices are randomly process. The sampling ratio varies from 0.01 to 0.5. Note that
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the MS-BCS [12] cannot work at a sampling ratio lower than
0.02 and it samples image in the multi-level wavelet domain
with different block sizes. Thus, its measurement matrices are
difficult to learn. We only test it with random measurement
matrices and do not provide the test result at sampling ratio
0.01 for MS-BCS.

As can be see from Table II, when using the learned
measurement matrices to replace the random measurement
matrices, the reconstruction performance of all the traditional
CS methods can be greatly improved, and the average PSNR
scores are improved about 3 ~ 5 dB for every traditional CS
methods. Meanwhile, using the learned measurement matrices,
the average PSNR scores of our AMS-Net can be improved
about 2 ~ 3 dB than using the random measurement matrices.
Thus, it is obvious that the learned measurement matrices are
much more effective than these randomly generated measure-
ment matrices. From Table II, we can see that the PSNR
and SSIM scores of our AMS-Net are significantly larger
than those of the traditional methods. Thus, our AMS-Net
can outperform all the traditional CS methods under all the
sampling ratios. For example, in the comparison on SetS, when
the traditional CS methods use random measurement matrices,
the average PSNR score of the AMS-Net is 11.65 dB, 7.43 dB,
6.68 dB, 8.26 dB, 7.62 dB larger than the PSNR scores of the
DAMP [33], BCS-FOCUSS [13], MH [34], TV [11], and BCS-
SPL [21], respectively, while the corresponding average SSIM
score is 0.2599, 0.1385, 0.1215, 0.1684 and 0.1261 larger
than these methods, respectively. Besides, when using the
random measurement matrices, our AMS-Net still outperforms
all other traditional CS methods.

2) Visual Effect: To show the high reconstruction perfor-
mance of our model, we compare the visual quality of our
model with the traditional CS methods using the image “but-
terfly” from Set5. The comparison results are shown in Fig. 5,
where the used sampling ratio is 0.05. As can be seen, there is
obvious blocking artifacts in the reconstructed images by the
traditional CS methods. However, our model can eliminate
these blocking artifacts. This is because the denoising and
deblocking modules in our model are learnable, and they can
produce better denoising and deblocking performance than the
traditional denoising methods. Meanwhile, by comparing the
two versions of traditional CS methods, we can find that all the
traditional CS methods can obtain better visual quality when
using the learned measurement matrices. This visual quality
results further verify the high performance of the measurement
matrix learning strategy.

C. Comparison with Deep Learning-Based CS Methods

These competing deep learning-based methods, including
the ReconNet [23], ISTA-Net [37], CSNet™ [14], ISTA-
Net™ [38], AMP-Net [15], SCSNet [16], MSRNet [17],
DoC-DCS [19], P-DCI [20], SS-DCI [20], MS-DCSNet [18],
are all developed recently with high performance. For the
ReconNet [23], ISTA-Net [37], CSNet™ [14], SCSNet [16],
MSRNet [17], DoC-DCS [19], P-DCI [20], SS-DCI [20] and
MS-DCSNet [18], we re-train them using the training set
strictly following the details in the original literature. For

the ISTA-Nettt [38] and AMP-Net [15], we download their
pre-trained models from the authors’ websites and run these
models on the testing datasets to get the results.

1) Reconstruction Quality: Table III shows the comparison
results of different networks on the four testing datasets. As
can be seen, the AMS-Net can obtain significantly higher
PSNR scores than these deep learning-based CS methods
over all sampling ratios and achieve larger SSIM scores in
most cases. For example, the average PSNR score of the
AMS-Net on Setll is 2.12 dB, 4.24 dB, 7.06 dB, 2.11
dB, 49 dB, 1.47 dB, 2.11 dB, 4.78 dB, 1.80 dB, 2.26
dB, 1.75 dB and 2.14 dB larger than the PSNR scores
of the CSNet™ [14], ISTA-Net [37], ReconNet [23], AMP-
Net [15], ISTA-Net*™ [38], SCSNet [16], MSRNet [17], DoC-
DCS [19], P-DCI [20], SS-DCI [20] and MS-DCSNet [18],
respectively, while the corresponding average SSIM score
on Setll is 0.0160, 0.0789, 0.1376, 0.0088, 0.1114, 0.0148,
0.0689, 0.0098, 0.0142, 0.0081, 0.0148 larger than these
methods, respectively.

Note that the SSIM score is calculated by a sliding Gaussian
window in the spatial domain. However, our proposed model
performs the sampling and projection operations in the wavelet
domain, and this may slightly affect the SSIM scores of
our method. Although our model gets a little smaller SSIM
scores than the AMP-Net [15] under some sampling ratios,
it can obtain the best SSIM score on average among all
the methods. This indicates that our model can get the best
reconstruction quality. Besides, compared with AMP-Net [15],
our AMS-Net has some other important advantages. First, it
can achieve much larger PSNR and SSIM scores when the
sampling ratio is very low, which indicates that it shows much
better performance in heavy compression tasks (see Fig. 6
and Table III). Second, our AMS-Net is a scalable method
while AMP-Net [15] is not. This indicates that our method
can sample images at arbitrary sampling ratios with only one-
time training. However, a single AMP-Net [15] model can
sample images only at a fixed sampling ratio. Thus, to perform
tasks with n sampling ratios, the AMP-Net [15] should train
n models and thus has much more parameters than our AMS-
Net, as shown in Table VII.

2) Visual Effect: We use the image “Parrots” in Setll
dataset to show the visual quality of the reconstructed images
by different deep learning-based CS methods and Fig. 6 shows
the reconstruction results under the sampling ratio 0.05. As
can be seen, the reconstructed images by the ReconNet [23],
ISTA-Net [37], ISTA-Net** [38] and MSRNet [17] have
obvious blocking artifacts. This is because these methods
focus on the reconstruction of each image block individually,
and don’t consider the correlations between adjacent blocks.
On the contrary, there aren’t obvious blocking artifacts in
the reconstructed images generated by other models, because
these models all apply denoising and deblocking operations
to the full-image on the reconstruction stage. As shown in
Fig. 6, the image reconstructed by our AMS-Net contains more
details and sharp edges of the original image than the images
reconstructed by other methods. Thus, compared with other
methods, our AMS-Net has stronger ability to remove blocking
artifacts and reconstruct images with higher visual quality.
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TABLE III
PSNR AND SSIM COMPARISONS OF OUR AMS-NET WITH THE DEEP LEARNING-BASED CS METHODS UNDER MULTIPLE SAMPLING RATIOS (s7).

Set5 (PSNR/SSIM)

sr
Methods 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 Avg.
CSNetT [14] 22.78/0.6094 26.49/0.7665 28.60/0.8316 31.54/0.8956 34.86/0.9396 36.95/0.9581 38.67/0.9692 40.63/0.9774 32.56/0.8684
ISTA-Net [37] 19.32/0.4669 22.61/0.6138 24.82/0.7130 28.31/0.8272 32.56/0.9083 35.17/0.9400 37.24/0.9574 39.31/0.9701 29.92/0.7996
ReconNet [23] 18.44/0.4660 21.91/0.5863 23.57/0.6409 26.06/0.7332 28.97/0.8185 31.25/0.8738 32.71/0.8956 34.46/0.9226 27.17/0.7421
AMP-Net [15] 22.42/0.6183 26.56/0.7789 28.62/0.8380 32.10/0.9024 35.55/0.9427 37.87/0.9608 39.77/0.9717 41.60/0.9793 33.06/0.8740
ISTA-Net™+ [38] | 12.60/0.3081 16.67/0.4658 25.41/0.7539 30.22/0.8702 33.94/0.9250 36.27/0.9485 38.13/0.9621 39.95/0.9725 29.15/0.7758
SCSNet [16] 22.78/0.6136 26.47/0.7654 28.69/0.8331 31.58/0.8968 34.86/0.9404 36.87/0.9586 38.80/0.9701 40.81/0.9786 32.61/0.8696
MSRNet [17] 22.06/0.5723 25.17/0.7019 27.34/0.7888 29.03/0.8265 32.07/0.8946 33.58/0.9117 33.89/0.9114 34.85/0.9239 29.75/0.8164
P-DCI [20] 22.72/0.6280 26.21/0.7719 28.51/0.8320 31.47/0.8942 34.62/0.9375 36.49/0.9541 38.13/0.9638 39.78/0.9732 32.24/0.8693
SS-DCI [20] 22.05/0.6054 26.67/0.7864 29.02/0.8456 31.89/0.9017 35.00/0.9407 37.38/0.9604 39.01/0.9699 40.99/0.9781 32.75/0.8735
MS-DCSNet [18] |22.70/0.6218 26.37/0.7691 28.33/0.8297 31.19/0.8928 34.62/0.9344 36.75/0.9540 38.40/0.9648 40.29/0.9741 32.33/0.8676
DoC-DCS [19] 22.06/0.5995 26.63/0.7870 28.90/0.8457 31.98/0.9016 34.94/0.9419 37.38/0.9600 39.05/0.9701 40.72/0.9768 32.71/0.8728
AMS-Net 23.00/0.6261 27.97/0.7987 30.37/0.8563 33.41/0.9066 36.64/0.9445 39.01/0.9616 41.25/0.9722 43.28/0.9793 34.37/0.8807
Set14 (PSNR/SSIM)
sr
Methods 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 Avg.
CSNetT [14] 21.59/0.5309 24.30/0.6477 25.71/0.7125 27.96/0.8028 31.01/0.8846 33.14/0.9232 35.01/0.9454 36.97/0.9606 29.46/0.8010
ISTA-Net [37] 18.56/0.4122 21.24/0.5293 23.07/0.6122 25.74/0.7237 29.19/0.8354 31.70/0.8913 33.90/0.9246 35.99/0.9479 27.43/0.7346
ReconNet [23] 18.01/0.4175 20.65/0.5056 22.03/0.5586 24.02/0.6419 26.40/0.7404 28.43/0.8123 29.79/0.8494 31.47/0.8869 25.10/0.6766
AMP-Net [15] 21.65/0.5435 24.62/0.6629 26.13/0.7267 28.77/0.8182 32.00/0.8938 34.38/0.9301 36.34/0.9512 38.22/0.9650 30.26/0.8114
ISTA-Net™+ [38] | 12.32/0.2506 16.09/0.3863 23.35/0.6445 27.32/0.7714 30.72/0.8628 33.07/0.9074 34.98/0.9341 36.73/0.9525 26.82/0.7137
SCSNet [16] 21.61/0.5323 24.31/0.6478 25.79/0.7139 27.99/0.8041 30.98/0.8855 33.15/0.9239 35.08/0.9466 37.08/0.9619 29.50/0.8020
MSRNet [17] 21.10/0.5026 23.47/0.6074 24.98/0.6822 26.31/0.7388 28.93/0.8415 30.41/0.8726 30.80/0.8783 31.66/0.8934 27.21/0.7521
P-DCI [20] 21.65/0.5411 24.06/0.6494 25.67/0.7114 28.05/0.8031 30.87/0.8842 32.85/0.9189 34.55/0.9395 35.68/0.9492 29.17/0.7996
SS-DCI [20] 21.22/0.5251 24.45/0.6641 25.98/0.7264 28.27/0.8143 31.18/0.8896 33.55/0.9278 35.27/0.9464 37.42/0.9625 29.67/0.8070
MS-DCSNet [18] |21.57/0.5396 24.20/0.6470 25.71/0.7123 27.86/0.8011 30.98/0.8818 33.04/0.9188 34.96/0.9432 36.73/0.9563 29.38/0.8000
DoC-DCS [19] 21.29/0.5204 24.43/0.6651 25.93/0.7264 28.34/0.8153 31.12/0.8909 33.40/0.9265 35.31/0.9474 37.08/0.9592 29.61/0.8064
AMS-Net 22.20/0.5470 25.63/0.6720 27.38/0.7350 30.12/0.8182 33.34/0.8945 35.59/0.9298 37.54/0.9499 39.23/0.9619 31.38/0.8135
Setl1l (PSNR/SSIM)
sr
Methods 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 Avg.
CSNet™ [14] 21.06/0.5588 24.13/0.7169 26.06/0.7913 28.66/0.8644 32.10/0.9219 34.65/0.9509 36.78/0.9655 38.93/0.9763 30.30/0.8433
ISTA-Net [37] 18.16/0.4394 20.83/0.5731 22.90/0.6746 26.32/0.8010 30.55/0.8973 33.33/0.9343 35.63/0.9549 37.72/0.9687 28.18/0.7804
ReconNet [23] 17.44/0.4417 20.20/0.5446 21.66/0.6081 24.03/0.7076 26.88/0.8023 29.23/0.8631 30.83/0.8892 32.58/0.9172 25.36/0.7217
AMP-Net [15] 20.20/0.5581 24.11/0.7252 26.06/0.7987 29.40/0.8779 33.21/0.9334 36.03/0.9586 38.28/0.9715 40.33/0.9804 30.95/0.8505
ISTA-Net™+ [38] | 11.30/0.2375 14.81/0.3832 22.88/0.7048 28.34/0.8531 32.33/0.9217 34.86/0.9478 36.94/0.9628 38.73/0.9727 27.52/0.7479
SCSNet [16] 21.11/0.5616 24.13/0.7166 26.10/0.7939 28.66/0.8659 32.02/0.9232 34.63/0.9511 36.81/0.9663 39.04/0.9775 30.31/0.8445
MSRNet [17] 20.66/0.5287 23.15/0.6572 25.12/0.7496 26.71/0.7984 29.67/0.8746 31.29/0.8974 31.62/0.8975 32.93/0.9197 27.64/0.7904
P-DCI [20] 21.36/0.5747 24.04/0.7204 26.01/0.7931 28.88/0.8674 32.15/0.9242 34.44/0.9482 36.28/0.9615 38.11/0.9713 30.16/0.8451
SS-DCI [20] 20.86/0.5566 24.50/0.7411 26.50/0.8079 29.04/0.8741 32.38/0.9268 35.30/0.9560 37.30/0.9687 39.46/0.9787 30.67/0.8512
MS-DCSNet [18] |21.30/0.5734 24.15/0.7188 26.05/0.7927 28.58/0.8648 32.20/0.9215 34.63/0.9478 36.65/0.9627 38.68/0.9740 30.28/0.8445
DoC-DCS [19] 20.86/0.5475 24.54/0.7422 26.31/0.8041 29.19/0.8753 32.25/0.9273 35.26/0.9539 37.31/0.9685 39.20/0.9770 30.62/0.8495
AMS-Net 21.65/0.5795 25.69/0.7426 27.91/0.8181 31.23/0.8867 34.99/0.9406 37.46/0.9599 39.37/0.9702 41.05/0.9770 32.42/0.8593
BSD100 (PSNR/SSIM)
sr
Methods 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 Avg.
CSNetT [14] 22.47/0.5150 24.37/0.6123 25.45/0.6742 27.25/0.7671 29.75/0.8615 31.81/0.9111 33.68/0.9405 35.59/0.9604 28.80/0.7803
ISTA-Net [37] 19.80/0.4215 21.86/0.5133 23.17/0.5825 25.14/0.6861 27.87/0.8013 29.95/0.8656 31.82/0.9070 33.68/0.9367 26.66/0.7143
ReconNet [23] 19.07/0.4242 21.48/0.4990 22.55/0.5452 24.06/0.6201 26.00/0.7155 27.79/0.7931 29.06/0.8350 30.66/0.8784 25.08/0.6638
AMP-Net [15] 22.29/0.5231 24.46/0.6231 25.54/0.6840 27.62/0.7787 30.34/0.8702 32.56/0.9178 34.58/0.9466 36.57/0.9653 29.25/0.7886
ISTA-Net™+ [38] | 13.38/0.2868 17.14/0.4134 23.22/0.6103 26.16/0.7265 28.85/0.8305 30.93/0.8869 32.81/0.9227 34.64/0.9472 25.89/0.7030
SCSNet [16] 22.47/0.5159 24.37/0.6116 25.48/0.6753 27.26/0.7688 29.76/0.8630 31.78/0.9118 33.70/0.9418 35.69/0.9621 28.81/0.7813
MSRNet [17] 22.22/0.4992 23.89/0.5858 25.03/0.6538 26.12/0.7148 28.29/0.8225 29.64/0.8609 30.09/0.8696 31.04/0.8914 27.04/0.7373
P-DCI [20] 22.58/0.5205 24.42/0.6174 25.43/0.6745 27.27/0.7679 29.71/0.8627 31.55/0.9070 33.29/0.9356 34.68/0.9509 28.62/0.7795
SS-DCI [20] 22.30/0.5095 24.56/0.6263 25.65/0.6868 27.48/0.7790 29.91/0.8665 32.13/0.9175 33.93/0.9441 35.94/0.9638 28.99/0.7867
MS-DCSNet [18] |22.56/0.5205 24.41/0.6161 25.45/0.6750 27.16/0.7662 29.75/0.8600 31.78/0.9097 33.64/0.9392 35.57/0.9595 28.79/0.7808
DoC-DCS [19] 22.24/0.5035 24.58/0.6270 25.61/0.6862 27.50/0.7790 29.92/0.8689 31.95/0.9147 33.93/0.9441 35.78/0.9623 28.94/0.7857
AMS-Net 23.05/0.5281 25.38/0.6327 26.66/0.6949 28.78/0.7821 31.66/0.8710 33.92/0.9178 36.06/0.9456 38.22/0.9624 30.47/0.7918

D. Discussion parameter capacity by setting w as 32 and 64, and setting
d ranging from 3 to 11. As can be seen from Table IV,
when fixing d and changing w from 32 to 64, the average
PSNR scores can be improved about 0.2 dB. Besides, the

reconstruction quality gradually rises until d grows to 9. When

In this section, we evaluate the influence of model parame-
ters and model structure on the reconstruction performance of
our AMS-Net.

1) Depth and Width of the Denoising Block: The number
of parameters in our AMS-Net is influenced by the width w
and depth d of the denoising block. Here, we investigate the

d > 9, the model appears to be over-fitting and slightly
declines in the reconstruction performance. Thus, to achieve
a relatively high reconstruction quality and small parameter

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:13:35 UTC from IEEE Xplore. Restrictions apply.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3198323

Original image CSNett [14] ISTA-Net [37]

PSNR/SSIM
MSRNet [17]

25.92/0.8471
P-DCI [20]

23.89/0.7875
SS-DCI [20]

ReconNet [23]

22.42/0.7285
MS-DCS-Net [18]

11

AMP-Net [15]

SCSNet [16]

ISTA-Nett+ [38]

s ol

22.75/0.7737
DoC-DCS [19]

/ﬁ

25.63/0.8418 25.92/0.8471

AMS-Net-R AMS-Net

25.19/0.8199 25.51/0.8399 26.44/0.8552

25.49/0.8438 26.06/0.8524

29.71/0.8592 31.12/0.8822

Fig. 6. Reconstructed results of image “Parrots” by our AMS-Net and the deep learning-based CS methods under sampling ratio 0.05.

TABLE IV
THE INFLUENCE OF THE NUMBER OF DENOISING STAGES T', THE WIDTH w AND DEPTH d OF THE DENOISING BLOCK, THE LSRA STRATEGY L, AND THE
PROJECTION OPERATION P ON THE AVERAGE RECONSTRUCTION PSNR (DB) PERFORMANCE ON SET11 OF OUR PROPOSED AMS-NET.

Sampling Ratio (w = 32/w = 64)

L. p d T 0.01 0.03 0.05 0.1 02 03 04 05 Avg.
v v 5 4 211872136 25.04/2521 272472750 30.42/30.60 34.18/34.48 36.74/37.06 38.68/39.02 40.26/40.66 31.72/32.00
Vv 5 6 2136/21.50 25.26/2551 27.50/27.75 30.80/31.02 34.52/3479 37.03/37.29 38.96/39.24 40.59/40.90 32.00/32.25
Vv 5 8 21482156 2547/2552 27.69/27.83 30.95/31.17 34.67/34.94 37.18/37.43 39.12/39.37 40.79/41.03 32.17/32.36
Vv 5 10 21552165 25472569 27.77/27.91 31.00/3123 34.75/34.99 37.24/37.46 30.18/39.37 40.86/41.05 32.22/32.42
Vv 5 12 21.51/21.64 25482570 27.78/28.00 30.98/31.22 34.70/34.99 37.21/37.42 39.15/39.29 40.84/40.87 32.21/32.39
v v 3 10 212772134 251012523 272512744 30.50/30.67 34.29/34.47 36.83/37.05 38.86/39.00 40.55/40.83 31.83/32.01
v v 7 10 21.61/21.83 25.69/2591 27.92/28.17 31.08/31.37 34.84/35.19 37.33/37.60 39.27/39.53 40.92/41.20 32.33/32.60
v V9 10 21.7321.84 25782598 28.05/2827 31.27/31.44 35.01/3523 3751/37.64 39.44/39.60 41.10/41.30 32.49/32.66
v v 11 10 21.79/21.88 25.84/26.03 28.12/2826 31.27/31.43 35.01/3527 37.47/37.66 39.38/39.60 41.05/41.28 32.49/32.68
75 10 21.00721.15 245072462 26652675 29.69/29.87 33.38/33.60 36.00/3623 37.20/36.84 38.8/37.93 30.84/30.87
v 510 20.652079 24.11/2433  26.07/2639 28.85/29.12 31.99/32.30 34.42/34.71 36.28/36.57 37.50/37.84  29.98/30.26

capacity, we set w = 64 and d = 5 in our model.

2) Projection Operation: By utilizing the projection op-
eration, our model can integrate the structure advantages of
the traditional CS method with the powerful learning ability
of CNN. Besides, the projection operation only reuses the
learned measurement matrices and the linear mapping matrices
to update the image blocks. Thus, it does not introduce any
extra parameters. As shown in Table IV, when removing the
projection operation, the average reconstruction PSNR scores
of our model will degrade about 0.9 ~ 3 dB on each sampling
ratio. This demonstrates the effectiveness of the projection
operation for image reconstruction.

3) Deep Reconstruction Module: To demonstrate the ef-
fectiveness of our deep reconstruction module, we construct
two new models, the AMS-CSNet™ and AMS-SCSNet, by
replacing the deep reconstruction module of our AMS-Net
with the deep reconstruction module in CSNet™ [14] and
SCSNet [16], respectively. Table V shows the comparison
results on Setll and the suffix “-NoProj” means that no

projection operation is used in each reconstruction stage. As
can be seen from Table V, the performance of the AMS-
CSNet™ and AMS-SCSNet are not superior compared to
the original models. Besides, with more convolutional layers,
the AMS-NoProj achieves similar reconstruction performance
with the AMS-CSNett and AMS-SCSNet, which indicates
that the reconstruction performance cannot be improved by
simply stacking more convolutional layers. Compared to other
models, the proposed AMS-Net with projection operation can
significantly improve the reconstruction performance. This
demonstrates that the projection operation is very important
for our adaptive multi-scale sampling model.

4) Reconstruction Stages: The reconstruction module of
our AMS-Net has multiple reconstruction stages 71'. To eval-
uate the influence of 7', we train the AMS-Net with multiple
reconstruction stages ranging from 4 to 12. As can be seen
from Table IV, the reconstruction quality can be improved
with the increasing of 7. However, when 7" > 10, the
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TABLE V
THE INFLUENCE OF THE DEEP RECONSTRUCTION MODULE ON
RECONSTRUCTION PERFORMANCE. THE TESTING SET IS SET11.

Sampling Ratio (PSNR)

Methods 001 01 03 05

CSNet™ [14] 7106 2866 34065 3893
AMS-CSNett 2059 2899 3493  38.14
SCSNet [16] 211 2866 3463 39.04
AMS-SCSNet 2059 2879 3456 3772
AMS-NoProj 2079 2902 3471 37.84
AMS-Net 2165 3123 3746 41.05

TABLE VI

THE INFLUENCE OF THE ALLOCATION RATIO ar ON RECONSTRUCTION
QUALITY. THE TESTING SET IS SET11.

Sampling Ratio (PSNR/SSIM)

Max. ar 0.01 0.1 03 05
095  21.65/0.5795 31.23/0.8867 37.46/0.9599 41.05/0.9770
0.85  21.38/0.5667 31.24/0.8839 37.59/0.9585 40.73/0.9745
075  21.26/0.5650 31.19/0.8816 37.48/0.9566 39.86/0.9709
0.65  21.14/0.5609 31.03/0.8780 37.16/0.9544 38.29/0.9653

model appears to be over-fitting and slightly declines in the
reconstruction performance. Thus, to achieve a relatively high
reconstruction quality, we set 7" = 10 in our model.

5) LSRA Strategy: Considering that the block sparsities
of the two groups of sub-bands in the wavelet domain are
distributed unevenly, our model adaptively allocates sampling
resources to different image blocks of the two groups of
sub-bands using the LSRA strategy. As can be seen from
the fourth row and the penultimate row of Table IV, the
average reconstruction PSNR scores of the proposed model
can improve about 0.5 ~ 3 dB on each sampling ratio when
using the LSRA strategy. This proves the effectiveness of the
LSRA strategy on reconstruction performance.

6) Allocation Ratio: The allocation ratio ar is used to
adaptively assign sampling resources according to the target
sampling ratio. To test the influence of the ar on reconstruction
performance, we train the AMS-Net with different settings of
ar. The maximum value of ar is ranging from 0.65 to 0.95,
and Table VI shows the comparison results. As can be seen,
our model can get relatively high PSNR and SSIM scores
when the maximum value of ar is 0.95. Thus, we set the
maximum value of ar to 0.95 in the experiment settings.

E. Model Complexity

This section compares the model complexity of different
CS methods in terms of parameter capacity and time com-
plexity. The average running time is used to evaluate the
actual reconstruction efficiency. Besides, we use the number
of floating-point operations (FLOPs) [41] to quantify the time
complexity, since it is commonly used in the time complexity
comparison of deep learning-based models [6]. Note that the
average running time and the number of FLOPs are calculated
by reconstructing an image of size 256 x 256. The traditional
CS methods are implemented in MATLAB software and run
on CPU, while the deep learning-based methods are tested on
GPU. Table VII shows the comparison results and the suffix
“T"-” of our AMS-Net represents the number of reconstruction

TABLE VII
MODEL COMPLEXITY COMPARISONS OF DIFFERENT CS METHODS WITH n
SAMPLING RATIOS. THE PN1 AND PNo ARE THE PARAMETER NUMBERS
OF THE LEARNABLE MATRICES AND ALL OTHER CONVOLUTIONAL
LAYERS, RESPECTIVELY, AND SR = sry + srg + -+ - + sry, IS THE SUM
OF THE . SAMPLING RATIOS.

. Scalable PNy PN2 FLOPs Time
Methods Sampling (M) ™M G ®
DAMP [33] True - - - 8.231
FOCUSS [13] True - - - 2.254
MH [34] True - - - 3.743
TV [11] True - - - 0.533
BCS-SPL [21] True - - - 1.506
MS-BCS [12] True - - - 0.910
ReconNet [23] False 1.05x SR 0.02xn 3.2 0.002
CSNett [14] False 2.10x SR 037xn 682 0.05
ISTA-Net [37] False 1.05x SR 0.34xn 3712 0.008
AMP-Net [15] False 210x SR 0.34xn 2242 0.017
ISTA-Nett+ [38] True - 0.76 4945 0.015
SCSNet [16] True 2.10 1.41 11.62  0.003
MSRNet [17] False 2.10x SR 205xn 2688 0.011
DoC-DCS [19] False 210 x SR 16.29xn 8253 0.017
AMS-Net-T4 True 1.31 0.45 2931 0.005
AMS-Net-T6 True 1.31 0.67 4395 0.008
AMS-Net-T'8 True 1.31 0.89 58.60 0.010
AMS-Net-7'10 True 1.31 1.12 7325  0.011

stages. As the DoC-DCS [19], P-DCI [20], SS-DCI [20] and
MS-DCSNet [18] have the same reconstruction architecture,
we only list the results of DoC-DCS [19] for comparison.

1) Parameter Capacity: As can be seen from Table VII, the
SCSNet [16], ISTA-Net** [38] and our AMS-Net use scalable
sampling strategies and train only one model for multiple
sampling ratios, which significantly reduce the parameter
capacity and training time. In contrast, all other models need
to train a model for each sampling ratio. However, a method
should be available for different sampling ratios. Thus, when
performing tasks with n sampling ratios, they need to train n
models for these n sampling ratios, which greatly increases
the parameter capacity and training time. As a result, for
a normal task (e.g., n > 10), our AMS-Net can achieve
the second smallest parameter capacity and only has larger
parameter capacity than ISTA-Net™™ [38]. Thus, our AMS-
Net can achieve a small parameter capacity while keeping the
best reconstruction quality.

2) Time Complexity: As shown in Table VII, it takes several
seconds for traditional CS methods to reconstruct the images,
while the average running times for deep learning-based
methods are below 0.1 seconds when running on GPU. This
is because the reconstruction process of traditional CS meth-
ods is implemented iteratively until achieving convergence
or reaching the maximum iteration steps. Besides, compared
with CPU, the GPU has advantages in calculation ability and
parallel computation. This can heavily reduce the running time
of the deep learning-based CS methods.

Among all the deep learning-based CS methods, the Recon-
Net [23] has the least FLOPs but the lowest reconstruction
quality (see Table III), because it has fewer convolutional
layers than other models. Our model has a comparative number
of FLOPs compared to other models. Besides, with a small
number of reconstruction stages, our AMS-Net can achieve a
faster reconstruction speed and less FLOPs while maintaining
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a good reconstruction performance (see Table IV). In general,
these deep learning-based CS methods have different time
complexity. However, due to the strong computation efficiency
of GPU, the slightly different running times of these methods
do not make much sense. Since all running speeds are al-
most the same magnitude, the reconstruction quality is more
important for a deep learning-based method. Our AMS-Net
can achieve better reconstruction quality than other methods,
especially at low sampling ratios (see Table III and Fig. 6).

VI. CONCLUSION

In this paper, we proposed a dual-channel deep network for
adaptive multi-scale image CS, called AMS-Net, which fully
exploits the different importance of the image low-frequency
and high-frequency components in the wavelet domain. An
original image is decomposed into four sub-images using the
DWT, namely the LL, LH, HL and HH sub-bands. Since the
LL sub-band is low-frequency components and more important
to the reconstruction quality than the other three sub-bands,
the AMS-Net allocates the LL sub-band a larger sampling
ratio while allocating the other three sub-bands a smaller
one. Considering the different sparsity in different blocks,
an LSRA strategy is proposed to further adjust the sampling
resources block-by-block on the two groups of sub-bands,
respectively. Then a dual-channel scalable sampling model
is developed to apply adaptive sampling tasks in the wavelet
domain at arbitrary sampling ratios. Furthermore, by unfolding
the reconstruction process of the traditional multi-scale block
CS algorithm, we propose a multi-stage reconstruction archi-
tecture to utilize multi-scale features for further enhancing the
reconstruction quality. Comparison results demonstrate that
our AMS-Net can outperform the traditional CS methods and
state-of-the-art deep leaning-based CS methods.
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