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Abstract—When high-dimensional chaotic systems are
applied to many practical applications, they are required
to have robust and complex hyperchaotic behaviors. In this
article, we propose a novel nD chaotic system construction
method using the Pascal-matrix theory. First, a parametric
Pascal matrix is constructed. Then, an nD chaotic system
can be generated by using the parametric Pascal matrix as
the parameter matrix of the system. Theoretical analysis
shows that the generated nD chaotic systems have ro-
bust and complex chaotic behaviors, and they become nD
Arnold Cat maps by fixing the parameters as some special
values. Performance evaluations demonstrate that the nD
chaotic systems have more complex chaotic behaviors and
better distribution of outputs compared with existing HD
chaotic systems. A 4-D Arnold Cat map and a 4-D chaotic
map with hyperchaotic behaviors are generated as two ex-
amples. The two chaotic maps are then simulated on a
microcontroller-based hardware platform and the chaotic
sequences are tested to show good randomness.

Index Terms—Arnold cat map, chaos complexity, chaotic
system, hardware implementation, hyperchaotic sequence,
nonlinear system.

I. INTRODUCTION

CHAOS is an intrinsic stochastic process in a deterministic
dynamical system, and it is an evolution from an ordered

state to a disordered state. The earliest discovery of chaotic be-
havior is in weather forecasting [1], and then a variety of chaotic
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phenomena are observed in natural and nonnatural systems, such
as brain waves and traffic flow [2], [3]. Chaos system has initial
state sensitivity, topological transitivity, unpredictability, ergod-
icity, and so on [1], [4]. These properties contribute to its wide
applications in many fields, such as Internet of Things [5], secure
communication [6], and intellectual property protection [7]. In
addition, since some chaotic systems have very unique charac-
ter and thus can be applied to some special applications. For
example, the Chebyshev chaotic map has a semigroup property
and it can be applied to build secure and efficient authentication
schemes [8], [9].

In the past few decades, some classic low-dimensional (LD)
chaotic systems have been proposed. For example, Hénon map
is proposed as a simplified model of the Poincaré section of the
Lorenz model and Logistic map is designed as a discrete-time
demographic growth model analogous [10]. However, these
maps have simple structures, few control parameters, and only
one or two positive Lyapunov exponents (LEs). These properties
make their trajectories predictive using some artificial intelli-
gence techniques. These latest technologies are used to identify
the control parameters [11], predict the states of the chaotic
system [12], and estimate the initial states [13]. If the trajectories
of a chaotic map can be successfully predicated, many of its
applications (e.g., the chaos-based cryptography) will be ineffec-
tive [14]. Therefore, the complexity of chaotic sequences attracts
the attention of scholars because of its importance in predicting
chaotic sequences. For analyzing the complexity of chaotic
sequences, a lot of algorithms have been introduced, includ-
ing sample entropy [15], correlation dimension (CD) [16], and
information entropy. Subsequently, to improve the complexity
of LD chaotic systems, two kinds of methods are proposed. One
is to perturb the variables or control parameters of chaos system
[17], and the other is to design new chaotic systems with better
complexity [18]. Although these methods can overcome the
problems of LD chaotic systems lacking hyperchaotic behavior
and discontinuous parameter intervals [19], [20], it is difficult for
LD chaotic systems to exhibit stable performance [21], and the
performance of the newly designed chaotic map lacks theoretical
guarantee and depends on the experience [19].

Recently, many efforts have been devoted to designing high-
dimensional (HD) chaotic systems with complex chaotic be-
haviors and abundant control parameters. Some representative
works are as follows. Natiq et al. [22] used the sine function to
generate n-dimensional (nD) discrete chaotic maps by treating
existing chaotic maps as seed maps. Wu et al. [23] cascaded
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many isomorphic chaotic maps to design an HD chaotic map.
In [24], a 6-D discrete-time chaotic system with positive LEs is
constructed by modular operation. Since the feedback controller
strategy can provide a good solution for constructing chaotic
systems, manynD discrete and continuous chaotic systems were
developed using different settings of feedback controller [25]–
[27]. Analysis results demonstrate that these chaotic systems
can achieve many positive LEs and complex chaotic behaviors.
However, the performance of the constructed chaotic systems
using these strategies is highly dependent on the experience
of debugging parameters. Besides, when a chaotic system is
simulated in a platform with finite precision, the truncation of
precision may cause the overlap of close trajectories, which
makes the chaotic behavior become periodic behavior. Thus,
developing new chaotic systems with complex chaotic behaviors
is meaningful.

In this article, a new nD chaotic system (nD-CS) generation
method is proposed using parameterized Pascal matrix. It has
a simple structure and can generate nD discrete chaotic maps
with robust chaotic behaviors. It first constructs n discrete linear
equations and then constructs the coefficient parameter matrix
using the Pascal-matrix theory. Specifically, the coefficient pa-
rameter is constructed by parameterizing the first row and first
column of the Pascal matrix and different settings of parameter
can result in different nD chaotic systems. Theoretical analysis
proves that the generated nD chaotic systems have robust and
complex chaotic behaviors. In particular, an nD Arnold Cat map
can be generated by setting the parameters as some specific
values. Performance evaluations and comparisons display the
nD-CS and nD Arnold Cat map generated by the proposed
method can achieve complex hyperchaotic behaviors and more
uniformly-distributed outputs than other HD chaotic systems. A
4-D Arnold Cat map and a 4-D chaotic map with hyperchaotic
behaviors are generated as two examples to verify the effec-
tiveness of the proposed method. Moreover, to show the simple
hardware simulation, the two chaotic maps are simulated on
a microcontroller-based hardware platform. The experimental
results demonstrate that the two chaotic maps can produce
hyperchaotic sequences with high randomness.

The rest of this article is organized as follows. Section II
presents the nD chaotic system generation method using the
Pascal-matrix theory, and introduces the generation of nD
Arnold Cat map using the proposed method. Section III evaluates
the properties of the proposed chaotic maps and compares them
with other HD chaotic maps. Section IV shows two examples of
nD chaotic maps generated by our method. Finally, Section V
concludes this article.

II. n-D CHAOTIC SYSTEM GENERATION METHOD

This section introduces the Pascal matrix [28], constructs a
parametric Pascal matrix, and then generatesnD chaotic systems
using the parametric Pascal matrix.

A. Pascal Matrix

First, we give the definition of Pascal’s triangle (also called
the Yang-Hui triangle) as Definition 1.

Fig. 1. Flowchart of the Pascal-matrix construction. (a) The
coefficients of binomial expansions. (b) Pascal’s triangle.

Definition 1: A triangle whose each element is the sum of its
two adjacent elements in the preceding row is called the Pascal’s
triangle.

Using Pascal’s triangle, a Pascal matrix can be generated and
its generation process is shown in Fig. 1. As can be seen, Pascal’s
triangle is first constructed by expanding the binomial (x+ y)n.
The values on both sides of the triangle are set to one and each
of the other elements is the sum of its two adjacent elements
in the preceding row. For example, C1

2 = C0
1 + C1

1 . Fig. 1(a)
shows the calculation process of each element and Fig. 1(b)
shows the obtained Pascal’s triangle. Then, the Pascal matrix
can be generated by specifying the matrix dimension in Pascal’s
triangle. For example, when the dimensionn = 4, the 4-D Pascal
matrixP can be generated by marking a 4-D diamond in Pascal’s
triangle and it is written as

P =

⎛
⎜⎜⎝

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎞
⎟⎟⎠ . (1)

The Pascal matrix generated from Pascal’s triangle has fixed
elements. To increase the parameter space, we further derive a
parametric Pascal matrix.

B. Methodology of Configuring Parametric Pascal
Matrix P

The construction procedure of the parametric Pascal matrix
P can be described as follows.

Step 1: Set the elements p1,2, p1,3, . . . , p1,n in the first row
of the Pascal matrix P as some random positive integers
and the element p1,1 greater than or equal to max{p1,j},
where j = 2, 3, . . . , n.
Step 2: Set all the elements in the first column of the Pascal
matrix P as some random positive integers.
Step 3: All the other elements are calculated by pi,j =
pi−1,j + pi,j−1 for i, j = 2, 3, . . . , n.

Algorithm 1 presents the pseudocode of abovementioned
procedures for generating P using inputs pr and pc, where
pr and pc are the elements of the first row and first column,
respectively. The element p1,1 is set to be greater than or equal
to the maximum value of the first row pr , ensuring that the
matrix P is nonsingular. An nD chaotic system with complex
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Algorithm 1: Algorithm for configuring the parametric
Pascal matrix P .
Input: pr = {p1,j}nj=2 and pc = {pi,1}ni=2 are

pseudorandom positive integers.
Output: an n-D parameter matrices P for nD-CS.
1: Initialize P ∈ Rn×n;
2: p1,1 ≥ max{pr};
3: p1,(2:n) = pr;
4: p(2:n),1 = pc;
5: for i = 2 to n do
6: for j = 2 to n do
7: P (i, j) = pi−1,j + pi,j−1;
8: end for
9: end for

chaotic behaviors can be generated using the parametric Pascal
matrix P as its parameter matrix.

C. Generation of nD Chaotic System

A general form of discrete map can be described as

v(t+ 1) = P · v(t) mod N (2)

where v(t) = {v1(t), v2(t), . . . , vn(t)}T ∈ Rn×1 denotes the
state vector at observation time t, the function modN is modular
arithmetic to restrict the domain into the square, and P is a
parametric Pascal matrix generated by Algorithm 1. It is the
parameter matrix of the map and it can be shown as

P =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

⎞
⎟⎟⎟⎠ . (3)

Obviously, the parameter matrix P determines the properties
of nD chaotic system. By configuring the elements of P using
some special values, the nD chaotic system can exhibit robust
and expected chaotic behaviors.

D. Chaotic Behavior Analysis

The “chaos” is an observed phenomenon and there is no
universal definition to describe its existence. To define chaos,
researchers gave different definitions from different aspects.
Since the LE measures the exponential divergence of a system’s
two trajectories starting from extremely close initials, the system
exponentially diverges and is sensitive to the initials with a
positive LE [29]. The essence of chaotic behavior is that a
system’s behavior stretches and folds in a bounded phase plane.
Thus, according to the statements in [26] and [30], the properties
of one positive LE and global boundedness are usually used as
a guideline for chaos generation. The chaos in the sense of LE
can be defined as Definition 2.

Definition 2: [26], [30] A discrete system is said to be chaotic
in the sense of LE if it satisfies the two conditions: 1) it has at
least one positive LE and 2) its phase space region is globally
bounded.

The detailed equations of the nD chaotic system (2) can be
described as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

v1 = p11v1(t) + p12v2(t) + · · ·+ p1nvn(t)
v2 = p21v1(t) + p22v2(t) + · · ·+ p2nvn(t)

...
vn = pn1v1(t) + pn2v2(t) + · · ·+ pnnvn(t)

.

It is the Jacobian matrix J(v(t)) to the observed state v(t) can
be expressed by

J(v(t)) =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

⎞
⎟⎟⎟⎠ (4)

which is the parametric Pascal matrix P in (3). Thus, the
Jacobian matrix of the nD chaotic system (2) is independent
of the observation state v(t).

The following Proposition 1 is introduced to illustrate that the
proposed nD chaotic system is chaotic.

Proposition 1: The nD chaotic system in (2) has chaotic
behavior if its nD parameter matrix P is the parametric Pascal
matrix configured by Algorithm 1.

Proof: The phase space of the nD chaotic system in (2) al-
ways stretches in a bounded region due to the modulo operation.
Thus, the nD chaotic system is globally bounded and satisfies
condition 2) of Definition 2.

According to the LE calculation [31], the LEs of the nD
chaotic system can be expressed as

LEi = lim
t→∞

1
t

t−1∑
k=0

ln(λ
v(t)
i ) (5)

where λi is the ith eigenvalue of the Jacobian matrix J(v(t))
of the system and i ∈ {1, 2, . . . , n}. The Jacobian matrix of the
nD chaotic system (2) is independent of the observation state
v(t), and it is the parametric Pascal matrix P . Then, the n LEs
of the nD chaotic system (2) is calculated as

LEi = lim
t→∞

1
t

t−1∑
k=0

ln(λi(P )) = ln(λi(P )), i = 1, 2, . . . , n.

(6)
For any square matrix A ∈ Rn×n, the sum of its eigenvalues

is equal to the trace tr(P ) of the matrix. Then, the sum of the
eigenvalues of the parametric Pascal matrix P can be calculated
as

λ1 + λ2 + · · ·+ λn = tr(P )

= p1,1 + p2,2 + · · ·+ pn,n (7)

where λi denotes the eigenvalues of P and i = 1, 2, . . . , n.
According to the procedure of the parametric Pascal matrix

in Algorithm 1, one can obtain that

pi,j = pi−1,j + pi,j−1

= pi−1,j−1 + pi−2,j + pi−1,j−1 + pi,j−2

= 2pi−1,j−1 + pi−2,j + pi,j−2
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where i, j = 3, 4, . . . , n. Because all the elements pa,b (a, b =
1, 2, . . . , n) are positive integers, pi,i > pi−1,i−1 when i ≥ 3.
Therefore, the trace of parametric Pascal matrix satisfies that
tr(P ) > n. Combining the (7), one gets

λ1 + λ2 + · · ·+ λn > n.

This implies that at least one eigenvalue of the parametric
Pascal matrix P is greater than one. Consequently, according
to the LE calculation in (6), one can get that at least one LE is
positive. Then, the nD chaotic system satisfies condition 1) of
Definition 2. This completes the proof. �

E. Special Case of nD Chaotic System

The Arnold Cat map is a simple discrete system and has many
unique properties, such as area preserving, determinant of one,
integer entries of inverse matrix [32]. By setting the parameters
of the nD chaotic system (2) as some special values, an nD
Arnold Cat map can be generated.

When the elements of input pr and pc in Algorithm 1 are
all one and set p1,1 = 1, the original Pascal matrix is generated.
Using the original Pascal matrix as the parameter matrix in (2),
an nD discrete Arnold Cat map can be generated. Since the
original Pascal matrix is a symmetric matrix and its determinant
is equal to one, it has the following properties.

Lemma 1: [28] Suppose 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are the n
eigenvalues of the original Pascal matrix P = (pi,j)n×n. They
satisfy

λ1λ2 . . . λn = 1 (8)

and

λi =
1

λn+1−i
(9)

where i = 1, 2, . . . , n.
Lemma 1 tells that the �n�

2 eigenvalues of an nD original
Pascal matrix are larger than one. Since the eigenvalues of the
original Pascal matrix can determine the LEs of the chaotic
map, one can generate an nD Arnold Cat map with robust
hyperchaotic behaviors using the original Pascal matrix as its
parameter matrix.

Proposition 2: The n LEs of the nD Arnold Cat map satisfy
that

LE1 + LE2 + · · ·+ LEn = 0 (10)

and

LEi = −LEn+1−i (11)

where i = 1, 2, . . . , n.
Proof: Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the n eigenvalues of

the original Pascal matrix P . According to (6), one can get that

LE1 + LE2 + · · ·+ LEn = ln(λ1) + ln(λ2) + · · ·+ ln(λn)

= ln(λ1λ2 · · · λn).

Combining (8), one can obtain

LE1 + LE2 + · · ·+ LEn = ln(1) = 0.

Moreover, according to (9), the relationship of the n LEs of the
Arnold Cat map can be derived as

LEi = ln(λi)

= ln

(
1

λn+1−i

)

= −LEn+1−i

where i = 1, 2, . . . , n. This completes the proof. �
Lemma 2: [28] The determinant of the inverse original Pascal

matrix P−1 is one, and P−1 has the same eigenvalues as the
original Pascal matrix P .

Proposition 3: The chaotic map whose parameter matrix is
the inverse original Pascal matrix P−1 is also an nD Arnold Cat
map.

Proof: Because the matrix P−1 satisfies det(P−1) = 1, the
chaotic system in (2) is an nD Arnold Cat map when using it as
the parameter matrix.

The newly generated nD Arnold Cat map also satisfies
Proposition 2, because the parameter matrix P−1 has the same
eigenvalues as the original Pascal matrix P . The nD Arnold
Cat maps generated using original Pascal matrix P and inverse
Pascal matrix P−1 are two completely different chaotic maps
with different parameters. Using the same initial settings, they
can generate different chaotic sequences with different chaotic
behaviors. However, since the eigenvalues of the P and P−1 are
the same, the nD Arnold Cat maps generated using P and P−1

have the same LEs.

III. PERFORMANCE ANALYSIS

This section investigates the performance of the proposed
nD Arnold Cat map and nD chaotic system by using the
measurements of the largest LE (lgtLE), CD [16], and infor-
mation entropy. In addition, we also compare it with three ex-
isting HD-chaotic system generation methods including Chen’s
method [26], Shen’s method [25], and Natiq’s method [22].

To compare the performance of different chaotic map genera-
tion methods, our experiments generate many chaotic maps with
different dimensions as examples for each generation method.
However, for some generation methods in the pieces of literature,
the authors provided only parameter settings for generating
chaotic maps with a certain dimension. To obtain chaotic maps
with various dimensions for each generation method and provide
a fair comparison, our experiments set the parameters of all
generation methods as the following rules.

1) If the parameter settings of generating chaotic maps with
different dimensions are available in the literature, we
directly use these parameter settings in our experiments.

2) If the parameter settings for generating chaotic maps with
some dimensions are not provided in the literature, we set
the parameters to the values to ensure that the generated
chaotic maps achieve the best properties expected in the
original literature.

3) Under the condition that the generated nD chaotic maps
achieve the expected properties, we set the parameters
to the same level with that in our nD-CS. Using the
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Fig. 2. LgtLEs for nD chaotic systems generated by the different gen-
eration methods with dimension n ∈ {3, 4, . . . , 12}.

abovementioned rules, each method can achieve their best
performance expected in literature.

Consequently, the parameters of each HD-chaotic system
generation method are set as follows. For the proposed nD
chaotic system, when configuring the parameter matrix A in
Algorithm 1, all the elements in the sequences pr and pc are
randomly obtained from the set {1, 2, . . . , 10}. When generating
the nD Arnold Cat map, all the elements in the sequences pr

and pc of Algorithm 1 are set to one. For existing generation
methods, the control parameters in Shen’s method are set to
a = −0.1 and ε ∈ [1, 10], in Chen’s method are set to ε ∈ [4, 10]
and σ = 0.01, and in Natiq’s method are set to β = 5, σ = 1.5π
andμ ∈ [1, 10]. When annD chaotic system is generated by each
method, the control parameters of each method are randomly
selected from their own set intervals.

A. Largest LE

According to the discussions in [27], the lgtLE is an important
indicator for the complexity of a dynamical system. This section
analyzes the proposed chaotic systems using lgtLE.

An experiment is designed to calculate the largest lgtLE value
of the chaotic maps produced by different chaotic system genera-
tion methods. For each of the dimensionn ∈ {3, 4, . . . , 12}, one
nD Arnold Cat map and 100 nD chaotic maps are generated by
different generation methods, and their lgtLEs are calculated.
Fig. 2 plots the mean lgtLE value of the nD chaotic systems
produced by each generation method. Note that the mean values
are calculated from 100 nD chaotic maps. It shows that the nD
Arnold Cat map and nD chaotic map have larger lgtLE values
than the chaotic systems generated by other methods as the
increase of dimension n. These imply that the proposed method
can generate nD Arnold Cat map and nD chaotic map with
complex chaotic behaviors. Besides, the nD chaotic map can
achieve larger lgtLEs than the nD Arnold Cat map. Since their
LEs are determined by the eigenvalues of parameter matrix P ,
according to (6), their lgtLEs may be quite large for the specific
setting of P .

B. Correlation Dimension

The CD measures the space dimensionality that can be oc-
cupied by a data sequence [16]. A dynamical system with a

Fig. 3. Mean CDs for nD chaotic systems generated by different gen-
eration methods with dimension n ∈ {3, 4, . . . , 12}.

positive CD indicates that it has strange attractors. A larger CD
means that the time series of the dynamical system can occupy
a higher space dimensionality, which further indicates that the
higher strangeness of the attractors.

Our experiments apply the nonlinear time-series analysis tool
TISEAN 3.0.11 to obtain the CDs for different HD chaotic
systems. The experiment is set as the same as the LE experiment
for different dimension n ∈ {3, 4, . . . , 12}. For each generation
method, randomly generate 100 nD chaotic maps with initial
states v(0) ∈ [0, 1] and the CD of each nD chaotic map is the
mean value of thenCDs of itsn time series. Fig. 3 plots the mean
CDs of these chaotic maps with different dimensions generated
by different methods. One can see that with the increase of
dimension n, the nD chaotic maps and nD Arnold Cat maps
produced by our method have similar CDs. Besides, the chaotic
maps generated by the proposed generation method have larger
mean CDs than the chaotic systems generated by other methods.
These verify that the chaotic maps produced by our method own
higher complicated attractors.

C. Information Entropy

Information entropy is usually used to describe the random-
ness of a time series. The information entropy of a chaotic
sequence can be calculated to show the randomness of the
sequence. An nD chaotic map has nD phase space, which is
composed of nD chaotic sequences. When uniformly dividing
the chaotic sequence range of each dimension into M intervals,
a total number of Mn subphase spaces can be obtained from
the nD phase space. The information entropy of an nD chaotic
sequence can explicitly be written as

H = −
Mn∑
k=1

P (k) log2 P (k) (12)

where P (k) is the probability of the states that are located
into the kth subphase space. It is easy to see that information
entropy is a nonnegative quantity and its theoretical maximum
value is obtained when P (1) = P (2) = · · · = P (Mn). That
means when P (k) = 1/Mn (k = 1, 2, . . . ,Mn), the maximum
information entropy valueHmax = n log2 M can be obtained. A

1[Online]. Available: https://www.pks.mpg.de/∼tisean/archive_3.0.0.html
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TABLE I
MAXIMUM INFORMATION ENTROPY VALUES FOR 100 3-D CHAOTIC MAPS GENERATED BY DIFFERENT CHAOTIC MAP GENERATION METHODS AGAINST

DIFFERENT NUMBERS OF INTERVALS M

Fig. 4. Information entropy values for 100 3-D chaotic maps generated
by each chaotic map generation method against different numbers of
intervals M ∈ {3, 5, . . . , 23}.

larger information entropy indicates better uniform-distribution
of the chaotic sequences, and further implies that the related
chaotic map has higher complexity.

Two groups of experiments are performed to calculate the
information entropy value of chaotic sequences. The first group
of experiments calculate the information entropy values via
the number of intervals M = {3, 5, . . . , 23} by setting the di-
mension n = 3. We set the initial state v(0) ∈ [0, 1] and the
length of chaotic sequence is M 4, then the information entropy
of each 3-D chaotic map can be calculated. Fig. 4 plots the
mean information entropy values of the 100 3-D chaotic maps
randomly generated by the different methods. As can be seen,
the 3-D chaotic map generated by our method has the largest
information entropy. Table I displays the maximum information
entropy values of 100 3-D chaotic maps. It is obvious that the
3-D chaotic maps generated by our method own the largest
information entropy values, and these maximum information
entropy values approach to the theoretical maximum values.

The other group of experiments is designed to calculate the in-
formation entropy values via the dimension n = {3, 4, . . . , 12}
by setting the number of intervals M = 3. In these experiments,
100nD chaotic maps are randomly generated by each generation
method with differentn. The initial states are set tov(0) ∈ [0, 1]
and the length of chaotic sequence is set to 3n+1, then the
information entropy value of each chaotic map can be calculated.
Shen’s, Natiq’s, and our methods can achieve larger information
entropies with a larger n. This is because their outputs are
distributed similarly for different dimensionsn. However, for the

Fig. 5. Mean information entropy values for 100 nD chaotic maps
produced by each chaotic map generation method by setting the number
of intervals M = 3 against different dimensions n ∈ {3, 4, . . . , 12}.

TABLE II
MAXIMUM INFORMATION ENTROPY VALUES OF THE nD CHAOTIC MAPS

GENERATED BY DIFFERENT METHODS WITH DIMENSION n = {3, 4, . . . , 12}
BY SETTING M = 3

Chen’s method, its outputs are distributed more concentratedly
when the dimension n increases. This leads to that its informa-
tion entropy does not increase with the increase ofn. Fig. 5 shows
the mean information entropy values of these 100 nD chaotic
maps produced by different methods. It displays that the nD
Arnold Cat map andnD chaotic maps generated by the proposed
method can obtain higher mean information entropy values than
the nD chaotic maps generated by other methods. Table II lists
the maximum information values of the 100 nD chaotic maps.
It can be seen that the maximum information entropy values of
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Fig. 6. Trajectories of different maps with 3000 states distributed
in v1 − v2 − v3 space, v2 − v3 − v4 space, and v3 − v4 − v1 space.
(a)–(c) 4-D Arnold Cat map’s trajectories. (d)–(f) 4-D chaotic map’s
trajectories.

our method are larger than that of other methods, and are very
close to the theoretical maximum values. These show that our
method can generate HD Arnold Cat maps and chaotic maps
with uniform-distribution chaotic sequences.

IV. ILLUSTRATIVE EXAMPLES

To show the effect of the proposed nD chaotic system gener-
ation method, this section provides two examples: a 4-D Arnold
Cat map and a 4-D chaotic map. When generating the 4-D Arnold
Cat map, all the elements in the first column pc and row pr of
Algorithm 1 are set to one. When generating the 4-D chaotic
map, the pc and pr are randomly selected from the integer set
{1, 2, . . . , 10}. Moreover, to display the easy hardware imple-
mentation, we simulate the 4-D Arnold Cat map and 4-D chaotic
map on a microcontroller-based platform. Finally, we test the
randomness of the chaotic sequences of the two chaotic maps.

A. 4-D Arnold Cat Map

When generating a 4-D Arnold Cat map, the first row and first
column to construct the parameter matrix are pr = {1, 1, 1},
pc = {1, 1, 1}, and p1,1 = 1. Then, the parameter matrix of 4-D
Arnold Cat map can be generated by running Algorithm 1 and

can be obtained as

P =

⎛
⎜⎜⎝

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎞
⎟⎟⎠ . (13)

When setting the modular coefficient N = 1, a 4-D Arnold Cat
map can be obtained as

⎛
⎜⎜⎝
v1(t+ 1)
v2(t+ 1)
v3(t+ 1)
v4(t+ 1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎞
⎟⎟⎠×

⎛
⎜⎜⎝
v1(t)
v2(t)
v3(t)
v4(t)

⎞
⎟⎟⎠ mod 1.

(14)
According to Lemma 2, one can get the inverse of matrix of the
P as

P−1 =

⎛
⎜⎜⎝

4 −6 4 −1
−6 14 −11 3
4 −11 10 −3
−1 3 −3 1

⎞
⎟⎟⎠ . (15)

UsingP−1 as the parameter matrix in (14), we can also construct
a 4-D Arnold Cat map. From Lemma 2, we know that the
matricesP andP−1 have the same eigenvalues. Then, the LEs of
the two 4-D Arnold Cat maps constructed by P and P−1 are the
same. The LEs of the 4-D Arnold Cat map can be calculated from
its parameter matrix. This is because the Jacobian matrix is in-
dependent of the observation state v(t). Then, its LEs are deter-
mined only by the Jacobian matrix, namely the parameter matrix
P . The four eigenvalues of Jacobian matrix P are λ1 = 0.0380,
λ2 = 0.4538, λ3 = 2.2034, and λ4 = 26.3047. Using the LE
calculation method in (6), the four LEs of the two 4-D Arnold Cat
map areLE1 = ln(λ1) = −3.2697,LE2 = ln(λ2) = −0.7900,
LE3 = ln(λ3) = 0.7900 and LE4 = ln(λ4) = 3.2697. This in-
dicates that the generated 4-D Arnold Cat map has two positive
LEs and thus has hyperchaotic behavior.

To display the randomness of the 4-D Arnold Cat map, we
plot its trajectory with the initial value v(0) = 0.14×1 in the
different 3-D phase spaces. As can be seen from Fig. 6(a)–
(c), the trajectories of the 4-D Arnold Cat map are randomly
distributed in the 3-D phase spaces and this indicates the high
randomness of the 4-D Arnold Cat map’s outputs.

B. 4-D Chaotic Map

To generate a 4-D chaotic map, a 4-D parametric Pascal matrix
should be generated. Suppose the first row and first column
to construct the parameter Pascal matrix are pr = {5, 7, 8},
pc = {3, 7, 7}, and p1,1 = 8. According to Algorithm 1, the 4-D
parametric matrix is generated as

P =

⎛
⎜⎜⎝

8 5 7 8
3 8 15 23
7 15 30 53
7 22 52 105

⎞
⎟⎟⎠ . (16)
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When setting the modular coefficientN = 1 in (2), a 4-D chaotic
map is generated as⎛
⎜⎜⎝
v1(t+ 1)
v2(t+ 1)
v3(t+ 1)
v4(t+ 1)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

8 5 7 8
3 8 15 23
7 15 30 53
7 22 52 105

⎞
⎟⎟⎠×

⎛
⎜⎜⎝
v1(t)
v2(t)
v3(t)
v4(t)

⎞
⎟⎟⎠ mod 1.

(17)
Using the LE calculation method in (6), the four LEs of the
4-D chaotic map are LE1 = −1.5041, LE2 = 1.1150, LE3 =
2.2766, and LE4 = 4.9304. Obviously, three of the four LEs
are positive, indicating that the chaotic map has hyperchaotic
behavior.

To show the trajectory distribution of the 4-D chaotic map,
we generate the trajectory of the 4-D chaotic map using the
initial state v(0) = 0.14×1. Fig. 6 shows the trajectory of the
4-D chaotic map in different 3-D phase spaces. One can see that
the trajectories of the 4-D chaotic map are fully distributed on the
whole phase space, which indicates that the outputs generated
by the 4-D chaotic map have good randomness.

C. Hardware Implementation

When chaotic systems are used in applications, a necessary
step is to implement them on a hardware platform. To show
the simple hardware implementation of the 4-D Arnold Cat
map and the 4-D chaotic map, this section simulates them on
a microcontroller-based platform.

The microcontroller has many good features including high
integration, large storage, and strong environmental adaptabil-
ity, it thus can be widely used in various industrial fields. In
this experimental simulation, a digital hardware platform based
on STM32F407VET6 (ARM 32-bit Cortex-M4 CPU) is con-
structed to run the proposed chaotic maps. The hardware circuit
mainly includes the microcontroller STM32, a D/A converter
TLV5618 with 12-bit, an oscilloscope TDS3054 C, and some
other peripheral circuits. The mathematical model of 4-D Arnold
Cat map and 4-D chaotic map, and their initial states are coded
by using C language, and then download this program to the
microcontroller. The generated chaotic digital signals can be
converted into analog voltage signals by the D/A converter and
the voltage signals will be displayed on the oscilloscope.

Here, we simulate the proposed 4-D Arnold Cat map and 4-D
chaotic map in MATLAB software and microcontroller-based
platform. The hardware devices used in the microcontroller-
based experiment are illustrated in Fig. 7, and the initial states
for 4-D Arnold Cat map and 4-D chaotic map are set to
v(0) = 0.14×1. Fig. 8 plots the outputs of 4-D Arnold Cat map
and 4-D chaotic map captured from the MATLAB and oscil-
loscope, which denote the software and hardware simulations,
respectively. The first row of Fig. 8 shows MATLAB simulation
results, and the second row shows microcontroller results. As
can be seen, the outputs of the proposed 4-D Arnold Cat map
and 4-D chaotic map are consistent in software and hardware
platform. One of the bottlenecks in the application of chaos is
that the trajectories of a chaotic system with the same initial
values on different platforms are different. From the simulation
results, this problem can be addressed. Moreover, one can see

Fig. 7. Hardware devices of microcontroller-based experiment.

Fig. 8. Simulation results captured from software and hardware plat-
form for (a)–(b) 4-D Arnold Cat map and (c)–(d) 4-D chaotic map. The
chaotic sequences from top to bottom in the left figures (a) and (b) are
the outputs of v1, v2, v3, v4 of 4-D Arnold Cat map, while the right figures
(c) and (d) are the outputs of v1, v2, v3, v4 of 4-D chaotic map.

that each sequence vi in Fig. 8 randomly oscillates within a
fixed range. This means the feasibility and correctness of the
hardware implementation of the 4-D Arnold Cat map and 4-D
chaotic map.

D. Pseudorandom Number Generator

Since chaotic systems have unpredictability and initial value
sensitivity, they can be used to design pseudorandom number
generators (PRNGs). The randomness of pseudorandom num-
bers (PRNs) is highly dependent on the dynamic performance
of the chaotic system when a chaotic system is used as a
PRNG [33]. The 4-D Arnold Cat map and 4-D chaotic map
shown in Section IV exhibit complicated dynamic behaviors,
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they, thus, can show good performance when used as the PRNG.
Here, we take these two chaotic maps as PRNGs and they are
called 4DACM-PRNG and 4DCM-PRNG, respectively.

A 4-D chaotic map can generate four chaotic signals. The
generated chaotic signals are floating numbers in the digital
platform. For each chaotic signal, it is first converted into binary
numbers. Without loss of generality, the first chaotic signal is
selected to generate PRNs. Assume that the first chaotic signal
isV = {v1, v2, . . . , vi, . . .}, and then the PRNs can be generated
by

R = �vi × I� (18)

where I = 2j (j ∈ N+) is a positive number, function �x�
denotes the largest integer not greater than x. When setting
j = 8, it is easy to get that each vi can produce eight binary
numbers.

The National Institute of Standards and Technology (NIST)
SP800-22 is used to measure the randomness of generated PRNs.
It is a convinced test suite and contains 15 subtests, which
aims to check the nonrandomness area of PRNs from various
aspects. A significance level α is used to define the confidence
interval in the test suite, and the number of binary sequences
should be no less than the significance level α−1. According
to the recommendation in [34], the significance level α, binary
sequence length, and the number of binary sequences are set to
0.01, 106, and 128, respectively.

In our experiments, the initial states for 4-D Arnold Cat map
and 4-D chaotic map are set to v(0) = 0.14×1, and 128 binary
sequences with length 106 are generated using the PRNG and
tested using the NIST SP800-22. Each subtest in the NIST
SP800-22 outputs a pass rate and p-value. The p-value T mea-
sures the distribution of the 128 p-values. According to the
discussions in [34], the pass rate and p-valueT greater than
0.9609 and 0.0001 are considered to pass related subtest. The
test results are listed in Table III. As can be seen, the pass rates
and p-valueT s produced by different subtests are all larger than
0.9609 and 0.0001, respectively. This means that the presented
4-D Arnold Cat map and 4-D chaotic map have complex chaotic
behavior and can generate PRNs with high randomness.

The advantages of our proposed method for PRNG are as
follows. 1) According to the performance evaluation in Sec-
tion III, our nD chaotic maps possess complex dynamics and
can produce more uniform-distribution sequences. These are
beneficial for generating PRNs [33]. 2) Each of our nD chaotic
maps simultaneously producesn chaotic signals. Each signal can
be used for generating PRNs. The disadvantages are summarized
as follows. 1) The designed PRNG only needs one chaotic signal,
while our nD chaotic maps produce many chaotic signals. This
may lead to extra computational cost. 2) Each output state may
contain many bits (may be longer than 32). However, the PRNs
use only eight bits and discard the rest bits. This may reduce
efficiency.

In addition, we discuss the advantages and disadvantages
of our PRNG compared with several representative PRNGs.
Many PRNGs were designed using linear theoretical models,
such as linear congruential generator [35] and linear feedback
shift register [36]. These linear-model-based PRNGs are simple

TABLE III
p-VALUES OF PRNS PRODUCED BY PRNG USING THE 4-D ARNOLD CAT

MAP AND 4-D CHAOTIC MAP IN NIST SP800-22

1Note: The symbol ∗ denotes the mean of multiple test results.

and have low computational cost. However, their generated
PRNs often show relatively short periods and fail to pass the
NIST test due to their linear structures [35], [37]. Recently,
artificial-intelligence-based PRNGs have been constructed. For
example, generative-adversarial-networks-based PRNGs [38]
and recurrent-neural-networks-based PRNGs [39] show high
randomness but they have significantly high computation cost
and are time consuming during the training process. As a typical
nonlinear system, chaotic systems have been widely used to con-
struct PRNGs. Many chaos-based PRNGs have been developed
and they have high randomness and can pass the NIST test [40],
[41]. However, they may show weakness in cryptography [42].
This is because most of these chaotic systems are LD, may have
periodic windows, or/and easily occur dynamic degradation in
digital platforms.

Our PRNG is designed using the proposed HD chaotic sys-
tems. As discussed in Section III, our proposed HD chaotic
systems have robust chaos and show better performance than
existing HD systems. Since the performance of a chaos-based
PRNG highly relies on the used chaotic system [33], the PRNs
generated by our PRNG can achieve high randomness. The
maximum pass rate in the NIST test can reach 100%, which
can be seen from Table III. However, our PRNG may lead to a
relatively slow generation speed if the dimension n is set to a
large value.

V. CONCLUSION

In this article, we presented a new n-D chaotic system con-
struction method based on the Pascal matrix. It was a simple
construction method and can generate nD chaotic systems with
robust chaotic behaviors. Theoretical analysis showed that the
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generated chaotic system always has at least one positive LE.
Setting the elements in the parameter matrix as some special
values, an nD Arnold Cat map can be generated. Performance
analysis demonstrated that the HD chaotic maps generated by
our method had more complex dynamics properties and better
uniform-distribution outputs than other HD chaotic maps. To
show the effect of the proposed method in generatingnD chaotic
systems, a 4-D Arnold Cat map and a 4-D chaotic map with
hyperchaotic behaviors were generated as two examples. The
two chaotic maps were simulated on both software and hardware
platforms. Comparing with the simulation results, it was found
that the chaotic trajectories on different platforms were consis-
tent. Finally, the two presented chaotic maps were tested using
NIST SP800-22 and the results showed the high randomness.
With complex hyperchaotic behaviors, the newly generated HD
hyperchaotic maps can be applied to many chaos-based applica-
tions, such as Internet of Things [5], secure communication [6],
and intellectual property protection [7]. Our future works will
investigate these applications of the proposed chaotic system.
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