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Reversible data hiding over encrypted images (RDH-EI) technology is a viable solution for privacy-preserving
cloud storage, as it enables the reversible embedding of additional data into images while maintaining image
confidentiality. Since the data hiders, e.g., cloud servers, are willing to embed as much data as possible for
storage, management, or other processing purposes, a large embedding capacity is desirable in an RDH-EI
scheme. In this article, we introduce a novel bi-directional block encoding (BDBE) method, which, for the
first time, encodes the distances of values in a binary sequence from both ends. This approach allows for en-
coding images with smaller sizes compared to traditional and state-of-the-art encoding methods. Leveraging
the BDBE technique, we propose a high-capacity RDH-EI scheme. In this scheme, the content owner initially
predicts the image pixels and then employs BDBE to encode the prediction errors, creating space for data
embedding. The resulting encoded data are subsequently encrypted using a secure stream cipher, such as the
Advanced Encryption Standard, before being transmitted to a data hider. The data hider can embed confiden-
tial information within the encrypted image for the purposes of storage, management, or other processing.
Upon receiving the data, an authorized receiver can accurately recover the original image and the embedded
data without any loss. Experimental results demonstrate that our RDH-EI scheme achieves a significantly
larger embedding capacity compared to several state-of-the-art schemes.
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1 INTRODUCTION

Nowadays, a huge number of images are produced from different imaging devices such as smart
phones and digital cameras, and the growth is accelerated with the fast development of various
Internet of Things applications [12]. The huge number of images cause image owners a heavy
pressure for image storage, management or other processing. Cloud service is a natural choice
for handling these explosively growth images [24, 26]. Data privacy is one of the most concerned
points in image-based cloud services, since the image owners are unwilling to share some secret
images, e.g., medical images, to the cloud servers or any unauthorized third-party. Then these
images are usually encrypted before being uploaded to the cloud servers [19, 25]. However, the
cloud servers would like to embed some additional data into the encrypted images for the purposes
of storage, management or other processing. Reversible data hiding over encrypted images
(RDH-EI) is an effective technique to accommodate this application, since it can embed some
additional data into an encrypted image and completely recover the embedded data as well as
the original image [6, 15, 27]. An RDH-EI scheme involves three participants: content owner, data
hider, and receiver. The content owner encrypts an original image using an encryption key before
transmitting the image to the data hider. The data hider embeds additional data into the encrypted
image without accessing the content of the original image. The receiver can recover the original
image and extract the embedded data using the encryption key and data hiding key, respectively.
To protect image content and embed more data, an effective RDH-EI scheme is desired to have a
large embedding capacity and a high security level [5, 9, 22].

Up to now, many RDH-EI schemes have been developed and they can be roughly classified into
two categories: vacating room after encryption (VRAE) [14, 16, 35, 36] and reserving room
before encryption (RRBE) [11, 13, 29, 34]. For the VRAE-based schemes, the embedding room
is vacated by the data hider. The content owner directly encrypts the original image and then
sends the encrypted image to the data hider, while the data hider vacates embedding room in the
encrypted image for embedding data [2, 10, 31]. For example, in 2008, Puech et al. proposed the
first VRAE-based scheme [14], in which the content owner encrypts the original image using the
advanced encryption standard (AES), while the data hider embeds additional data in each block
of the encrypted image by bit substitution. The receiver can extract the embedded data and recover
the image by analyzing the local standard deviation of image pixels. Several years later, Zhang et
al. proposed another VRAE-based scheme [35], in which the image is encrypted using a stream
cipher, and the additional data are embedded by flipping the low significant bits of some pixels
in the image block. However, errors may occur in data extraction and image restoration. Qian et
al. proposed a new scheme that can achieve a large embedding capacity [16], as much as 0.3 bpp
for the image Lena. These schemes encrypt images using some existing stream ciphers, which can
well protect the image content. However, the encrypted images by these stream ciphers have large
information entropy scores and cannot be vacated too much embedding capacity [36]. To remain
more pixel redundancy for a larger embedding capacity, some schemes use lightweight encryption
strategies, e.g., bitwise XOR [2], block permutation [10], and co-modulation [31], to encrypt the
images. However, these encryption strategies can only achieve visual security and their security
strengths are very limited for protecting the image confidentiality [7, 18]. Besides, their embedding
capacity cannot be very large, since some pixel correlations are eliminated during encrypting.

To achieve larger embedding capacity, Ma et al. proposed the first RRBE-based RDH-EI
scheme [11], in which the embedding capacity is preserved by content owners in the plain image.
Since the high pixel redundancy on the plain image is utilized, the RRBE-based RDH-EI schemes
can obtain larger embedding capacity compared to the VRAE-based schemes. Several years later,
some RRBE-based RDH-EI schemes using image coding and prediction errors have been devel-
oped [3, 17, 28, 32, 33]. For example, Yi et al. proposed a new binary block encoding method for
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RDH-EI [30]. All bit planes of the original image are first divided into fixed-size blocks and then
encoded using a binary block method for preserving embedding capacity. After being encrypted
by a stream cipher, the encrypted image codes are sent to data hider for data hiding. Chen et al.
proposed a new RDH-EI scheme in Reference [3], in which a pre-processing of calculating predic-
tion errors is performed on the image to improve the proportion of zeros. By improving the block
coding method in Reference [30], the scheme can effectively encode the prediction errors and thus
achieves a large embedding capacity, as much as 2.59 bpp for image Lena. Xu et al. [28] performed
pixel prediction using the MED predictor and encoded each bit plane of the prediction errors us-
ing the method in Reference [3], in which an adaptive strategy is designed for block division to
improve the coding effect. Yin et al. [32] first calculated the prediction errors of the image and
then preserved embedding capacity using extended run-length code [4]. Qiu et al. [17] employed
the MED predictor to predict image and classified the pixels into 2T + 1 groups using a threshold
T. Then the pixel category sequence of the image is compressed using arithmetic coding. How-
ever, determining the appropriate threshold T requires an exhaustive enumeration of values from
1 to 255, resulting in high time complexity. For these RRBE-based RDH-EI schemes, the high pixel
redundancy of plain image is used to preserve embedding capacity and any stream cipher can be
used to encrypt the images. They can achieve both large embedding capacity and high security
level. However, many existing RRBE-based RDH-EI schemes have very complex embedding ca-
pacity preserving methods [20, 32], which incur heavy computation costs to the content owners,
especially for the performance-limited terminal devices such as some Internet of Things devices.
Besides, some schemes do not have very large embedding capacity [3, 30].

In this article, we propose the bi-directional block encoding (BDBE) method. Unlike exist-
ing distance encoding methods, BDBE can encode a binary sequence from both ends, resulting in
higher encoding efficiency compared to classical and recent block encoding methods. We present
a novel BDBE-based RDH-EI scheme (BDBE-RDHEI). This scheme allows the content owner
to preprocess an image using an improved mixed predictor to calculate prediction errors. The pre-
diction errors are then encoded to preserve embedding capacity. After being encrypted using the
AES, the encrypted image codes are transmitted to a data hider for data embedding. An authorized
receiver can extract the embedded data and recover the original image using the data hiding key
and encryption key, respectively. Experimental results demonstrate that our scheme achieves a
larger embedding capacity than several state-of-the-art methods. The main contributions of this
article are summarized as follows:

e We propose BDBE as a novel block encoding method, which is the first work to encode
the distances of values in a binary block from both ends. Due to the shorter distances when
encoding from both sides, BDBE achieves superior encoding efficiency compared to classical
and recent block encoding methods.

e We introduce a high-capacity RDH-EI scheme utilizing BDBE, which ensures separate and
lossless data extraction and image recovery processes.

e We conduct a comprehensive evaluation, and the results confirm that our scheme guaran-
tees image content confidentiality, with an embedding rate of 3.533 bpp for the image Lena.
Comparative analysis showcases its larger embedding capacity compared to state-of-the-art
methods in References [3, 13, 17, 28, 32, 33].

The rest of this article is organized as follows. Section 2 introduces the BDBE in detail. Section 3
describes the BDBE-RDHEI scheme. Section 4 compares BDBE with classical and latest encoding
methods, provides a comprehensive evaluation of the BDBE-RDHEI scheme, and compares it with
the state-of-the-art schemes. Section 5 concludes this article. The important notations used in this
article are listed in Table 1.
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Table 1. Key Notations

Notation Description

S The block size of a binary block
no, N1 The numbers of 0s and 1s in a binary block
z The minimum value of ny and n;
£ The sign of the smaller proportion in a Type-II binary block

N, The threshold of a binary block with size S X S
Str The one-dimensional string format of a block

BN The Huffman code of z

BD The location information of the &s in Str

BD; The location information of the ith sign &

L; The length of BD;
BC The code of a binary block
e(i, ) The prediction error of the pixel p(i, j)

LM A location map to identify whether a pixel satisfies e(i, j) € [-128, 127]
T A binary sequence to store the original values of the pixels whose e(i, j) ¢ [—128, 127]
EI A 9-bit error image that is divided into 18 bit-planes for compression
Py The proportion of 1s in a bit-plane of EI
k The number of un-encodable bit-planes in EI
U The k un-encodable bit-planes
C The encoding results of 18 — k encodable bit-planes
SI The side information
MI The main information that consists of T, C and U

EMI The encrypted results of MI
E The encrypted image

EM The marked encrypted image

I Bits connection

Table 2. Block Types and Codes

Condition  Type Description Block Code BC  Sign &

z> N, I cannot embed data 1||Str —
z=n9 < N, most p%xels are 1 0|[BN|[BD 0
z=n; <N, most plxels are 0 1

2 BI-DIRECTIONAL BLOCK ENCODING

Recently, many binary sequence encoding methods were developed by encoding the distances of
values [3, 30, 32]. However, all these methods encode distances from only one side and thus cannot
use the least bits to present the distances. Here, we develop the BDBE method, which encodes the
distances from both sides using the least bits.

2.1 BDBE

Suppose that a binary block is of size S X S and nj and n; are the numbers of zeros and ones within
the block, respectively. Set z = min{ng, n;} as the minimum value of ny and n;. According to a
threshold N,, we can classify the block as an un-encodable block or an encodable block, which are
called Type-I and Type-II, respectively, shown in Table 2. The symbol || represents bits connection.

For a block, we convert it to a one-dimensional string Str by scanning the block from left to
right and top to bottom. For a Type-I block with z > N, we use one bit 1 and Str to present it. For
a Type-II block, we first use one bit sign ¢ to present the sign of the smaller proportion within the
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1 3 5 42
— I T T T T[T T T TTIT]

Fig. 1. Example of encoding order for a Type-II block.

block, ie., & = 0if z = ng, and 1 otherwise. We then encode the parameter z to a fixed Huffman
code BN with N,-bits at most. When z = 0, set BN as ‘0’. When z = N,, BN is set as N,-bits ‘1’s.
When 0 < z < Ng, BN is set as z-bits ‘1’s and one bit ‘0’. For example, when N, = 3, the Huffman
codes BN of the numbers 0, 1, 2, and 3 are ‘0, 10’, ‘110, and ‘111’, respectively. Notice that there
is no need to store an additional Huffman table for the parameter z.

When z # 0, we should encode the location information of the ¢s in Str. We encode the location
of each ¢ bi-directionally, as shown in Figure 1. In the block on the left, the small gray squares
represent the &s to be encoded. Convert the block to a one-dimensional string Str by scanning the
block from left to right and top to bottom and then count the &s bi-directionally as indicated by the
numbers. The detailed processes for generating the codes BD of a Type-II block can be described
as follows:

— Step 1: For the ith sign &, if i is odd, then the encoding begins from the left end. Get the
length of Str as Len. Suppose that the index of the leftmost sign ¢ from left to right is I;.
Since I; € [1,Len — (z — i)], encode I; using max{1, [log,(Len — (z — i))]} bits to obtain the
code BD;. Update the Str by removing its first to I;th elements counting from the left end.

— Step 2: For the ith sign &, if i is even, then the encoding begins from the right end. Get the
length of Str as Len. Suppose that the index of the rightmost sign & from right to left is I;.
Then I; € [1,Len — (z — i)] and use max{1, [log,(Len — (z — i))]} bits to encode I; to obtain
BD;. Update the Str by removing its first to I;th elements counting from the right end.

— Step 3: Iterate the Step 1and Step 2 for all the &s.

— Step 4: Concatenate the codes BDy, BD,, . ..,BD; to obtain the BD of the block.

Note that the BD is obtained by recording the locations of £s bi-directionally, which is the core step
of the BDBE. Finally, for a Type-II block, we can present it using one bit sign £ and code BC, which
includes the marker of encodable block ‘0’, the Huffman code BN, and the distance string BD.

Algorithm 1 presents the pseudo-code of the BDBE for a block. To better show the processing
details, we provide an illustrative example for five binary blocks with size 4x4 in Figure 2. Suppose
that the threshold N, for 4 X 4 block is 3. For the block in Figure 2(a), z = ny = 4 > N, thusitisa
Type-I block, and the length of code BC is 17. For the blocks in Figure 2(b) and (c), the pixels are
all ones or zeros, thus they are Type-II blocks with z = 0. Their codes BC are both ‘00’, and they
have one bit sign &, 0, and 1, respectively. For the block in Figure 2(d), it is a Type-II block with
z = 3, ¢ = 1. Encode the parameter z into BN = ‘111°. The location information of the three 1s, BD,
includes BDy, BD;, and BDs, which are produced as follows:

—For i = 1, the encoding begins from the left end. The length of the Str is Len = 16. Consid-
ering that the rest two 1s are at the right side, then the maximum index of the current 1 is
Len—(z—i) = 16—(3—1) = 14. Since the index I; = 11, we use L; = max{1, [log, 14]} = 4 bits
to encode the distance I; — 1 = 10 and obtain BD; = ‘1010’. Update the Str as Str = ‘10100’.

—For i = 2, the encoding begins from the right end. The length of the block string Len = 5.
The maximum index Len — (z — i) = 5 — (3 — 2) = 4. Since the index I, = 3, use
L, = max{1, [log,4]} = 2 bits to encode its distance I, — 1 = 2 and obtain BD; = ‘10",
Update the Str as Str = ‘10”.
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ALGORITHM 1: The pseudo-code of the BDBE for a block.

Input: An S X S block, the threshold Nj.
1: Initialize block code BC, sign &.

2: Convert the block into a string Str.

3: Calculate ng, ny. z < min{ng, ny }.

4: if z > N, then

50 & «null

6: BC « 1||Str.

7: else

8:  Calculate sign &.

9:  Encode z into BN using the Huffman table.
10:  BC « 0||BN.
11: fori« 1tozdo
12: Len « Length(Str). // Retrieve the length.
13: if (i mod 2) = 1 then

14: Find the index of the first £ in the Str as I; from the left end.
15: Str « Str[I; + 1 : Len].

16: else

17: Find the index of the first £ in the Str as I; from the right end.
18: Str « Str[1: Len — I;].

19: end if
20: L; « max{1, [log,(Len — (z — i))]}.
21: BD; « dec2bin(l; — 1, L;). // Transform decimal to binary.
22: BC « BC||BD;.
23:  end for
24: end if

Output: The block code BC, the sign £&.

—For i = 3, the encoding begins from the left end. Then Len = 2. The maximum index
Len—(z—1i) = 2—(3-3) = 2. The index I5 = 1, and we then use L3 = max{1, [log, 2]} =1
bit to encode its distance I3 — 1 = 0 and obtain BD3 = ‘0’. Since there is no more sign &£ = 1
in Str, the encoding finishes.

Thus, for the block in Figure 2(d), its code BC = ‘01111010100’ and sign ¢ = 1. Using the same way,
we can encode the block in Figure 2(e) as BC = 01101000010 and sign & = 0.

2.2 Discussion of the Threshold N,

The performance of BDBE is sensitive to the chosen threshold N,. An inappropriate value of N,
can lead to insufficient compression or excessive encoding of some blocks, ultimately degrading
the overall BDBE encoding performance. In our scheme, the threshold N, is to determine whether
a binary block is Type-I or Type-II, as shown in Table 2. ny and n; present the numbers of 0s and
1s in a binary block, z indicates the minimum value of ny and ny, and & is the sign of the smaller
proportion within a Type-II block. Specifically, & = 0 if the number of 0s is smaller than the number
of 1s; otherwise, & = 1. Type-I block indicates that the code length of the block is larger than the
block size, thus the block cannot embed data, while Type-II block means that the code length of
the block is smaller than the block size and thus the block can embed data.

For a Type-II block with block size S XS, we use x to represent the number of &s within the block.
Then two bits are employed to indicate whether the block is Type-II and the value of &, which can
be 0 or 1. x bits are used to encode the value x using Huffman code and a total number of }}}_; L;
bits are used to encode the positions of all the &s. For a Type-I block with block size S X S, one bit
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|:|:1 D:O : Str : Type :BN :BD :&
S=
N,=3
(@ (b) (©) (d) (e)
z=4>N,
@ 0001100000100100———— 10001100000100100
BC
z=ny=0
® 111111111111 1111 — [00—0
BC
z=m=0
(¢ 0000000000000000 —8 00—
BC

=p, =3 <
@ 00000000001 10100 223Nl 5y 1| J

l

000000 1[1]o[1]0 O
5 6 7 8 9 10 11 12 13 14 15 16
BD; = dec2bin(11-1, [log,14])="1010' 1 0 1 0

nol
w o
S O

0
2

- —— 0111101010 0—i
0 0 BD,=dec2bin(3-1, [logA])="10" 1 0 BC
21

w — —

0
4

~=< ofZb

0 BD;=dec2bin(I-1, [log;2])='0' 0
2

z=m=2<N,
) 1111111101111 011 ————— 0110100001 0—0

BC

Fig. 2. BDBE examples with block size S = 4 and threshold N, = 3. (a) Type-I block; ((b) and (c)) Type-
Il blocks with all ones and zeros, respectively; (d) Type-1l block with z = ny = 3; (e) Type-Il block with
zZ=ng=2.

is employed to indicate that the block is Type-I and S? bits are used to store the binary block as it
is not encoded.

It is important to note that the length of the Type-II block’s code should not exceed that of a
Type-I block. Then we can get the equation

X
2+x+ZLi§1+SZ. (1)

i=1

Since the threshold N, is to determine whether a binary block is Type-I or Type-II, it can be

calculated as
X
N, =argmax{52— (x+ZL,-) >0}. (2)

i=1
Suppose that all these £s are uniformly distributed in the block. Then, the bit number required to
present the ith sign & can be calculated as

[logy(8* = (x ~ 1)1, i= 1
L= Mogy(8* ~15z) ~(x=2)],  i=2 3)
[log,(s — [ "] = (= i))]. 3<i<x.
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Table 3. The Relationship between the Block Size S X S and Threshold N,

S N, S N, S N,
4 3 32 102 256 4112
8 9 64 342 512 13604
16 31 128 1175
:Bc  S=4 No=3 : Type
01111010100—1
:BN
/ :BD
01111010100 i Str

I z=3 —»

0000000000000 0[0[0]

2 345 6 78 910111213141516
max{1, rlog214]} =4 bits

1010100 I=[I]+bin2dec('1010") =11

@0 000
0000 max {1, [log, 4]} = 2 bits
12 13 14 15[16] {1, [loga 43
100 L= - bin2dec('10") = 14
—
00 1, [Tog 2]} = 1 bit
1 max { ,rogz ]} i

0  I,= [12] + bin2dec('0") = 12

(=}

0000000001 10100
2 3456 7 8 910111213141516

Fig. 3. An illustrative example of the inverse BDBE.

From Equation (2) and Equation (3), we can get the relationship between the threshold N, and
block size S, which is listed in Table 3.

2.3 Recovery of BDBE

Using the code BC and sign £, we can recover the original binary stream. From Table 2, the binary
blocks with size S X S are divided into Type-I and Type-II. A block is a Type-I block if the first bit
of BC is ‘1’, while the block is a Type-II block if the bit is ‘0’. For a Type-I block, the following S x S
bits in BC are the bits of the block. For a Type-II block, if the second bit of BC is ‘0’, then we know
z = 0, then easily recover it with sign &; otherwise, we divide the following BC into BN and BD
to recover the Type-II block. The recovery processes are the opposite operations of the encoding
processes and Algorithm 2 presents the pseudo-code of the recovery processes.

To better show the recover processes, we also give a numeral example of recovering the bit-
stream in Figure 2(d) and Figure 3 shows the processed in detail. As can be seen, we can determine
it is a Type-II block and z = 3, according to the code BC and N,. Because & = 1, we know that the
BC includes the indexes of three 1s, which can be recovered as follows:

—Fori =1, = 1,r, = 16, thus Len = 16 and L; = max{1, [log,(Len — (z — i))]} =
max{1, [log, 141} = 4 bits. From BC, obtain BD; = ‘1010'— (10)y9, then I; = r; + 10 = 11.
Update r; = 12.
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—Fori = 2, = 12,ry, = 16, thus Len = 5 and L, = max{1, [log,(Len — (z — i))]} =
max{1, [log, 4]} = 2 bits. From BC, obtain BD; = ‘10°— (2)y9, then I, = r, — 2 = 14.
Update ry, = 13.

—Fori = 3, = 12,r, = 13, thus Len = 2 and L3 = max{1, [log,(Len — (z — i))]} =
max{1, [log, 2]} = 1 bit. From BC, obtain BD; = ‘0’— (0)19, then 5 = r; + 0 = 12. Up-
date r; = 13.

After setting the values at the positions of I, I, and 5 as the sign £, we can recover the string Str
of the original binary block.

ALGORITHM 2: The inverse BDBE for a block.

Input: Block size S, threshold Ny, code BC and sign &.

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

R A A

Initialize a string Str with length S x S.
if BC[1] = 1 then
Str «< BC[2:SXx S +1].
else
BC « BCJ2 : end].
Str « Set all elementsto 1 — &.
if BC[1] = 1 then
z « the number of consecutive 1s in BC.
z « min{z, Ng }.
BC < BC[min{z + 1, N;} + 1 : end].
rpe—1l.rp <~ SXS.
fori <« 1tozdo
Len «—rp—r;+ 1.
L; « max{1, [log,(Len — (z — i))]}.
BD; «— BC[1: L;].
BC <« BC[L; + 1 : end].
I; « bin2dec(BD;). // Transform binary to decimal.
if (i mod 2) = 1 then

Ii &« rp+1;.
rp«— I + 1.

else
I —ry—1I;.
rp «— I — 1.

end if

set the I;th element in Str as &.

end for
end if
end if

Transform Str into a block with size S X S.

Output: The block with size S X S.

3

BDBE-BASED RDH-EI

In this section, we propose BDBE-RDHEIL whose flow diagram is shown in Figure 4. For a content
owner, he/she first uses an improved mixed predictor to the original image to generate a 9-bit plane
image EL Using the BDBE, the EI is encoded into two bit streams, SI and MI. The content owner
then encrypts the bitstream MI to obtain an encrypted image E. A data hider can embed additional
secret data into the encrypted image to get a marked encrypted image EM. An authorized receiver
can extract the embedded data using the data hiding key, and recover the original image using the
encryption key.
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Content owner Encryption Key Ke
Original Prediction Errors El St Encrypted Image
—> . E— BDBE T .
Image I Generation MI Generation
" E Y
Ve . \\\ Ve ~
Data Hiding Key Kd
Data
Embedded Data <«——— Data Extraction
EM
Data Embedding <«
Original Image I <——— Image Recovery
Data Hiding Key Kd
Receiver Encryption Key Ke ) Data hider

AN / o -

Fig. 4. Structure of the proposed BDBE-RDHEI.

3.1 Prediction Errors Generation

An improved predictor, derived from the MED predictor and a modified version of the GAP pre-
dictor [23], is employed to process the image. This predictor efficiently combines the strengths of
both predictors. For an 8-bit image I with size M X N, the predicted value of pixel p(i, j) is calculated
based on its neighboring pixels, as shown in Figure 5. Based on the pixel locations, the pixels in
the entire image are divided into three cases:
— Case I: Pixels in the first row, first column, and last column. The prediction value is calculated
as
0, fori=1,j=1;
ﬁ(l7]) =1 P fori= 19] 1 (4)
ps, fori#1,j=1orj=N.
— Case 2: Pixels in the second row and second column, excluding those in Case 1. Using the
MED predictor, the prediction value is calculated as

maX(PI,}M)s P3 < min(pl,p4);
p(i,j) = { min(p1, pa),  p3 = max(py, pa); )
p1+ ps —ps, otherwise.

— Case 3: Pixels in the rest regions. Using the modified GAP predictor, the prediction value is
calculated as

p1s A > 80;
(p1+u)/2, 32 < A < 80;
(py +3*u)/4, 8<A <32
pG,j) =1 u, —8<A<S; (6)
(pa+3*u)/4, —-32<A<-8;
(ps + )/2, —80 < A < —32;
P4, otherwise,

where A = (|py —ps|+|p3 —ps| + |pa = p7 +|ps = psl) = (Ipo = p1l + |p2 = ps| + [ps = pal + [ps = ps1).
and u = (p1 + pa)/2 + (ps — p3)/4. Note that the prediction result is a decimal and we use

ceiling rounding to convert it into an integer.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 5, Article 149. Publication date: February 2024.



Bi-directional Block Encoding for Reversible Data Hiding over Encrypted Images 149:11

Ps | P71 | P8

D2 | P3| Psa|Ps

Po|P1| P

Fig. 5. A neighborhood of the target pixel p, i.e., p(i, j).

Table 4. Block Types and Codes in the BDBE-RDHEI

Condition  Type Description Code BC
ny > Ny I cannot embed data 1]|Str
0<n <N, I most pixels are 0 0||BN||BD

The prediction error of p(i, j) can be calculated as
e(i, j) = p(i,j) = p(i. j)- (7)
According to whether a prediction error is within the range [—128, 127] or not, all the prediction
errors are divided into two classes. A location map LM is used to identity the class of the prediction

errors. When e(i, j) € [-128,127], LM(i,j) = 0; otherwise, LM(i, j) = 1. For a prediction error
e(i, j) € [-128,127], 8 bits can be used to present its value by

Co 2 xe(i,)), e(i, j) = 0;
e(i.j) = {—2 xe(i,j) -1, e(i,j) <O0. ®

When a prediction error e(i,j) ¢ [—128,127], we first store the original pixel p(i, j) to a binary
sequence T and then set the prediction error as 0. After being processed, all the prediction errors
can be represented by 8 bits. Combined with the location map, a 9-bit error image EI is generated.

3.2 Encoding by BDBE

For the error image EI, the proportion of 0s in a bit plane is much larger than 1s. Thus, the situation
z = ng in Table 2 is less likely to happen and we can remove this situation. Then the sign bit & is
unnecessary and we can change Table 2 as Table 4.

In our scheme, each bit plane of EI is divided into two bit-planes: the first M/2 rows and the
last M /2 rows. As a result, the 9-bit error image EI consists of 18 bit-planes. These bit-planes are
sequentially labeled in the order of the 9th bit plane’s first M/2 rows, 9th bit plane’s last M/2
rows, 8th bit plane’s first M/2 rows, - - -, and the 1st bit plane’s last M /2 rows, with labels ranging
from 1 to 18. The BDBE’s performance varies with different bit-plane block sizes. Typically, larger
block sizes are preferred for bit-planes with fewer 1s to achieve superior results. To determine
the optimal block size, we conducted experiments using the “‘BOWS-2” database. For each image
in the database, we calculate its error image EI and obtain 18 bit-planes. Then we compress all
images’ bit-planes using block sizes of 4, 8, 16, 32, 64, 128, and 256, respectively. We use Nj to
denote the number of 1s in a bit-plane. Then, for bit-planes with the same N;, we separately count
the numbers of bit-planes whose optimal encoding block size is 4, 8, 16, 32, 64, 128, and 256. If the
bit-plane with block size S has the largest number, then we consider S as the optimal block size
for encoding bit-planes with Nj. As Nj increases, the optimal block size S gradually decreases. We
choose the critical N; values for the change of S and obtain the correlation of N; and S. To apply
the block size selection method across bit-planes of different sizes, we utilize the proportion of 1s
(P1) in a bit-plane as the classification criterion, rather than the exact number of 1s (N;). Finally,
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we obtain the correlation between the optimal block size S and P; as

256, for P; € [0,6.4850 x 107°];

128, for P; € (6.4850 x 107>, 2.4796 X 1074];

64, for P; € (2.4796 x 107%,9.2697 x 107*];

32, for P; € (9.2697 x 1074, 3.4599 x 107°];

16, for P; € (3.4599 X 1073, 1.4309 x 1072]; ©)
8, for P; € (1.4309 x 1072,8.6376 x 1072];

4, for P; € (8.6376 x 1072, 3.4893 x 107];
1, for P, € (3.4893 x 1071, 1],

in which the block size S = 1 means the bit-plane is not encoded. Note that the bit-plane is not
encoded if the length of the encoded result is larger than total bits of original bit-plane.
Finally, we can encode each bit-plane of EI by BDBE using the following steps:

— Step 1: Calculate the Py;

— Step 2: Get the block size S from Equation (9);

— Step 3: Divide the bit-plane into blocks with size S X S;

— Step 4: Encode each block according to Table 4;

— Step 5: Combine the codes of all the image blocks to a encoded result of the bit-plane.

It is obvious that when the proportion of 1s within a bit-plane P; is large than 3.4893 x 107,
the bit-plane is not encoded. Thus, the 18 bit-planes of the error image EI can be divided into
encodable bit-planes and un-encodable bit-planes. Suppose that k bit-planes of the error image
are un-encodable and the rest 18 — k bit-planes are encodable. For the k un-encodable bit-planes,
k bitstreams U = {U;,,U;,,...,U;, } are generated using the raster order of the k un-encodable
bit-planes, and their identities are iy, iy, - - -, ir. For the 18 — k encodable bit-planes, the BDBE
encoding results are C = {Cj,,Cj,,...,Cj, .} and their identities are ji, jo, ..., jis—k. To recover
the original image, the following information are required.

— 5 bits to present the value of the k;

— 5k bits to present the identities of the k un-encodable bit-planes iy, iy, - - -, ix;

— 3(18 — k) bits to present the block sizes of the 18 — k encodable bit-planes. Because there are
7 types of block sizes and each block size is presented using 3 bits;

— (18 — k)[log,(MN/2)] bits to present the binary code lengths of C = {C},,Cj,,...,Cj,, . }.
Since the maximum length of the binary code for each bit-plane is M/2 X N, its length can
be presented using [log,(MN/2)] bits;

— [log,(MN)] bits to present the number of pixels, whose prediction error e(i, j) ¢ [-128, 127];

— The binary sequence T that contains the original pixels whose prediction errors are not
within [-128, 127];

— The BDBE results C of the 18 — k encodable bit-planes;

— The k bitstreams U of the k un-encodable bit-planes.

These required information are divided into two parts. The first five items form a binary se-
quence, namely side information SI. The last three items construct the main information MI =
T||C||U.

3.3 Encrypted Image Generation

After encoding the original image into two binary sequences, SI and MI, one can encrypt the
MI using any existing encryption standard, e.g., the AES, to obtain the encrypted bit stream EMIL
Then, the encrypted image is generated by arranging the bitstreams SI and EMI. Finally, the binary

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 5, Article 149. Publication date: February 2024.



Bi-directional Block Encoding for Reversible Data Hiding over Encrypted Images 149:13

sequences SI and EMI are placed at the 8 bit planes of image from the most significant bit plane to
the least significant bit plane, and the room that is not occupied is vacated for data embedding.

3.4 Data Embedding

When a data hider receives an encrypted image E, he/she can embed some additional data into the
vacated room. First, according to the description in Section 3.2, he/she can extract the SI from the
most significant bit plane of the encrypted image E, and then find the position of the vacated room.
After finding the vacation room, he/she can embed the additional data. Note that the additional
data can also be encrypted using an existing encryption standard with a data hiding key before
being embedded into the encrypted image. After data embedding, a marked encrypted image EM
is generated.

3.5 Data Extraction and Image Recovery

A receiver can separately extract the embedded data and recover the original image using the
related keys.

3.5.1 Data Extraction with Data Hiding Key. For a marked encrypted image EM, if the receiver
has the corresponding data hiding key, then he/she can correctly extract these additional data. Ac-
cording to the image encoding strategy, the side information SI is first extracted and the beginning
position of the embedded data can be obtained. Then the embedded data can be extracted. Using
the data hiding key, one can recover the additional data.

3.5.2 Image Recovery with Encryption Key. From a marked encrypted image EM, one can first
obtain the side information SI and encrypted main information EMI of the original image. Then
the image recovery can be described as follows:

— Step I: Recover the main information MI from EMI using the encryption key.

— Step 2: The structure of the Sl is described in Section 3.2, from which we can get the value of k,
the identities of the k un-encodable bit-planes and 18 —k encodable bit-planes, the used block
sizes for encoding the 18 — k bit-planes, the lengths of binary codes of the 18 — k encodable
bit-planes C = {C;,,Cj,,...,Cj, .}, and the number of pixels whose prediction errors are
not within [-128, 127]. Note that the number is 1/8 of the length of binary sequence T.

— Step 3: According to the lengths of T and C, divide MI into three items: T, C and U.

— Step 4: Using the block sizes for encoding the 18 — k bit-planes, perform inverse BDBE and
obtain the original bit-planes of the 18 — k encodable bit-planes. Combined with the k bit-
streams U, the 9-bit error image EI is recovered.

— Step 5: Recover the original image I. According to the 9th bit plane, namely the location map
LM, one can directly recover the pixels whose prediction errors e(i, j) ¢ [—128, 127] from the
binary sequence T. For these pixels with e(i, j) € [-128, 127], their prediction errors are the
8 least significant bits of EL First, recover the original prediction errors using the inverse
operation of Equation (8), which is expressed as

. el i)/, (e(i,j) mod 2) = 0;
e@.)) = {—(e(i,j) +1)/2, (e(i,j) mod 2) # 0. (10)

Then, all pixels are recovered using the prediction errors e(i, j) and prediction values p(i, j),
which are calculated by Equation (4), Equation (5) and Equation (6). Finally, the original
image can be recovered completely.

When a receiver has both the encryption key and the data hider key, he/she can recover both
the original image and embedded data.
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D i1 (3) Yin et al.’s method [32]: Type label 00, Lg, =4

D :0 Original bit-streams: 0000000000011100 (16 bits)

First run: 00000000000 (11 bits) (= 4 bit
(1) Yietal's method [30]: frstrun ¢ its) ( its)
= |logal1]| =3, Lmig = (11-2%),= (011
Original bit-streams: 0000000000110100 (16 bits) 1= logol1] =3, Lmia = (11-23.= (011,

n=16,n,=2, m=3 >n, Bad block Lpre =110, Lig =011, Lui=0 = (1100110),

Compressed bit-streams: 000000000000110100 (length = 18) Second run: 111 (3 bits) (< 4 bits)

Lpre =0, Lipig= 1110 = (01110),
(2) Chen et al.'s method [3]: . .
Third run: 0 (1 bit) (< 4 bits)
Original bit-streams: 0000000000110100 (16 bits)
Lpre = 0, Lyia= 0= (00),
s=4,T=3,1<z=3 < T, G-Il block
Compressed bit-streams: 11001100111000 (length=14)

Block label = (10),, [log,T'| bits to store z = (11),
First '1': 0000000000110100 (1= 16) (4) Arithmetic coding method [21]:

z1=11, ¢, = [log,n] =4 bits, t;=z,=11 = (1011), Original bit-streams: 0000000000110100 (16 bits)

Second '1': 0000000000110100 (1 - z,= 5) Compressed bit-streams: 0001101010011000 (length = 16)

2, =12, g,= [logy (n-z;)] = 3 bits, t=2z,- z;=1 = (001), (5) Our BDBE method:

Third '1': 0000000000110100 (n - z,=4) Original bit-streams: 0000000000110100 (16 bits)

23 =14, g3= [log (n-z2) | = 2 bits, 5=2z3-2,=2 = (10), Detail in Fig. 2.(d) Code: 01111010100, sign: |
Compressed bit-streams: 1011101100110 (length = 13) Compressed bit-streams: 011110101001 (length = 12)

Fig. 6. Comparisons of five encoding methods on a binary block.

4 EXPERIENCE RESULTS
4.1 The Performance of BDBE

To show the superiority of our BDBE. We compare it with four classical and state-of-the-art dis-
tance encoding methods, including Yi et al’s [30], Chen et al’s [3], Yin et al’s [32], and binary
arithmetic coding [21] methods. Notice that the encoding method in Yin et al’s [32] method is an
extended run-length encoding method by choosing the best scanning order from the four scanning
order to a binary block.

4.1.1  Encoding Processes of These Methods. We first compare the encoding concepts of these
encoding methods and Figure 6 shows the encoding processes of these methods to a 4 X 4 binary
block. For Yi et al’s [30] method, the threshold of the number of 1s is n, = 2 for block size s = 4.
Thus the block with three 1s cannot be encoded. Besides, it needs a block label ‘00’ to mark this
kind of block. Then a total number of 18 bits are required to represent this block. For Chen et
al’s [3] method, the threshold of the number of 1s is T = 3 for block size s = 4. Then the block is a
G-II block with block label ‘10’. The final code includes the block label, number of 1s and the index
codes of all the 1s. It is “1011101100110° with 13 bits. For Yin et al’s [32] method, the best block
scanning order is the type ‘00’ after trying all the four order types. After encoding, the block code is
11001100111000” with 14 bits. For the binary arithmetic coding [21], the block can be encoded us-
ing 16 bits without counting additional symbol proportion information for recovery. For our BDBE
method, the encoding process for the block is shown in Figure 2(d), and only 12 bis are required to
encode the block. From Figure 6, it can be observed that, since our BDBE method can encode the
distance from both sides using the least bits, it can use less bits to present a binary sequence.

4.1.2  Comparisons on Natural Images. To better show the superiority of our BDBE method, we
compare it with the four encoding methods on six natural images. All the test images are greyscale
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Fig. 7. Six classical images with size 512 % 512. (a) Baboon; (b) Boat; (c) Jetplane; (d) Lena; (e) Man; (f) Peppers.

images with size 512x512, shown in Figure 7. For each test image, its pixel p(i, j) can be decomposed
into 8 bits, (bgb7bsbs bybsbyby),, where bg and by are the most and least significant bits, respectively.
These bits can be derived as follows:

by = {p(i,j)

zk—lJ mod 2, k=1,2,...,8. (1)

Thus we can get the 8 bit planes of each test image.

For our BDBE, we set the block size as S = 4 and the detailed encoding process for each bit
plane is as follows. First, encode each block as a bitstream BC and a sign . Second, connect the
code BC of all the blocks to obtain a bitstream C; and connect the sign & of all the Type-II blocks to
get a bitstream S;. Due to the common occurrence of the same ¢ sign within consecutive Type-II
blocks in a bit plane, the bitstream S; exhibits high redundancy and can be further compressed.
Third, encode S; using the BDBE method and obtain two bitstreams C; and S,, which is the same
as the first two steps. Thus, the final codes of a bit plane includes Cy, C;, and S;. During recovery
process, Sy is first reconstructed from C; and S;, followed by the recovery of the original bit plane
from C; and S;.

Table 5 lists the encoding results of Yi et al’s [30], Chen et al’s [3], and Yin et al’s [32] method,
binary arithmetic coding [21] and our BDBE methods. Since most of the methods encode bit planes
with block size 4 X 4, it is fair to fix block size to 4 X 4 and set the rest of parameters according to
the original literature. As evidenced, our BDBE consistently achieves a better compression perfor-
mance than other encoding methods on natural images.

4.2 The Performance of BDBE-RDHEI

In this section, we simulate the proposed BDBE-RDHEI, evaluate its performance and compare
it with other RDH-EI schemes. Six classical images shown in Figure 7 and two image databases
“BOWS-2" and “BOSSbase" containing 10,000 images are used as the test images. All the test images
are greyscale images with size 512 X 512.

4.2.1  Simulation Results. Figure 8 simulates the process of our BDBE-RDHEI scheme for image
Jetplane. Figure 8(b)—(i) show the 8 least significant bit planes of the error image EI It can be seen
that there are more 0s in the higher bit plane, which can obtain better encoding result. After en-
coded by the BDBE method, 4 bit-planes of the EI shown in Figure 8(h) and (i) are un-encodable
bit-planes, and the other bit-planes are encodable bit-planes. After encrypting the encoding re-
sults using the AES, and embedding some random bits into the vacated room, we can obtain the
encrypted image E, which is shown in Figure 8(j). After embedded into some additional data, the
marked encrypted image is also randomlike, which is shown in Figure 8(k). One cannot obtain any
useful information about the original image and the embedded additional data. Using the marked
encrypted image and the encryption key, one can completely recover the original image, shown
in Figure 8(1).
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Table 5. The Sizes of the Encoding Results of Different Methods on Six Classical Images

Bab Boat
Bit plane avoon o4

[30] [3] [32] [21] BDBE  [30] [3] [32] [21]  BDBE
169463 235691 173388 261639 164997 96166 237408 88264 235685 96044
215355 238616 228905 259754 206303 121194 128549 117753 198940 118578
256554 262144 262144 259299 243661 185368 208618 195399 251117 177812
262144 262144 262144 261735 262144 254312 262144 262144 262144 241483
262144 262144 262144 262144 262144 262144 262144 262144 261423 262144
262144 262144 262144 262144 262144 262144 262144 262144 261878 262144
262144 262144 262144 262144 262144 262144 262144 262144 262012 262144

1 262144 262144 262144 262144 262144 262144 262144 262144 261923 262144
Total bits 1952092 2047171 1975157 2091003 1925681 1705616 1885295 1712136 1995122 1682493
Jetplane Lena

N W s U NI

Bit plane
[30] [3] [32] [21] BDBE [30] [3] [32] [21] BDBE

71165 262017 53246 181480 73985 76030 182014 67414 262072 83216
110252 262144 102278 191728 108771 115526 177971 117456 257335 118534
132036 138401 126597 208357 128870 154380 218618 166839 262132 153339
183636 245523 191895 260634 176575 220065 254579 241194 262144 212158
233654 262144 249856 261895 222836 262144 262144 262144 262144 256635
262144 262144 262144 262144 260004 262144 262144 262144 262144 262144
262144 262144 262144 262144 262144 262144 262144 262144 262144 262144

1 262144 262144 262144 262144 262144 262144 262144 262144 262144 262144
Total bits 1517175 1956661 1510304 1890526 1495329 1614577 1881758 1641479 2092259 1610314
Man Peppers

[30] [3] [32] [21] BDBE [30] [3]  [32] [21] BDBE
79626 116208 69904 218387 82958 67219 153018 53784 258350 73808
123782 147498 125313 227423 123733 114526 147949 114877 234900 115183
188715 208609 202037 251535 182514 163216 212581 176335 260272 160979
237386 240981 255613 255163 226117 224758 249249 245995 261410 215994
262144 262144 262144 259073 255188 262144 262144 262144 261947 262144
262144 262144 262144 261561 262144 262144 262144 262144 262142 262144
262144 262144 262144 261245 262144 262144 262144 262144 262144 262144

1 262144 262144 262144 262114 262144 262144 262144 262144 262144 262144
Total bits 1678085 1761872 1701443 1996501 1656942 1618295 1811373 1639567 2063309 1614540

DN W s Ul NI X

Bit plane

N W s T X

In addition, our scheme is applicable to color images, such as RGB images, and cannot cause color
distortion. When processing a color image, our scheme treats each color channel as a greyscale
image, and is individually applied to each color channel. During the encryption phase, each color
channel is encrypted into randomlike data, as demonstrated in Figure 8(j). Then the encrypted
color image becomes randomlike. This randomization ensures the security of the encrypted image.
In the image recovery phase, the recovery process for each color channel is lossless. Thus, our
method can recover the original color image without any color distortion.

4.2.2 Embedding Rate. The embedding capacity indicates that how many additional data can
be embedded into the encrypted image by a data hider. The embedding rate can be tested by the
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(®)

® (h) () ) (k) )

Fig. 8. Simulation results of the BDBE-RDHEI for image Jetplane. (a) Original image Jetplane; (b) the eighth
bit plane of the error image EI; (c) the seventh bit plane of EL (d) the sixth bit plane of EL (e) the fifth bit
plane of EI; (f) the fourth bit plane of EI; (g) the third bit plane of EI; (h) the second bit plane of EL (i) the
first bit plane of EL (j) the encrypted image E; (k) the marked encrypted image EM with additional data
embedded (ER = 3.864 bpp); (I) the reconstructed image (PSNR — +o0).

maximum embedded bits per pixel bpp, which is calculated as

Total embedding capacity — Payload

ER = (12)

where the payload is the side information SI. According to the image encoding in Section 3.2, the
length of the side information SI can be obtained as

Ls; = 41 + 3k + (19 — k) x [log,(MN)]. (13)

Total number of pixels

The total embedding capacity is the difference between the original image bits and the encrypted
bitstream EMI. The EMI and the main information MI have the same length and MI = T||C||U.
It is obvious that the length of U is kMN/2. Suppose that the lengths of T and C are Lt and L,
respectively, and the image is with size M X N. Then we can calculate the total embedding capacity
as

L =8MN — Lgyy = 8MN — [(Lt + Le + kMN/2)/128] X 128. (14)
Thus, the ER can be obtained as
L-L Lsr+L
FR = SI _ g _ Lsit+LEmr (15)
MN MN

We take the image Lena as an example. After calculating the prediction errors, we find that
there is one pixel, whose prediction error is without [-128, 127]. We store the pixel in the binary
sequence T with Lt = 1 X 8 = 8, and a location map is used to indicate its position. Besides, the
location map is the ninth bit plane of the error image. Calculate the proportion of 1s Py in each
bit-plane, and determine the block size S of each bit-plane according to Equation (9), where S = 1
means it is an un-encodable bit-plane. Table 6 shows the encoded results of the 18 bit-planes by
BDBE.

It can be seen bit-planes 13 to 18 are un-encodable bit-planes, and we can obtain k = 6. Thus,
from Equation (13), we get Ls; = 293. To show the details of encoding EI, Table 6 lists the number
of each type of blocks. It can be seen that in most encodable bit-planes, the number of the blocks
with n; = 0 are the most prevalent. Then, the total length of the encoding results of the first 12
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Table 6. The Encoding Results of the Error Image of Lena

Number of block with different types

Bit-plane ID Py Block size S Length of code

I I (n1 = 0) 1I (n1 > 0)

1 7.63 % 107° 256 0 1 1 21

2 0 256 0 2 0 4

3 458 X 107 256 0 1 1 88

4 1.53 x 107* 128 0 5 3 293
5 2.96 X 1073 32 0 85 43 3940
6 5.91x 1073 16 2 401 109 7118
7 2.01 x 1072 8 78 1530 440 18653
8 3.43 X 1072 8 198 1415 435 26379
9 8.26 X 1072 8 481 710 857 52306
10 9.88 X 1072 4 1506 4274 2412 58735
11 2.30 x 1071 4 3916 690 3586 108186
12 2.42 x 1071 4 4291 926 2975 108508
13 3.73 x 1071 1 — — — 131072
14 3.76 x 1071 1 — — — 131072
15 4.39x 1071 1 — — - 131072
16 4.42 x 1071 1 — — — 131072
17 4.90 x 1071 1 — — — 131072
18 4.87 x 1071 1 — — — 131072

Table 7. The Embedding Rates of the Six Test Images

Test images Parameterk Lg; Lt Le Lemr ER (bpp)
Baboon 9 248 32 454,357 1,634,048 1.766
Boat 7 278 56 420,168 1,337,728 2.896
Fetplane 4 323 8 559,645 1,084,032 3.864
Lena 6 293 8 384,231 1,170,688 3.533
Man 7 278 192 458,114 1,375,872 2.750
Peppers 6 293 0 464,428 1,250,944 3.227

bit-planes is 384231, indicating that Lc = 384231. According to Equation (14), we can determine
Lppr = 1170688, and then calculate that ER = 3.533 bpp from Equation (15).

Table 7 lists the number of the un-encodable bit-planes k, the length of side information Lgj, the
binary sequence T’s length Lr, the total length of the encodable bit-planes’ encoding results L,
the length of the encrypted main information Lgy;, and ER of the six test images. As can be seen
from Table 7, different images have different embedding rates, since they have different features.
For example, the ER of the image Jetplane can be 2.18 times that of the image Baboon, because the
the image Jetplane is much smoother than the image Baboon.

Table 8 shows the best, worst and average embedding rates of the two databases, “BOWS-2” and
“BOSSbase.” For the “BOSSbase" database, the best case is the 5162.pgm with ER = 7.796 bpp, and
the worst case is the image 1377.pgm with ER = 1.028 bpp. For the “BOWS-2" database, the best
case is the image 1478.pgm with ER = 7.196 bpp, and the worst case is the image 6184.pgm with
ER = 0.920 bpp. The average embedding rate value of “BOSSbase" can reach to 4 bpp. Since the
receiver can completely recover the original image using the encryption key, the recovered image
is lossless and then the PSNR — +oco and SSIM = 1.
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Table 8. The Best, Worst, and Average Embedding Rates of
Two Databases in our BDBE-RDHEI

Performance BOSSbase BOWS-2
Best 7.796 7.196
Worst 1.028 0.920
Average 4.103 3.996
PSNR +00 +00
SSIM 1 1
5.0 1 | Mohammadi et al.[13] Yin et al.[33] B Chen et al.[3] Xu et al.[28] Yin etal.[32] == Qiuetal[17] N\ BDBE—RDHEIT
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Fig. 9. Embedding rate comparisons of different RDH-EI schemes on the six test images and two databases.

4.2.3 Comparisons of Embedding Rate. To show the high embedding rate of our proposed
BDBE-RDHEI, we compare it with several state-of-the-art RDH-EI schemes, including Moham-
madi et al’s [13], Yin et al’s [33], Chen et al’s [3], Xu et al’s [28], Yin et al’s [32], and Qiu et
al’s [17] schemes. Figure 9 shows the comparison results of the embedding rate over the six clas-
sical images and the images in two databases, in which the embedding rates of the two databases
are the average values. The results show that our BDBE-RDHEI scheme can achieve the largest
embedding rate. Take the image Lena as example, the embedding rate of our BDBE-RDHEI method
is 3.533 bpp, while that of Mohammadi et al’s [13], Yin et al’s [33], Chen et al’s [3], Xu et al’s [28],
Yin et al’s [32], and Qiu et al’s [17] schemes are 2.49 bpp, 2.583 bpp, 2.59 bpp, 3.143 bpp, 3.075
bpp, and 3.444 bpp, respectively. Besides, for the two databases, the average embedding rates of
our BDBE-RDHEI scheme are larger than that of Qiu et al’s [17] scheme, which achieves the best
results among these RDH-EI schemes.

4.24  Security Analysis. In our BDBE-RDHEI scheme, the encoded images are encrypted using
the AES, while the data to be embedded can be encrypted using any existing encryption meth-
ods. Both the original image and embedded data can achieve a high security. To show the high
security of protecting the original image, we investigate the correlation of images before and after
encryption.

Since a natural image has high correlations between adjacent pixels, a pixel can reveal the infor-
mation of its surrounding pixels and attackers can use this feature to predict the image information.
To avoid this statistical attack, the strong correlations of adjacent pixels should be broken in an en-
crypted image. We first plot the adjacent pixel pairs of the natural image and its encrypted image
by our scheme in Figure 10. As can be seen, most of the pixel pairs of the plain image along the
horizontal, vertical and diagonal directions are distributed on the diagonal line of the 2D planes,
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Fig. 10. The first and second rows are the adjacent pixel pair plots of the original image Jetplane and its en-
crypted image along the (a) horizontal direction, (b) vertical direction, and (c) diagonal direction, respectively.

which indicates that a pixel of the plain image has high correlations with its adjacent pixels. How-
ever, the pixel pairs of the encrypted image along the three directions are distributed randomly on
the 2D planes. This indicates that a pixel has low correlations with its adjacent pixels.
We also use the correlation coefficient (CC) to calculate the adjacent pixel correlations. The
CC is calculated as
CCuy = Y (ui — @)(v; - 0) ’ (16)
VN s = 02 % S 0 — o)

where 7 and © are the average values of the vector u and v, respectively, and u and v are two vectors
formed by pixel pairs along the horizontal, vertical, or diagonal directions. The CC values of some
test images are listed in Table 9. It shows that the CC values of the plain images are close to 1,
which indicates high correlations of the two vectors [1]. However, the CC values of the encrypted
and marked encrypted images are close to 0, which means low correlations [8]. Besides, we also
calculate the information entropy of these images, and the results listed in Table 9 demonstrate that
the pixels in the encrypted and marked encrypted images are close to the theoretically maximum
value 8, indicating that these images have uniform-distribution pixels to defense statistic attack.

4.2.5 Complexity Analysis. In our BDBE—RDHEI scheme, the complexity of room reservation
is O(MN), including the generation and compression of the error image EI. The compression of
EI involves a maximum of three traversals, including the calculation P;, determining the block
size S and encoding each block. We test the running time of seven RRBE-based RDH-EI schemes
on the image Lena with an embedding rate 1 bpp. All the schemes are implemented using the
MATLAB programming language and run on 64-bit Windows 11 with AMD Ryzen 7 5800H @3.20
GHz, 16 GB RAM. Table 10 depicts the results. During image encryption process, our scheme and
the schemes in References [33] and [28] exhibit fast processing speeds. In contrast, the schemes in
References [13], [3], [17], and [32] are time-consuming due to various factors, such as the use of
AES for random byte generation, the iterative prediction method, excessive reliance on arithmetic
encoding, and multiple compression of a bit plane with various rearrangements to optimize the
result. Notably, our BDBE-RDHEI scheme outperforms Qiu et al’s [17] scheme, which achieves
the best embedding rates among prior RDH-EI schemes.
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Table 9. Correlation Coefficient and Information Entropy Scores of Some Original, Encrypted
and Marked Encrypted Images

Test Image Correlation coefficient values ~ Information
images  types Horizontal Vertical Diagonal entropy
Original image 0.8685 0.7500 0.7333 7.3583
Baboon  Encrypted image —0.0078 0.0127  —0.0205 7.9993
Marked encrypted image 0.0190 0.0049 0.0146 7.9976
Original image 0.9402 0.9726 0.9221 7.1914
Boat Encrypted image 0.0165 —0.0021  —0.0021 7.9993
Marked encrypted image 0.0059 0.0078 0.0232 7.9961
Original image 0.9674 0.9656 0.9410 6.7025
Jetplane Encrypted image 0.0206 -0.0119  0.0116 7.9992
Marked encrypted image 0.0100 0.0088  —0.0199 7.9950
Original image 0.9712 0.9851 0.9557 7.4451
Lena Encrypted image —0.0049 0.0015  —0.0066 7.9993
Marked encrypted image ~ —0.0045 0.0111  —0.0140 7.9955
Original image 0.9627 0.9696 0.9469 7.3574
Man Encrypted image 0.0141 —-0.0043 —0.0026 7.9993
Marked encrypted image 0.0031 0.0272 0.0129 7.9963
Original image 0.9806 0.9815 0.9681 7.5715
Peppers  Encrypted image —-0.0230 0.0038 0.0153 7.9994
Marked encrypted image 0.0092 0.0144  —0.0208 7.9958

Table 10. Running Time Comparison (in Seconds) of Different RRBE-Based RDH-EI Schemes for Image

Lena
Methods
Parties Operation Mohammadi Yinet Chenet Xuet Yinet Qiuet BDBE-
etal [13] al.[33] al. [3] al [28] al [32] al.[17] RDHEI
Content owner Image Encryption 1.501 0.697  6.157 0.814 11.685 5.115 0.868
Data hider Data Embedding 1.878 0.441 0.458 0.450 0.831 1.605 0.469
Receiver Data Extraction 1.231 0.724 0365 0.443 0.704 1.463  0.455
Image Recovery 3.812 1.645 8899 0.746 8513 1.982 1.194

5 CONCLUSION

In this article, we first propose a BDBE method. It encodes the distances of values in binary se-
quence from both sides, and thus the distances can be represented using least bits. Using the BDBE,
we further develop an RDH-EI scheme. It allows the content owner to preserve embedding room
for data embedding. After being encrypted using the AES, the encrypted image codes are sent to
data hider for data embedding. A receiver can extract the embedded data and recover the origi-
nal image using the related keys. We implement a comprehensive evaluation and the evaluation
results show that our scheme ensures image content confidentiality, while achieving a large em-
bedding capacity. Comparison results demonstrate that it can achieve larger embedding capacity
than state-of-the-art methods. Our BDBE method employs a fixed block size for each bit-plane, but
the compression rate can be further improved by using varying block sizes within the bit-plane, as
different image regions exhibit different data distributions. Our future work aims to enhance the
embedding capacity through efficient compression of image prediction errors.
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