
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024 821

Blockchain-Assisted Secure Deduplication for
Large-Scale Cloud Storage Service

Zhongyun Hua , Senior Member, IEEE, Yufei Yao , Mingyang Song , Yifeng Zheng , Yushu Zhang ,
and Cong Wang , Fellow, IEEE

Abstract—Secure deduplication over encrypted data can greatly
improve cloud storage efficiency and protect data privacy. Recently,
there have been some research efforts aiming at designing secure
deduplication schemes with the assistance of key servers (KSs).
However, prior works are unsatisfactory in that they suffer from
some limitations such as security degradation (the leakage at partial
KSs will lead to all the ciphertexts being subject to offline brute-
force attacks) or lack of scalability for handling the change of KSs.
In this article, we propose a new secure deduplication scheme for
large-scale cloud storage service, which, to our best knowledge, is
the first server-aided scheme that supports both tolerance of partial
KSs leakage and dynamic change of KSs. Our scheme divides all
the KSs into multiple groups and each KS group keeps a randomly
generated secret key using threshold cryptography. We design a
file-related KS group selection mechanism for assisting encryption
key generation, which guarantees that the identical files of different
users can be encrypted using the same keys. Our scheme is designed
to update the KS groups regularly for supporting the joining and
leaving of the KSs as well as maintaining long-term security. We
leverage the blockchain to help divide KSs into groups in a fair way
and securely migrate group secret keys during KS group updating.
Formal analysis is provided to verify the correctness of our scheme
and justify its security, and both theoretical and experimental
results demonstrate that it has modest performance overhead.

Index Terms—Cloud storage, secure deduplication, server-aided
encryption, key servers management.

Manuscript received 7 April 2023; revised 20 December 2023; accepted 24
December 2023. Date of publication 5 January 2024; date of current version 12
June 2024. This work was supported in part by the National Natural Science
Foundation of China under Grant 62071142, in part by the Guangdong Ba-
sic and Applied Basic Research Foundation under Grants 2021A1515110027
and 2023A1515010714, in part by the Shenzhen Science and Technology
Program under Grants JCYJ20220531095416037, JCYJ20230807094411024,
RCBS20210609103056041, and ZDSYS20210623091809029, in part by the
Guangdong Provincial Key Laboratory of Novel Security Intelligence Technolo-
gies under Grant 2022B1212010005, and in part by the Research Grants Council
of Hong Kong under Grants CityU 11217620, 11218521, 11218322, R6021-
20F, R1012-21, RFS2122-1S04, C2004-21G, C1029-22G, and N_CityU139/21.
(Corresponding author: Yifeng Zheng.)

Zhongyun Hua is with the School of Computer Science and Technol-
ogy, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China,
and also with the Guangdong Provincial Key Laboratory of Novel Secu-
rity Intelligence Technologies, Shenzhen, Guangdong 518055, China (e-mail:
huazhongyun@hit.edu.cn).

Yufei Yao, Mingyang Song, and Yifeng Zheng are with the School of
Computer Science and Technology, Harbin Institute of Technology, Shen-
zhen, Guangdong 518055, China (e-mail: yaoyufei0615@hotmail.com; song-
mingyang2022@gmail.com; yifeng.zheng@hit.edu.cn).

Yushu Zhang is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
(e-mail: yushu@nuaa.edu.cn).

Cong Wang is with the Department of Computer Science, City University of
Hong Kong, Kowloon Tong, Hong Kong (e-mail: congwang@cityu.edu.hk).

Digital Object Identifier 10.1109/TSC.2024.3350086

I. INTRODUCTION

IN THE era of Big Data, more and more digital data are
generated every moment by all kinds of digital devices

such as smartphones and various sensors. Cloud storage can
provide low-cost and convenient data storage services, which
have attracted many enterprises and individuals to store their
data on the cloud [1]. However, almost 75% of data stored on the
cloud are duplicated [2], and thus data deduplication can greatly
improve cloud storage efficiency by storing only one copy of
the duplicated data [3], [4], [5]. Most commercial cloud ser-
vice providers (CSPs) support data deduplication (e.g., Google
Drive [6] and Dropbox [7]). However, coming with the popular-
ity of cloud storage services are acute data privacy concerns. So
users may encrypt their data for protection before outsourcing
the storage. This requires CSPs to support deduplication over
encrypted data. Traditional symmetric encryption algorithms
cannot allow secure cross-user deduplication, because each user
holds an encryption key and different users encrypt identical
files into different ciphertexts [8]. Convergent encryption (CE)
technique [9] can well solve this issue by deriving the encryption
key from the data itself. As a result, different users can encrypt
identical files into exactly the same ciphertexts such that CSP
can perform deduplication over ciphertexts. This kind of encryp-
tion is then formalized as a new cryptographic primitive called
message-locked encryption (MLE) [10] and has been used in
many secure deduplication schemes [11], [12], [13], [14], [15],
[16].

Due to the convergence of ciphertexts, MLE, however, is sus-
ceptible to offline brute-force attacks (BFA) and DupLESS [17]
is the first scheme that can defend against such attacks. A
third-party key server (KS) holding a secret key is deployed
in DupLESS to help user generate the encryption key. The
users execute blind signature-based protocol [18] with the KS
to obtain server-aided convergent keys. However, using KS
would inevitably lead to trust issues, as a third-party KS may be
compromised. Besides, deploying one KS may raise the single-
point-of-failure issue to the system. To improve privacy and
reliability, the work in [19] proposed a new secure deduplication
scheme by deploying a fixed group of KSs that share a secret
key through threshold cryptography [20].

However, these works are inappropriate for large-scale cloud
storage systems. To ensure a fast response, a large-scale cloud
storage system should deploy many KSs to handle the vast
system requests simultaneously. The works in [21], [22], [23]

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3529-0541
https://orcid.org/0009-0004-6712-4988
https://orcid.org/0000-0001-7870-2422
https://orcid.org/0000-0001-7852-6051
https://orcid.org/0000-0001-8183-8435
https://orcid.org/0000-0003-0547-315X
mailto:huazhongyun@hit.edu.cn
mailto:yaoyufei0615@hotmail.com
mailto:songmingyang2022@gmail.com
mailto:songmingyang2022@gmail.com
mailto:yifeng.zheng@hit.edu.cn
mailto:yushu@nuaa.edu.cn
mailto:congwang@cityu.edu.hk

822 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

proposed some such secure deduplication schemes for large-
scale cloud storage. To balance the trade-off between efficiency
and security, the schemes in [21], [22] divided all the available
KSs into different KS groups and designed special ciphertext
structures for supporting cross-user deduplication. The scheme
in [23] treated all the KSs as one group and designed a proac-
tivization mechanism to support addition and removal KSs in the
system. However, these schemes still suffer from the following
limitations: 1) The scheme in [21] supports only fixed-KS set-
tings, which lacks scalability to deploy more KSs for handling
the probably increasing storage requirements; 2) The scheme
in [22] may incur the single-point-of-failure issue because each
KS group has only one KS in the design; 3) For the schemes
in [21], [22], [23], the leakage of the secret key in one KS group
will degrade the security level of the whole system to that of
MLE. Then all the ciphertexts stored on the cloud are subject
to offline BFA; 4) The schemes in [21], [22] cannot sustain
long-term security, because their KS group settings are fixed
and a sophisticated adversary may corrupt some fixed KSs with
long enough time [24].

Considering the demands of practical application, a server-
aided secure deduplication scheme should have the following
properties to support large-scale cloud storage. (1) It should
achieve cross-user deduplication, which means that the identical
files of different users can be detected as duplicated files by
the cloud. (2) It should protect users’ data with a high ability
to resist commonly occurring security risks. (3) It should have
the scalability to deal with the dynamic change of KSs. This
is because more KSs should be deployed with the increase
of storage requests and some KSs may be offline because of
some internal or external reasons such as hardware failures. (4)
The leakage at some KS groups affects only partial ciphertexts,
rather than all the ciphertexts stored on the cloud. (5) It should
provide long-term security for the ciphertexts stored on the
cloud. To our best knowledge, there is not yet a server-aided
secure deduplication scheme that simultaneously considers and
addresses these issues.

In this paper, we propose a new secure deduplication scheme
for large-scale cloud storage, aiming to address the above issues.
Our scheme divides all the KSs into multiple groups and each
KS group keeps a randomly generated secret key using threshold
cryptography. We develop a file-related group selection mech-
anism that uses the file itself to determine the KS group for
assisting encryption key and tag generation. Then the identical
files of different users can be encrypted using the same encryp-
tion keys so that the CSP can perform ciphertext deduplication.
To support the dynamic change of KSs and maintain long-term
security, our scheme updates the KS group regularly. We intro-
duce the blockchain into our system to design a fair KS grouping
mechanism and use the secure migration mechanism introduced
in [23] to migrate the secret keys between the old and new
KS groups during KS group updating. Then the identical files
uploaded before and after KS group updating can be detected
as duplicated files. Considering that the outsourced files may
have different levels of confidentiality, our system is further
designed to provide multi-level protection to the outsourced files
by encrypting them with the assistance of multiple KS groups.

We summarize the main contributions of this paper as follows.
� We propose a new secure deduplication scheme for large-

scale cloud storage service, which, to our best knowledge,
is the first server-aided scheme that supports both the
tolerance of partial KSs leakage and dynamic change of
KSs. To meet comprehensive security requirements, our
scheme provides users with the feasibility to use multiple
KS groups to assist in encrypting files while the cloud can
perform deduplication.

� Our scheme is designed to update KS groups regularly to
support the dynamic change of KSs, as well as maintain
long-term security. We leverage the blockchain to help
generate KS groups fairly and randomly.

� We formally prove the correctness of our scheme and
justify its security. Both theoretical and experimental eval-
uations show its modest performance overhead.

The rest of this paper is organized as follows. Section II
presents the problem statement of our design, including system
model, threat model, and design goals. Section III presents the
preliminaries. Section IV introduces the design of our scheme.
Section V proves the correctness of our scheme and justifies its
security. Section VI analyzes the performance of our scheme.
Section VII presents the related work and Section VIII concludes
this paper.

II. PROBLEM STATEMENT

In this section, we first define the system model and threat
model of our design, and introduce our design goals.

A. System Model

Fig. 1 shows the system model of our design and the system
includes four types of entities: CSP, user, KS, and blockchain,
which are described as follows.
� CSP: The CSP provides convenient and on-demand storage

services for users. For effective storage utilization, it per-
forms deduplication among the files from different users.

� User: A user is an institution or individual that outsources
files to the CSP for storage. Since different users may
upload identical files, a user can be an initial uploader that
uploads a new file or a subsequent uploader that uploads
an already existing file. To protect file confidentiality, users
encrypt their files and outsource the ciphertexts to the CSP.

� KS: The KS assists in the generation of encryption key and
file tag. In a large-scale cloud storage system, many KSs are
deployed and the available KSs may change dynamically,
which means that some KSs may leave and some KSs may
join the system at any time.

� Blockchain: The blockchain is a public distributed shared
ledger with many nodes. It has the characteristics of tamper
resistance, decentralization, and transparency [25].

As can be seen from the architecture of our system in Fig. 1,
all KSs are divided into groups, and we use the blockchain to
record group information (e.g., an on-chain file-to-KS table).
After dividing all the KSs into groups, each group of KSs execute
the secret initialization protocol to share a secret key. When
a user wants to upload a file to the CSP, he/she selects the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 823

Fig. 1. System architecture of our scheme with three phases: file uploading, file downloading, and KS group updating. The file uploading involves KS group
selection, blind signature, and file outsourcing, among which KS group selection and blind signature belong to key and tag generation. The KS group updating
involves the sequential execution of file-to-KS table generation and group secret migrations.

corresponding KS group using the file information by interacting
with the blockchain, and then generates an encryption key with
the assistance of some KSs in that group. As a result, different
users with identical files can select the same KS group and thus
generate the same encryption keys, which can allow the CSP to
perform cross-user ciphertext deduplication.

B. Threat Model

The threats of our model are from the CSP, KSs, users or
their collusion. We discuss these possible threats in our model
as follows:
� CSP: The CSP stores the ciphertexts and file tags uploaded

by users. It honestly executes the protocols but may guess
the private contents of its stored ciphertexts. For example,
the CSP may launch offline BFA to ciphertexts using the
information it kept.

� KSs: The KSs assist the user to generate the encryption
key and tag. They honestly execute the protocols but may
snoop on the private contents of the files. Besides, a KS
may affect the partition of KSs such that several collusive
KSs can be divided into the same group to recover the
shared group secret key maliciously. Once this happens,
the security level of the ciphertexts corresponding to this
KS group degrades to that of the original MLE.

� Users: The initial uploader may launch duplicate-faking
attacks (DFA), which means that he/she may maliciously
upload a file tag and an unmatched ciphertext such that
the subsequent uploaders owning the same file download
a falsified copy from the cloud.

� Collusion attack: The threats may also come from the
collusion attacks among different entities. First, the CSP

may collude with a set of KSs to control the partition of the
KS groups such that some malicious KSs can be classified
into a same group to recover the group secret key. Second,
as claimed in [21], [23], the CSP may also collude with a set
of KSs (less than a threshold) to launch offline BFA to the
ciphertexts and we make the same assumption. We suppose
that the CSP does not collude with any user, which is a basic
assumption for an encrypted cloud storage system [26],
[27].

C. Design Goals

Our design aims to perform cross-user secure deduplication
over large-scale cloud storage. The specific goals of our design
are given as follows.

Functionality: Our scheme is designed to mainly support
the following functionalities: cross-user deduplication, dynamic
change of KSs, tolerance of partial KSs leakage, and multi-level
protection. (1) Our system should ensure that the identical files
from different users can be detected as duplicated files to im-
plement cross-user deduplication. (2) Since some existing KSs
may leave and some new KSs may join the system at any time in
a large-scale cloud storage system, our scheme should have the
scalability to deal with such change. (3) The leakage of a group
secret key degrades the security level of only the ciphertexts
related to this KS group, rather than all the ciphertexts stored on
the cloud. (4) The outsourced files may have different levels of
confidentiality. The strictly confidential files should be protected
with a higher security level. Our design provides multi-level
protection to the outsourced files according to users’ willingness.
Specifically, a file in our system can be protected by multiple
KS groups.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

824 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Security: The security goals of our scheme include data
confidentiality and data integrity. (1) The data confidentiality
indicates that the ciphertexts are resistant to the security attacks
launched by the CSP, KS, malicious user, or their collusion cases
explained in our threat model. (2) The data integrity indicates
that the scheme can prevent the DFA launched by the initial
uploader of a file. Besides, a user can verify the integrity of files
downloaded from CSP.

III. PRELIMINARIES

A. Bilinear Pairing

Given a security parameterκ, the bilinear parameter generator
Gen(κ) outputs a five-tuple (p,G,GT , g, e), where p is a κ-bit
prime, G and GT are two multiplicative cyclic groups of prime
order p, g is a generator of G, and e : G×G → GT is a bilinear
map [28] owning the following properties:
� Bilinear: e(Xa, Y b) = e(X,Y)ab for all X,Y ∈ G and
a, b ∈ Zp.

� Non-degeneracy: e(g, g) is a generator of GT .
� Computability: For all X,Y ∈ G, there exists an efficient

algorithm to compute e(X,Y) ∈ GT .

B. Threshold Cryptography

For a (t, n)-threshold cryptosystem, n players share a secret
and each one has a secret share. The secret can only be gained
from t or more players, and the collusion of any t− 1 or fewer
players cannot access the secret from their collective shares [29].

C. Verifiable Delay Function

A delay function is a special function that cannot be evaluated
in less than a prescribed time period [30]. A verifiable delay
function (VDF) [30] is a kind of delay function that enables
the evaluator to generate a proof to show the correctness of its
computation. A VDF is defined by a three-tuple of algorithms:
� Setup(1λ) → pp: It takes the statistical security parameter
1λ as input and outputs the public parameter pp.

� Sol(pp, x, T) → (y, π): It takes the public parameter pp,
random parameter x ∈ X, and time parameter T as inputs
and outputs the result y ∈ Y and proof π, where X and Y

are two spaces, y is a deterministic output of x taking T
sequential steps to compute, and π can prove that y was
computed correctly.

� Ver(pp, x, T, y, π) → {1/0}: It takes the public parameter
pp, random parameter x, result y, and proof π as inputs and
outputs either 1 to denote an acceptance or 0 to denote a
rejection.

IV. THE DESIGN OF OUR SCHEME

In this section, we present our secure scheme in detail. Table I
describes the key notations used in this paper.

A. Design Overview

Here, we give an overview of how our design can achieve the
design goals presented in Section II-C.

TABLE I
KEY NOTATIONS

Cross-User Deduplication: Our scheme considers large-scale
cloud storage and has many KSs involved. To balance the trade-
off between efficiency and security, we divide all the KSs into
groups and each group works individually. In prior schemes [21],
[22], users may choose different KS groups to encrypt the iden-
tical files as different ciphertexts. Then extra information should
be added to ciphertexts for cross-user deduplication, resulting
in security risk and high computation and storage overhead.
We design a file-related KS group selection mechanism that
uses the file itself to determine the KS group for generating
the encryption key. We use a file-to-KS table Φ to record the
KS group information and store it on the blockchain such that
every entity can access but cannot temper it. Each group of KSs
collaborate to generate a shared group secret key for signing
users’ requests. This design can guarantee that the identical files
of different users can find the same target KS group and be
encrypted to exactly the same ciphertexts.

Note that the KS group partition should be random and fair.
Otherwise, several malicious KSs may be classified into a same
group to recover the group secret key. Since the evaluation time
of VDF can be controlled by a time parameter and any participant
cannot predict its result within the prescribed time period, we
first utilize VDF to generate an unpredictable but verifiable seed.
Then, we use the seed as the key of a pseudo-random function
to divide KSs into different KS groups.

Dynamic Change of KSs: Since the group information is
recorded in the file-to-KS table Φ, the system can support the
dynamic change of KSs by updating Φ. Specifically, the CSP
and all the available KSs update Φ by executing the file-to-KS
table generation protocol regularly. Note that, to increase the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 825

flexibility of the system, each KS can belong to more than one
KS group. After updating the file-to-KS table, the KS group
information is changed and the shared secret key of the previous
KS group needs to be migrated to the new KS group to ensure the
ability of deduplication. Since our system model does not have a
confidential third party, we use a secure group secret migration
protocol [23] to migrate the secret key without recovering it.

Tolerance of Partial KSs Leakage: Our scheme divides all the
KSs into groups and each KS group shares a randomly generated
group secret key. Since the developed file-related KS group
selection mechanism can guarantee that the identical files of
different users can be mapped to the same target KS group, the
identical files can be encrypted to the exactly same ciphertexts
such that the cloud can perform deduplication. As a result, each
KS group works independently and the leakage at a group of
KSs degrades the security level of only the ciphertexts related
to the current group, rather than all the ciphertexts stored on the
cloud.

Multi-Level Protection: In practice, the outsourced files may
have different levels of confidentiality. Users may be willing
to protect their strictly confidential files with a higher security
level. Our scheme aims to provide selectable levels of protection
for different files. Specifically, users can choose multiple KS
groups to jointly assist in the generation of the key for encrypting
strictly confidential files. Security degrades to MLE only when
the group secret keys of all the selected KS groups leak. Note
that using more KS groups also cause higher price and this can
be determined by the users. Since our file-related KS group se-
lection mechanism uses the information of the file itself to select
KS groups, the identical files of different users can determine
the same KS groups to generate their encryption keys when the
used KS group numbers are the same. As a result, our scheme
can provide users the feasibility to use multiple KS groups to
encrypt files as well as achieve cross-user deduplication.

Long-Term Security: In server-aided MLE schemes, the de-
ployment of one KS introduces the single-point-of-failure issue.
In such a scenario, if an attacker exposes the secret key of the
KS, the overall security of the system becomes compromised.
To mitigate this vulnerability, the adoption of the threshold
signature method involves the deployment of multiple KSs.
However, even with this approach, a persistent attacker, given
enough time, may successfully compromise a threshold number
of KSs and recover the shared secret key.

Our system supports the addition of new KSs and the reorga-
nization of KS groups to ensure long-term security. In the event
that an attacker successfully compromises certain KSs, the KS
group updating mechanism partitions these compromised KSs
into distinct KS groups, simultaneously updating the associated
secret shares and making previous attacks invalid.

Data Confidentiality and Data Integrity: Our system aims to
protect data confidentiality from three aspects of design. First,
we use the server-aided key to encrypt the outsourced files and
thus the CSP cannot obtain the file contents by launching offline
BFA. Second, we develop a fair method to randomly divide
all the KSs into groups, which can prevent the collusion of
the CSP and a set of KSs to control the KS group partition.
Third, we use a PoW protocol to resist the DFA launched by the

Algorithm 1: Group Secret Initialization.

Input: The CSP, a group of KSs {KS1,KS2, . . . ,KSn},
and threshold parameters (t, n).

Output: The secret shares {sk1, sk2, . . . , skn}, public
shares {pk1, pk2, . . . , pkn} of {KS1,KS2, . . . ,KSn},
and a public key pk.

1: Each KSi (1 ≤ i ≤ n) generates a (t− 1)-degree
polynomial over Zp,

ui(x) = ai,0 + ai,1x+ · · ·+ ai,t−1x
t−1, (1)

where ai,k ∈ Zp (0 ≤ k ≤ t− 1) are randomly
selected.

2: KSi publishes the verification parameters {gai,k}
(0 ≤ k ≤ t− 1) to KSj (1 ≤ j ≤ n, j �= i) and CSP
through blockchain, where g is a generator of G.

3: KSi computes and sends ui(j) to KSj via a secure
channel.

4: When KSi obtains uj(i) from KSj , it verifies uj(i)
by checking whether the (2) holds.

guj(i) ?
=

t−1∏
k=0

gaj,k ·ik (2)

5: If all the {uj(i)} (1 ≤ j ≤ n, j �= i) are valid, KSi

computes ui(i). Then KSi can compute its secret
share ski =

∑n
j=1 uj(i) and public share pki = gski .

Otherwise, the process terminates.
6: The CSP computes pk =

∏n
j=1 g

aj,0 .

initial uploader. For previous secure deduplication schemes [21],
[22], the ciphertexts encrypted by different users may need to be
converted to support cross-user deduplication, which makes the
data integrity verification a challenging problem. However, our
solution develops a file-related group selection mechanism that
can encrypt the identical files to be the same ciphertexts. Then
users can easily verify the data integrity using the hash of the
ciphertext after downloading.

B. System Setup

The CSP holds four integers κ0, κ1, κ2, κ3 as its security
parameters. In the phase of system setup, the CSP generates
some public parameters using its security parameters as follows:
� Run the bilinear parameter generator Gen(κ0) with the

security parameter κ0 and output the tuple (p,G,GT , g, e).
� Determine the total number of KS groups η and a short

hash function SH : {0, 1}∗ → {1, . . . , η}.
� Choose a VDF V and run V .Setup(κ1) → pp with the

security parameter κ1. The input and output space of V are
X and Y, respectively.

� Choose a pseudo-random function f : N× Y → N.
� Choose four cryptographic secure hash functions: H1 :
{0, 1}∗ → G, H2 : G → {0, 1}κ2 , H3 : G → {0, 1}κ3 ,
H4 : {0, 1}∗ → X.

Then the CSP publishes these public parameters {p,G,
GT , g, e, η, pp, f, V, SH,H1, H2, H3, H4} on the blockchain

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

826 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE II
SYSTEM LOGS OF THE SYSTEM SETUP PHASE ON THE BLOCKCHAIN

and all the entities in the system can access them. Each KS is
given a unique ID by the CSP when it joins in the system. After
that, the CSP and all KSs collaborate to generate a file-to-KS
table Φ, which will be described in Section IV-C1. The CSP
and each KS group execute group secret initialization shown
in Algorithm 1 (following the design of [23]). Each KS keeps
its secret share privately and publishes its public share on the
blockchain. The collaboration of at least t KSs in a group
can recover the group secret key. Finally, the CSP publishes
the public keys of all the KS groups {pk(j)}(1≤j≤η) on the
blockchain. Table II lists the data published on the blockchain
during this phase.

C. System Modules

Here, we provide a detailed description of some important
modules in our system, including file-to-KS table generation,
key and tag generation, and group secret migration.

1) File-to-KS Table Generation: We propose a table gen-
eration module to generate a file-to-KS table fairly with the
participation of the CSP and all the available KSs in the system.
The generation process of the file-to-KS table Φ is as follows:

1) The CSP publishes DT ||T ||t||n on the blockchain, where
DT indicates the deadline time for KSs to publish their
random numbers, T is the time parameter used in the
verifiable delay function V , and (t, n) are the threshold
parameters for a KS group to share its group secret key.
Meanwhile, we require that the V.Sol’s computation time
(controlled by T) is larger than the time interval from the
time stamp of publishing information to DT .

2) The blockchain sends the table generation notification to
all the KSs in the system.

3) After receiving the notification from the blockchain, the
KS randomly chooses x ∈ Zp and publishes it on the
blockchain before DT .

4) When DT reaches, the CSP collects all the random num-
bers from the blockchain. We suppose that there areN ran-
dom numbers (represented by {x1, x2, . . . , xN} in time
order) have been published before DT and their relevant
KSs’ IDs are {ID1, ID2, . . ., IDN}.

5) The CSP aggregates all the random numbers as x =
H4(x1||x2|| · · · ||xN).

6) The CSP computes V .Sol(pp, x, T) → (y, π) and pub-
lishes (y, π) on the blockchain. All the entities in the
system can compute V .Ver(pp, x, T, y, π) to check if the
CSP honestly executed the process. If rejection happens,
the process terminates and goes back to step 1).

7) For the i-th (1 ≤ i ≤ η) KS group, the CSP gen-
erates n unique numbers {ri,1, . . ., ri,n} by itera-
tively executing f(i× n+ j, y) mod N (j = 1, 2, . . .),
where f is a pseudo-random function. Then the KSs
{IDri,1 , IDri,2 , . . ., IDri,n} are recorded as the i-th KS
group in Φ.

8) When the table Φ is generated and published by the CSP,
all the entities in the system can check whether the CSP
has honestly executed the process or not by performing
step 7) using the public f and y. If an exception happens,
the process terminates and goes back to step 1).

2) Key and Tag Generation: We propose a key and tag gen-
eration module that helps users to generate the encryption key
and tag for a file. It contains two parts: KS group selection
and blind signature. Assume that a file-to-KS table Φ has been
published on the blockchain and each KS group has shared a
secret key among its members with (t, n)-threshold. Our system
can provide multi-level protection to a file by using different
numbers of KS groups to generate the encryption key.

When a user U wants to upload a file F to the CSP with
the protection of q KS groups, he/she first performs KS group
selection as follows.

1) The user U computes the group indexes {sfi =
SH(i||F)} (1 ≤ i ≤ q).

2) The user U retrieves the group information {Φ[sfi]}
(1 ≤ i ≤ q) from the blockchain. We use Φ[sfi] =
{KSi,j} (1 ≤ j ≤ n) to represent the sfi-th KS group
in Φ.

3) Each KSi,j owns a secret share ski,j and the user U
retrieves the corresponding public share pki,j from the
blockchain.

After getting the KS groups for assisting key generation, the
user U performs blind signature with each KS group Φ[sfi] as
follows.

1) The user U chooses a random number r ∈ Zp to compute
the blind hash bf = H1(F)r of the outsourced file F and
sends sfi||bf to Φ[sfi] for signature.

2) After receiving sfi||bf , the KS KSi,j responds U with the
signature σi,j = bfski,j .

3) When receiving a signature σi,j from KSi,j , the user U
verifies it by checking

e(σi,j , g)
?
= e(bf, pki,j). (3)

4) If U has received t valid signatures from Φ[sfi] (as-
suming {σi,1, σi,2, . . . , σi,t}), it computes the Lagrange
coefficients {wi,k =

∏
1≤γ≤t,γ �=k

γ
γ−k} (1 ≤ k ≤ t) and

aggregates the signature as

σi =

(
t∏

k=1

(σi,k)
wi,k

)r−1

. (4)

When the user U obtains q aggregated signatures, he/she
can derive the encryption key keyF and file tag tagF of the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 827

outsourced file F as

keyF = H2

(
q∏

i=1

σi

)
and tagF = H3

(
q∏

i=1

σi

)
. (5)

3) Group Secret Migration: We use the group secret mi-
gration method introduced in [23] to migrate a secret key
between two KS groups. Suppose that {KS(sr)

i } (1 ≤ i ≤ n1)
is the source KS group sharing a secret key sk generated by
Algorithm 1 with (t1, n1)-threshold. Each KS(sr)

i owns a se-
cret share ski and its public share pki can be retrieved from
the blockchain. The public key pk of the source KS group
can also be retrieved from the blockchain. The target KS
group {KS(tr)

j } (1 ≤ j ≤ n2) wants to share sk with (t2, n2)-
threshold. The migration processes of the secret key sk from the
source KS group to the target KS group are as follows.

1) The CSP selects t1 honest KSs from the source group to
perform the secret migration. We assume that {KS(sr)

i }
(1 ≤ i ≤ t1) are the selected KSs.

2) Each selected KS(sr)
i generates a (t2 − 1)-degree poly-

nomial over Zp,

di(x) = bi,0 + bi,1x+ · · ·+ bi,t2−1x
t2−1, (6)

where bi,k ∈ Zp (1 ≤ k ≤ t2 − 1) are randomly selected
values and bi,0 is set as ski.

3) Each selected KS(sr)
i publishes the verification parame-

ters {gbi,k} (0 ≤ k ≤ t2 − 1) on the blockchain.
4) Each selected KS(sr)

i computes di(j) and sends di(j) to

all the target KSs {KS(tr)
j } (1 ≤ j ≤ n2) via security

channels.
5) When a target KS(tr)

j obtains t1 values, it computes the
Lagrange coefficients {w∗

i =
∏

1≤γ≤t1
γ �=i

γ
γ−i} (1 ≤ i ≤ t1)

and verifies

gdi(j) ?
=

t2−1∏
k=0

gbi,k ·j
k

, (7)

pk
?
=

t1∏
i=1

pk
w∗

i
i . (8)

If all the verifications are valid, the current KS(tr)
j notifies

other target KSs. Otherwise, the process stops and goes
back to step 1) with other t1 honest KSs in the source
group.

6) Each target KS(tr)
j rebuilds its secret share and public

share using the following equations

sk∗j =
t1∑
i=1

w∗
i · di(j), (9)

pk∗j = gsk
∗
j . (10)

After secret migration, all the target KSs share the secret
key sk with (t2, n2)-threshold, and each target KS(tr)

j holds
a new secret share sk∗j and publishes its public share pk∗j on the
blockchain. The KSs in the source group can delete their stored
secret shares.

D. Phases of Our Scheme

In this section, we present the main phases in our scheme,
including file uploading, file downloading, and KS group updat-
ing.

1) File Uploading: Suppose that a user U wants to upload
a file F with the protection of q KS groups to the cloud. The
detailed steps are as follows.

1) The user U performs key and tag generation module with
parameters F and q, obtaining the encryption key keyF
and file tag tagF .

2) The user U encrypts F using a symmetric encryp-
tion algorithm (e.g., AES) and gets the ciphertext C =
E(keyF , F).

3) The user U sends tagF to the CSP to detect duplication.
4) If the CSP detects that F has been stored, it requires the

user U to execute a PoW protocol (e.g., PoW protocol
introduced in [31]) to verify his/her file ownership. If
the PoW verification passes, the CSP adds the link of
the relevant ciphertext to U . If F has not been stored
or the PoW verification fails, the CSP requiresU to upload
the complete C.

5) The user U stores keyF , tagF and hashC = H1(C) lo-
cally and then deletes F and C.

2) File Downloading: Suppose that a user U wants to down-
load a file F from the CSP. The CSP stores the pair (tagF , C),
where tagF is the tag of F and C is the ciphertext of F . The
user U keeps keyF , tagF , and hashC of the file. The detailed
steps are described as follows.

1) The user U sends a file downloading request to the CSP
using file tag tagF .

2) The CSP checks whether U owns the target file or not
through tagF . If U owns the ciphertext C identified by
tagF , the CSP sends C to U .

3) After receiving C, the user U verifies its integrity by
checking

H1(C)
?
= hashC . (11)

4) If the verification passes, the user U can recover the
original file F = D(keyF , C).

3) KS Group Updating: To provide long-term security, our
system periodically updates KS groups. Through this process,
new KSs can be integrated into the system and the offline KSs
can be removed. We introduce α as an epoch identifier and
Φ(α) means the file-to-KS table in α-epoch. Then the KS group
updating is described as follows.

1) The CSP and all available KSs execute the file-to-KS table
generation module introduced in Section IV-C1 to gener-
ate a new table Φ(α+1). Note that the KS group number
η remains unchanged after system setup but threshold
parameters can be changed in each epoch during this
process.

2) The secret keys are migrated between the KS groups in
Φ(α) and Φ(α+1). Specifically, each KS group pair Φ[i](α)

andΦ[i](α+1) (1 ≤ i ≤ η) runs the group secret migration
module in Section IV-C3 to migrate the group secret key.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

828 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE III
SYSTEM LOGS OF THE KS GROUP UPDATING PHASE ON THE BLOCKCHAIN

Fig. 2. Illustration of KS group updating. A new file-to-KS table Φ(α+1) is
generated to replace the old one after updating.

After migrating all the group secret keys to the new groups in
Φ(α+1), the system uses the new table to replace the old table
Φ(α) to handle the file outsourcing operations. Fig. 2 shows the
illustration of KS group updating. All the η group secret keys
can be migrated with parallel processing. Table III lists the data
published on the blockchain during this phase.

E. Disscussions

Our scheme utilizes multiple KSs to assist key and tag gener-
ation, which can achieve offline BFA resistance as well as avoid
the single-point-of-failure issue. By designing a file-related KS
group selection mechanism, the identical files of different users
can be encrypted with the assistance of the same KS group,
which ensures the effectiveness of cross-user deduplication. Our
scheme updates KS group regularly to support the dynamic
change of KSs and achieve long-term security for the ciphertexts
stored on the cloud. Besides, since each KS group holds a

different and randomly generated secret key, the leakage at a
group of KSs degrades the security level of only the ciphertexts
related to the current group, achieving tolerance of partial KSs
leakage.

Our scheme can also support block-level deduplication. In our
design, we use the short hash value of a file to determine the KS
group. In the context of block-level deduplication, users need to
use the short hash value of a file block to determine the KS group.
Block-level deduplication requires larger communication and
computational costs in comparison to file-level deduplication.
This is because a user needs to perform server-aided MLE key
generation for each file block in block-level deduplication. In
contrast, file-level deduplication requires the user to perform
server-aided MLE key generation for each file.

Our scheme sets the same threshold parameters for all KS
groups within one epoch for simplicity. To enhance the system’s
adaptability to the dynamic change of KSs, the system allows
changing the threshold parameters at the start of each epoch.
Note that our system also allows choosing different threshold
parameters for different KS groups within one epoch. But this
may result in additional blockchain storage costs to record these
different threshold parameters.

V. CORRECTNESS AND SECURITY ANALYSIS

In this section, we prove the correctness of our scheme and
justify its security.

A. Correctness Guarantee

1) Correctness of KS Group Updating: Here, we prove that
the group updating will not change the group secret keys. We
consider the migration of secret key sk between two groups and
assume that the selected source KSs are {KS(sr)

i } (1 ≤ i ≤ t1),

and the target KSs are {KS(tr)
j } (1 ≤ j ≤ t2). The secret share

of KS(sr)
i is ski and the that of KS(tr)

j is sk∗j . If ski and sk∗j are
valid, we can deduce that

sk =

t1∏
i=1

wi · ski

=

t1∏
i=1

wi ·
⎡
⎣ t2∏
j=1

w∗
j · di(j)

⎤
⎦ =

t1∏
i=1

t2∏
j=1

wi · w∗
j · di(j)

=

t2∏
j=1

w∗
j · sk∗j , (12)

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 829

where {wi} and {w∗
j} are both Lagrange coefficients. The above

equations demonstrate that both the selected source KSs and
target KSs share the same group secret key sk, proving the
correctness of the secret migration process.

2) Correctness of Deduplication: We prove that the cipher-
texts of the same files can be deduplicated. We have proved that
the KS group updating will not change the group secret keys.
Then we only need to prove the deduplication in the same epoch.

Suppose that users UA and UB want to outsource
their files with the protection of q KS groups. We use
(rA, FA, tagA, keyA, CA) and (rB , FB , tagB , keyB , CB) to
represent the random value, outsourced file, file tag, encryption
key, and ciphertext generated by users UA and UB , respectively.
Besides, we use {skAi,j} and {skBi,j}, {σA

i } and {σB
i }, {wA

i,j}
and {wB

i,j} (1 ≤ i ≤ q, 1 ≤ j ≤ t) to indicate group secret keys,
signatures and Lagrange coefficients relevant to FA and FB ,
respectively. Since our scheme uses the file-related information
to select KS groups, users UA and UB can determine the same q
KS groups when FA = FB , which indicates that skAi,j = skBi,j .
From (4), we can deduce that

q∏
i=1

σA
i =

q∏
i=1

⎡
⎣ t∏
j=1

[
(H1(FA)

rA)sk
A
i,j

]wA
i,j

⎤
⎦
r−1
A

=

q∏
i=1

t∏
j=1

H1(FA)
skA

i,j ·wA
i,j

=

q∏
i=1

t∏
j=1

H1(FB)
skB

i,j ·wB
i,j

=

q∏
i=1

⎡
⎣ t∏
j=1

[
(H1(FB)

rB)sk
B
i,j

]wB
i,j

⎤
⎦
r−1
B

=

q∏
i=1

σB
i . (13)

Then from (5), we can further get that

keyA = H2

(
q∏

i=1

σA
i

)
= H2

(
q∏

i=1

σB
i

)
= keyB , (14)

tagA = H3

(
q∏

i=1

σA
i

)
= H3

(
q∏

i=1

σB
i

)
= tagB , (15)

CA = E(keyA, FA) = E(keyB , FB) = CB . (16)

The above equations prove that different users can obtain the
same ciphertexts when they outsource an identical file with the
protection of same number of KS group. Then the CSP can
perform deduplication in the ciphertext-domain.

B. Security Guarantee

1) Data Confidentiality: The contents of user files should be
kept secret from other entities. We analyzed data confidentiality
in several attack scenarios depending on the type of adversaries.

Adversarial KS: Since KSs with insufficient security protec-
tion are easy to be breached, a KS may have security vulnerabil-
ities from both inside and outside. We now consider the security
issues caused by adversarial (compromised) KS. The adversarial
KS can launch security attacks using its obtained information
during key and tag generation. At this stage, the KS can obtain
sf and bf , where sf is a short hash of F and bf is a blind hash
value ofF . The short hash value exposes little information about
the file [32]. Besides, our scheme is based on (t, n)-threshold
blind signature, and thus at least t KSs are required to obtain the
file’s hash H1(F) from bf , as discussed in [33]. As a result, the
adversarial KS cannot get useful information of a file using its
accessible information.

Adversarial CSP: The CSP has access to users’ ciphertexts
and tags. We use σ, tagF , keyF and C to represent the server-
aided signature, file tag, encryption key, and ciphertext of F .
Because tagF is generated by a secure hash operation H3(σ),
it is infeasible for CSP to obtain the signature σ from the
file tag tagF . This guarantees that the encryption key keyF
cannot be deduced from tagF . Besides, since the symmetric
encryption algorithm used is semantically secure, the ciphertext
C is indistinguishable from random data. Therefore, the CSP
cannot get any useful information from C directly.

We then consider the offline BFA launched by the adversarial
CSP to the ciphertextC. We suppose that the CSP has built a dic-
tionary �F = {F1, F2, · · · } for guessing the plaintext F of C. To
launch such an attack, the CSP needs to generate the valid cipher-
texts (or tags) of files in �F . If a ciphertext generated fromFi ∈ �F
is identical to C, the CSP can assume that Fi = F with high
probability. Suppose that pk = gsk is the public key correspond-
ing to the secret key of a KS group, the CSP cannot compute the
group secret key sk from the public key pk in polynomial time
because this is a DLP problem [34]. Without sk, the CSP cannot
compute the encryption key keyFi

= H2(H1(Fi)
sk) and file tag

tagFi
= H3(H1(Fi)

sk). Therefore, the CSP can compare nei-
ther the consistency of C and E(keyFi

, Fi) nor the consistency
of tagF and tagFi

in polynomial time.
Collusion Attacks: We next consider the collusion attacks

launched by the CSP and compromised KS(s), discussed in
Section II-B. For simplicity, we assume that each KS group
shares a secret key with (t, n)-threshold and the users upload
files with the protection of q = 1 KS group. Note that t can
enlarge with the expansion of the system and the users’ data are
more secure with greater t and q.

First, we consider that the CSP attempts to control the file-to-
KS table generation with the compromised KS(s). The file-to-KS
table Φ is generated by a pseudo-random function f with the
seed produced by solving the V .Sol. The computation of V .Sol
is time-consuming and the time cost is adjustable by a public
time parameter T . We require that T must make the time cost
of solving V .Sol greater than the random value commitment
interval controlled by DT . Meanwhile, the input x of V .Sol
is aggregated from all KSs’ random values through a secure
hash function. As a consequence, even the last KS submitting
the random value cannot disturb x in line with its interests by
real-time computing. In addition, the KSs in the system can
use V .Ver to check whether the CSP has honestly executed the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

830 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

pseudo random number generator. From the analysis above, any
entity cannot control the generation of Φ as long as one honest
KS exists in the system.

Second, we consider that the CSP and less than t compromised
KSs of a KS group aim to launch offline BFA to a group-related
file. Considering that our scheme executes KS group updating
to support dynamic change of KSs. Then the worst case is that
t− 1 KS(s) in that KS group are compromised from 0-epoch to
τ -epoch. Note that the group secret keys keeps the same during
the KS group updating. We denote the group secret key relates to
F as sk and the shares of these compromised KSs in all the τ + 1

epochs as {sk(α)j } (0 ≤ α ≤ τ, 1 ≤ j ≤ t− 1). The CSP needs
to enumerate the signature σ of each file in an attack dictionary
�F . For a fileFi ∈ �F , the CSP expects to compute σ = H1(Fi)

sk

but it can build only τ + 1 equations denoted as

σ =
t∏

j=1

(H1(Fi)
sk

(α)
j)wj α = 0, 1, . . . τ. (17)

There are τ + 2 unknown variables {σ, sk(0)t , . . . , sk
(τ)
t }, but

only τ + 1 equations. Then the CSP cannot get the unique
solution for σ, which means it cannot launch offline BFA.

2) Data Integrity: In our scheme, the data integrity indicates
that the scheme can resist the DFA launched by the initial
uploader of a file, and a user can verify the integrity of his/her
files downloaded from the CSP, discussed in Section II-C.

For the DFA, when a subsequent uploader uploads a file F ,
the CSP requires he/she to execute the PoW protocol if the cloud
detects that tagF has already existed in the cloud. Since the PoW
proofs can determine whether two files are the same or not, the
CSP treats the uploaded file as a new file if the PoW verification
fails. By this way, the DFA launched by the initial uploader is
ineffective.

To verify the integrity of the downloaded file, our scheme
requires the user to save the hash value hashC of the outsourced
ciphertext and compare it with the hash value of the downloaded
ciphertext C. Thus, the integrity of the file can be achieved in
our scheme.

VI. PERFORMANCE EVALUATION

A. Theoretical Analysis

1) Computation Cost: Let he, hm, ha, hmp, hh, hb, hp, hec,
hdc denote the computation cost of an exponentiation operation
over G, a multiplication operation over G, an addition operation
over Zp, a multiplication operation over Zp, a hash operation,
a bilinear map operation, a PoW proof generation operation, a
symmetric encryption operation, and a symmetric decryption
operation, respectively. We consider the situation that each file
is protected by one KS group, which is the most common case.
Since the CSP has large computation resources, we consider the
cost of only user and KS.

System Setup: The computation cost of KSs in table genera-
tion can be ignored and we mainly analyze the computation cost
of a KS in one (t, n)-threshold group secret initialization. Each
KS first computes the verification parameters with a cost of the.

We do not count the cost of computing {xi} in polynomial as
they can be computed in advance. Then the KS computes the
polynomial with a cost of (nt− n)hmp + (nt− n)ha. The KS
checks the validity of other n− 1 KSs’ values with a cost of
(nt+ n)he + (nt− n)hm. If all the validation equations hold,
the KS obtains its secret share and public share with a cost
of (n− 1)ha + he. Overall, it spends a cost of (nt− 1)ha +
(nt− n)hmp + (nt− n)hm + (nt+ n+ t)he for each KS to
generate a shared secret key. Users have no computation cost at
this phase.

File Uploading: The user first finds the target KS group by
a short hash operation with a cost of hh. Then the user blinds
the message with a cost of hh + he and sends it to the selected
KSs. We suppose that the group secret keys are shared with
(t, n)-threshold. After receiving the signatures, the user checks
their validity with a cost of 2thb. Once the threshold parameter
n is determined, the Lagrange coefficients {wk} (1 ≤ k ≤ n)
can be computed in advance. Then if all signatures are valid,
the user recovers the final signatures with a cost of (t− 1)hm +
(t+ 1)he. By performing two hash operations, the user derives
the encryption key and file tag with a cost of 2hh. The time cost
for file encryption and ciphertext hash computation is hec + hh.
If the file has already been uploaded to the CSP, additional PoW
verification is performed with a cost of hp. Overall, it spends
a total cost of 5hh + (t− 1)hm + (t+ 2)he + 2thb + hec for
an initial uploader and a total cost of 5hh + (t− 1)hm + (t+
2)he + 2thb + hec + hp for a subsequent uploader to upload a
file with (t, n)-threshold. It spends a cost of he for each selected
KS to sign user’s request.

File Downloading: During the file downloading, a user needs
to perform only a hash operation and a symmetric decryption
operation to verify the integrity of the file and obtain the original
file with a cost of hh + hdc. KSs have no computation cost at
this phase.

KS Group Updating: We mainly focus on the computation
cost of one secret migration from (t1, n1)-threshold to (t2, n2)-
threshold. There are two kinds of KSs in the secret migration:
the selected source KS and the target KS. A source KS needs
a cost of t2he to compute the verification parameters. We do
not count the cost of computing {xi} in polynomial and {wk}
(1 ≤ k ≤ n2) as they can be computed in advance. Thus, a
source KS takes a cost of (n2t2 − n2)ha + (n2t2 − n2)hmp

to compute the polynomial. A target KS spends a cost of
(t1t2 − 1)hm + (t1t2 + 2t1)he to check the validity of these
values. If all the validation equations hold, a target KS computes
its share with a cost of (t1 − 1)ha + t1hmp + he. Overall, it
consumes a cost of (n2t2 − n2)ha + (n2t2 − n2)hmp + t2he

for a selected source KS, and a cost of (t1 − 1)ha + t1hmp +
(t1t2 − 1)hm + (t1t2 + 2t1 + 1)he for a target KS to migrate a
shared secret key.

2) Communication Cost: Let |i|, |G|, |Zp|, |y|, |π|, |tag|, |
PoW|, |C| denote the bit length of an integer, an element in group
G, an element in group Zp, a result of VDF, a proof of VDF, a
file tag, a proof of PoW verification, and ciphertext, respectively.
We suppose that the KS identifiers, KS group indexes, and
notifications in table generation are all integers. Besides, we

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 831

also consider the situation that each file is protected by one KS
group, because this is the most common case. We consider the
communication cost of only user and KS.

System Setup: During the table generation, a KS publishes a
random value and gets the result of VDF with N |Zp|+ |y|+
|π|+ 4|i| bits (N is the KS number). Then we analyze the
cost of a KS during a single (t, n)-threshold secret initialization
process. It spends t|G| bits for a KS to publish the verification
parameters and (n− 1)|Zp| bits to send the polynomial values.
After receiving other KSs’ values and verification parameters
with (tn− t)|G|+ (n− 1)|Zp| bits, the KS generates its public
share and publishes it with |G| bits. Overall, it consumes a KS
(2n− 2)|Zp|+ (tn+ 1)|G| bits in secret initialization. Users
have no communication cost at this phase.

File Uploading: During the file uploading, a user sends the
group index of the file to a blockchain node with |i| bits. After
obtaining the KS group information with n|i|+ n|G| bits, the
user performs blind signature with t|i|+ 2t|G| bits (t and n are
the parameters of (t, n)-threshold cryptography). Then a user
sends a file tag to the CSP for duplication detection with |tag|
bits. If the file has been uploaded, the PoW protocol is executed
with |PoW| bits. Otherwise, the user sends the ciphertext with
|C| bits to the CSP.

File Downloading: During the file downloading process, a
user sends the file tag to the CSP and receives the ciphertext
with |tag|+ |C| bits.

KS Group Updating: The communication cost of a KS in
table generation is discussed in system setup and we analyze
the cost of one secret migration process from (t1, n1)-threshold
to (t2, n2)-threshold. There are two kinds of KSs in secret
migration: selected source KS and target KS. A selected source
KS spends t2|G|+ n2|Zp| bits to publish the verification param-
eters and send the polynomial values, while a target KS spends
(t1t2 + t1 + 1)|G|+ t1|Zp| bits to receive values and publish
public share. Users have no communication cost at this stage.

3) Storage Cost: Let |tag|, |key|, |hash|, |C| denote the bit
length of a file tag, a file key, a ciphertext hash, and a ciphertext,
respectively. When uploading a non-duplicated file, the storage
cost for the CSP is |C|+ |tag| bits and for a user is |hash|+
|key|+ |tag| bits. When uploading an existing file, the CSP only
adds a link to the user’s account and the storage cost of a user is
the same as that for a non-duplicated file.

B. Empirical Evaluation

1) Setup: We implement our scheme using C++ program-
ming language, PBC library 0.5.14 version, and OpenSSL
library 1.1.1 version. The blockchain prototype is based on
Ethereum Geth 1.10.26 [35]. The experiments are run on a
virtual machine with CentOS 7.6 system, two cores of AMD
EPYC 7K62 48-Core Processor with 4 GB RAM. We instantiate
bilinear pairing with κ0 = 512, VDF proposed by Pietrzak [36]
with κ1 = 100 (the bit length of RSA modulus is 2048), Merkel
tree-based PoW [31] with 1 KB block size. We set κ2 = 128,
κ3 = 512 and we use the AES-128 as the encryption algorithm,
SHA-512 as the hash function. We set the used KS group number
q = 1 in key and tag generation.

Fig. 3. Computation time cost of a user for uploading different file numbers.
Time cost for (a) different file sizes and (b) different threshold parameters t.

Fig. 4. Computation cost of a user for file downloading.

Fig. 5. Communication cost of a user for file uploading and downloading.

2) Evaluation on Off-Chain Cost: We examine the off-chain
cost of our scheme by testing computation, communication, and
storage cost when performing different phases in the scheme.

Computation Cost: Fig. 3 shows the uploading time cost of
a user for different file numbers. Fig. 3(a) shows the cost for
different file sizes with threshold parameter t = 10. The opera-
tions include file read, key and tag generation, and encryption.
It shows that the time cost is linear with the file numbers and a
larger file needs more time. Fig. 3(b) shows the cost for different
t with 1 MB file size. It shows that the time cost is also affected
by t because a larger t results in more time for key generation.

Fig. 4 shows downloading time cost of a user for different
file numbers and sizes. The operations include integrity check
and file decryption. It shows that the time cost is linear with file
numbers and a larger file needs more time.

Communication Cost: Fig. 5 shows the communication cost
for a user to upload and download files with 1 MB file size, 0.7
deduplication ratio and 1% challenged blocks. The uploading

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

832 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Fig. 6. Storage cost of the CSP and user.

cost includes the key and tag generation, and PoW verification.
The communication cost is linear with the file numbers. Larger
threshold parameters require the user to cost more for commu-
nicating with more KSs.

Storage Cost: Fig. 6 shows the storage cost on the CSP and
each user. We count only the extra storage cost of the CSP and
do not include the ciphertexts. For each outsourced file, a user
stores the key, tag, and ciphertext hash. The storage cost is linear
with the file numbers. Obviously, a higher duplication ratio μ
can save more space for the CSP.

3) Evaluation on On-Chain Cost: We examine the on-chain
cost of our scheme by testing the amount of gas cost by per-
forming different phases. The gas represents the computation
and storage consumption of EVM in Ethereum’s ecosystem.

File-to-KS Table Generation: Fig. 7(a) shows the gas cost for
different KS numbers and group numbers η. The gas cost is
mainly caused by publishing the random numbers, VDF results,
and file-to-KS table. In the simulation, we set the VDF parameter
T = 30. The gas cost is linear with the KS numbers because each
KS publishes a random value on the blockchain. Meanwhile, a
larger η produces a larger table and thus causes a higher gas cost.

Group Secret Initialization: We simulated one group secret
initialization with (t, n)-threshold. Each KS publishes its veri-
fication parameters on the blockchain. Fig. 7(b) shows the gas
cost regarding the (t, n)-threshold. The gas cost is linear with
n and a bigger t results in a higher gas cost. Note that η secret
keys are initialized during the system setup.

Group Secret Migration: We simulated one group secret mi-
gration from (t1, n1)-threshold to (t2, n2)-threshold. Fig. 7(c)
shows the gas cost regarding t1 and t2. The gas cost is linear
with t1 and a bigger t2 results in a higher gas cost. There are η
secret keys are migrated during the KS group updating.

VII. RELATE WORK

Data deduplication has been widely used in cloud storage to
save storage space. However, considering the privacy issues, a
user may encrypt his/her data and outsources the ciphertexts
to the CSP. The traditional symmetric encryption algorithms
cannot achieve cross-user deduplication over encrypted data,
because each user holds an encryption key and different users
encrypt an identical files into different ciphertexts. CE tech-
nique [9] can well solve this issue by deriving the encryption
key from the data itself such that different users can encrypt an

identical files to be the same ciphertexts and then the CSP can
perform cross-user deduplication. Bellare et al. [10] formalized
this kind of encryption algorithm as a new cryptographic prim-
itive called MLE with formal security definition. Subsequently,
many secure deduplication schemes based on MLE [14], [15],
[37], [38], [39], [40] have been proposed for specific application
scenarios. Because the encryption key in MLE is determined by
the file itself, the MLE loses semantic security and the ciphertext
has security risks under offline BFA [17].

There have been two kinds of research efforts aiming at
resisting the private threats caused by offline BFA in secure
deduplication. The first kind introduces additional KS to assist
in generating the encryption key. The DupLESS proposed by
Keelveedhi et al. [17] is the first such scheme and it deploys
a KS with a secret key to assist in generating the encryption
key. Then the encryption key depends on both the data itself and
the secret key kept by the KS, achieving a high ability to resist
offline BFA. The second kind does not use additional KSs and the
first such scheme was proposed by Liu et al. [41]. To achieve
ciphertext deduplication, the system requires that at least one
previous data uploader should be online to provide assistance
when a new uploader uploads a file that already exists on the
cloud. This kind of secure deduplication scheme has a very strict
assumption that the previous uploader needs to assist the new
uploader, which is difficult to deploy on existing cloud storage
systems.

Due to the high compatibility with existing cloud storage
systems, many research efforts are devoted to designing secure
deduplication schemes with the assistance of KS [19], [21], [22],
[23]. Duan et al. [19] improved DupLESS by introducing a
distributed key generation protocol to avoid the single-point-
of-failure issue. The secret key is shared by a group of KSs
using threshold cryptography. However, it lacks scalability to
deploy more KSs for handling the possible increasing storage
requirements in a large-scale cloud system. Shin et al. [21]
proposed a decentralized secure deduplication scheme where
multiple KS groups exist in the system. Each KS group shares
a different secret key. This scheme allows CSP to detect the
duplicated ciphertexts encrypted with the assistance of different
KS groups. But it cannot support the dynamic change of KSs
and the ciphertext size is linearly related to the number of KS
groups. Yang et al. [22] solved these issues but brought the
single-point-of-failure issue because a single KS is deployed
in each KS group. Zhang et al. [23] developed a proactivization
mechanism to support the dynamic change of KSs to provide
long-term security.

We compare the functionality and security of different server-
aided deduplication schemes over encrypted data in Table IV.
Note that all the schemes are based on server-aided MLE and
have the ability to resist offline BFA. The schemes in [17], [22]
cannot resist the single-point-of-failure issue because a single
KS is deployed in each group. The schemes in [17], [19], [21]
do not support the dynamic change of KSs. The schemes in [17],
[19], [21], [22] cannot sustain long-term security for ciphertexts
since the KS group settings are fixed and a sophisticated adver-
sary may corrupt some fixed KSs with long enough time [24].
The schemes in [17], [19], [21], [22], [23] do not have tolerance

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 833

Fig. 7. Gas cost of a client for file uploading. (a) File-to-KS table generation; (b) group secret initialization; (c) group secret migration.

TABLE IV
FUNCTIONALITY AND SECURITY COMPARISONS OF DIFFERENT SERVER-AIDED DEDUPLICATION SCHEMES OVER ENCRYPTED DATA

of partial KSs leakage and the secret key leak from a KS group
will cause insecure of all the stored ciphertexts. Specifically,
the schemes in [17], [19] deploy one KS or a fixed KS group
and the leakage of the KS (or KS group) secret key affects
all ciphertexts. For the schemes in [21], [22], special detection
mechanisms have been designed to detect the duplication of
encrypted files from different KS groups, however, also expose
the connections between the secret keys of different KS groups.
Thus, the leakage of one KS group’s secret key may also result
in insecure of the ciphertexts encrypted with the assistance of
other KS groups. The scheme in [23] also faces the problem
of partial KSs leakage, as it treated all the KSs as one group.
Besides, none of these schemes support selectable multi-level
protection for different files. Our design is the first scheme that
considers and solves all the above issues.

VIII. CONCLUSION

In this paper, we design, analyze, and evaluate a new server-
aided encrypted data deduplication scheme over large-scale
cloud storage, which is the first solution to support both tolerance
of partial KSs leakage and dynamic change of KSs. Our scheme
divides all the KSs into groups and then develops a file-related
group selection mechanism to select the KS group for assisting
encryption key generation such that the identical files can be
encrypted to the exactly same ciphertexts. To support the dy-
namic change of KSs, our scheme leverages the blockchain to
design a fair KS group updating strategy and uses a migration
mechanism to securely migrate the secret key from the old KS
group to the new one. As a result, the identical files uploaded

before and after the KS group updating can be detected as
duplicated files. Meanwhile, the secret keys of different KS
groups are completely irrelevant. Then the leakage at a group
of KSs can affect only the ciphertexts related to that group.
Besides, our design provides users the feasibility to use mul-
tiple KS groups to encrypt files as well as achieving cross-user
deduplication. We formally verify the correctness of our scheme
and justify its security. Both theoretical and experimental eval-
uations are carried out to demonstrate its modest performance
overhead.

REFERENCES

[1] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the infras-
tructure of cloud computing,” in Proc. Int. Conf. Intell. Comput. Cogn.
Informat., 2010, pp. 380–383.

[2] J. Gants, “Digital universe decade-are you ready?,” 2010. [Online]. Avail-
able: http://idcdocserv.com/925

[3] H. Biggar, “Experiencing data de-duplication: Improving efficiency and
reducing capacity requirements,” 2007. [Online]. Available: http://media.
zones.com/images/pdf/ss_backup_wp_09.pdf

[4] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. S. Shen, “Providing task allocation
and secure deduplication for mobile crowdsensing via fog computing,”
IEEE Trans. Dependable Secure Comput., vol. 17, no. 3, pp. 581–594,
May/Jun. 2020.

[5] Y. Zhang et al., “Improving restore performance for in-line backup system
combining deduplication and delta compression,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 10, pp. 2302–2314, Oct. 2020.

[6] D. Quick and K.-K. R. Choo, “Google drive: Forensic analysis of data
remnants,” J. Netw. Comput. Appl., vol. 40, pp. 179–193, 2014.

[7] A. Dropbox, “A file-storage and sharing service,” 2016. [Online]. Avail-
able: https://www.dropbox.com

[8] Y. Zhang, Y. Mao, M. Xu, F. Xu, and S. Zhong, “Towards thwart-
ing template side-channel attacks in secure cloud deduplications,” IEEE
Trans. Dependable Secure Comput., vol. 18, no. 3, pp. 1008–1018,
May/Jun. 2021.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

http://idcdocserv.com/925
http://media.zones.com/images/pdf/ss_backup_wp_09.pdf
http://media.zones.com/images/pdf/ss_backup_wp_09.pdf
https://www.dropbox.com

834 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

[9] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer, “Re-
claiming space from duplicate files in a serverless distributed file system,”
in Proc. 22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 617–624.

[10] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryption
and secure deduplication,” in Proc. 32nd Annu. Int. Conf. Theory Appl.
Cryptographic Techn., 2013, pp. 296–312.

[11] M. Li, C. Qin, J. Li, and P. P. Lee, “CDStore: Toward reliable, secure,
and cost-efficient cloud storage via convergent dispersal,” IEEE Internet
Comput., vol. 20, no. 3, pp. 45–53, May/Jun. 2016.

[12] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “HealthDep:
An efficient and secure deduplication scheme for cloud-assisted ehealth
systems,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4101–4112,
Sep. 2018.

[13] J. Li, P. P. Lee, Y. Ren, and X. Zhang, “Metadedup: Deduplicating metadata
in encrypted deduplication via indirection,” in Proc. 35th Symp. Mass
Storage Syst. Technol., 2019, pp. 269–281.

[14] X. Gao et al., “Achieving low-entropy secure cloud data auditing with file
and authenticator deduplication,” Inf. Sci., vol. 546, pp. 177–191, 2021.

[15] G. Tian et al., “Blockchain-based secure deduplication and shared audit-
ing in decentralized storage,” IEEE Trans. Dependable Secure Comput.,
vol. 19, no. 6, pp. 3941–3954, Nov./Dec. 2022.

[16] B. Zhang, H. Cui, Y. Chen, X. Liu, Z. Yu, and B. Guo, “Enabling secure
deduplication in encrypted decentralized storage,” in Proc. 16th Int. Conf.
Netw. Syst. Secur., 2022, pp. 459–475.

[17] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dupless: Server-aided
encryption for deduplicated storage,” in Proc. 22nd USENIX Secur. Symp.,
2013, pp. 179–194.

[18] D. Chaum, “Blind signature system,” in Proc. Adv. Cryptol., 1984, pp. 153–
153.

[19] Y. Duan, “Distributed key generation for encrypted deduplication: Achiev-
ing the strongest privacy,” in Proc. 6th Ed. ACM Workshop Cloud Comput.
Secur., 2014, pp. 57–68.

[20] Y. G. Desmedt, “Threshold cryptography,” Eur. Trans. Telecommun., vol. 5,
no. 4, pp. 449–458, 1994.

[21] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-aided encryption
for secure deduplication in cloud storage,” IEEE Trans. Services Comput.,
vol. 13, no. 6, pp. 1021–1033, Nov./Dec. 2020.

[22] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani, “Achieving
efficient and privacy-preserving multi-domain Big Data deduplication in
cloud,” IEEE Trans. Services Comput., vol. 14, no. 5, pp. 1292–1305,
Sep./Oct. 2021.

[23] Y. Zhang, C. Xu, N. Cheng, and X. Shen, “Secure password-protected
encryption key for deduplicated cloud storage systems,” IEEE Trans. De-
pendable Secure Comput., vol. 19, no. 4, pp. 2789–2806, Jul./Aug. 2022.

[24] Y. Zhang, C. Xu, J. Ni, H. Li, and X. S. Shen, “Blockchain-assisted public-
key encryption with keyword search against keyword guessing attacks for
cloud storage,” IEEE Trans. Cloud Comput., vol. 9, no. 4, pp. 1335–1348,
Fourth Quarter, 2021.

[25] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang,
“The blockchain as a decentralized security framework [future di-
rections],” IEEE Consum. Electron. Mag., vol. 7, no. 2, pp. 18–21,
Mar. 2018.

[26] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani, “Achieving
efficient secure deduplication with user-defined access control in cloud,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 1, pp. 591–606,
Jan./Feb. 2022.

[27] S. Zhang, S. Ray, R. Lu, Y. Guan, Y. Zheng, and J. Shao, “Efficient and
privacy-preserving spatial keyword similarity query over encrypted data,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 5, pp. 3770–3786,
Sep./Oct. 2023, doi: 10.1109/TDSC.2022.3227141.

[28] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Proc. 7th Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2001,
pp. 514–532.

[29] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[30] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay functions,”
in Proc. 38th Annu. Int. Cryptol. Conf., 2018, pp. 757–788.

[31] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. 18th ACM Conf. Comput.
Commun. Secur., 2011, pp. 491–500.

[32] Z. Pooranian, M. Shojafar, S. Garg, R. Taheri, and R. Tafazolli, “LEVER:
Secure deduplicated cloud storage with encrypted two-party interactions
in cyber–physical systems,” IEEE Trans. Ind. Informat., vol. 17, no. 8,
pp. 5759–5768, Aug. 2021.

[33] A. Boldyreva, “Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme,” in Proc. 6th Int.
Workshop Public Key Cryptogr., 2003, pp. 31–46.

[34] D. R. Stinson, Cryptography - Theory and Practice. Boca Raton, FL, USA:
CRC Press, 1995.

[35] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[36] K. Pietrzak, “Simple verifiable delay functions,” in Proc. 10th Innovations
Theor. Comput. Sci. Conf., 2019, pp. 60:1–60:15.

[37] S. Li, C. Xu, Y. Zhang, Y. Du, and K. Chen, “Blockchain-based transparent
integrity auditing and encrypted deduplication for cloud storage,” IEEE
Trans. Services Comput., vol. 16, no. 1, pp. 134–146, Jan./Feb. 2023.

[38] M. Song, Z. Hua, Y. Zheng, H. Huang, and X. Jia, “Blockchain-based
deduplication and integrity auditing over encrypted cloud storage,” IEEE
Trans. Dependable Secure Comput., vol. 20, no. 6, pp. 4928–4945,
Nov./Dec. 2023, doi: 10.1109/TDSC.2023.3237221.

[39] H. Yuan, X. Chen, J. Li, T. Jiang, J. Wang, and R. H. Deng, “Secure cloud
data deduplication with efficient re-encryption,” IEEE Trans. Services
Comput., vol. 15, no. 1, pp. 442–456, Jan./Feb. 2022.

[40] H. Kwon, C. Hahn, K. Kang, and J. Hur, “Secure deduplication with
reliable and revocable key management in fog computing,” Peer-to-Peer
Netw. Appl., vol. 12, pp. 850–864, 2019.

[41] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted data
without additional independent servers,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., 2015, pp. 874–885.

Zhongyun Hua (Senior Member, IEEE) received the
BS degree in software engineering from Chongqing
University, Chongqing, China, in 2011, and the MS
and PhD degrees in software engineering from the
University of Macau, Macau, China, in 2013 and
2016, respectively. He is currently an Associate Pro-
fessor with the School of Computer Science and
Technology, Harbin Institute of Technology, Shen-
zhen, China. His works have appeared in prestigious
venues, such as the IEEE Transactions on Depend-
able and Secure Computing, IEEE Transactions on

Image Processing, IEEE Transactions on Signal Processing, and ACM Multi-
media. He has been recognized as ‘Highly Cited researcher 2023’ and ‘Highly
Cited researcher 2022’. His current research interests include focused on chaotic
system, multimedia security, and secure cloud computing. He has published
about eighty papers on the subject, receiving more than 5,900 citations.

Yufei Yao received the BE degree in computer science
from the Harbin Institute of Technology, Shenzhen,
in 2022. He is currently working toward the ME
degree with the Department of Electronic Informa-
tion, Harbin Institute of Technology, Shenzhen. His
research interests include security and privacy re-
lated to cloud computing, applied cryptography, and
blockchain.

Mingyang Song received the BE and ME degrees
in software engineering from Sun Yat-sen University,
Guangzhou, China, in 2019 and 2021, respectively.
He is currently working toward the EngD degree with
the Department of Electronic Information, Harbin
Institute of Technology, Shenzhen. His research in-
terests include security and privacy related to cloud
computing, applied cryptography, and blockchain.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TDSC.2022.3227141
https://dx.doi.org/10.1109/TDSC.2023.3237221

HUA et al.: BLOCKCHAIN-ASSISTED SECURE DEDUPLICATION FOR LARGE-SCALE CLOUD STORAGE SERVICE 835

Yifeng Zheng received the PhD degree in computer
science from the City University of Hong Kong, Hong
Kong, in 2019. He is an Assistant Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China. He
worked as a postdoc with the Commonwealth Scien-
tific and Industrial Research Organization (CSIRO),
Australia and City University of Hong Kong. His
work has appeared in prestigious venues, such as
ESORICS, DSN, ACM AsiaCCS, IEEE INFOCOM,
IEEE ICDCS, the IEEE Transactions on Dependable

and Secure Computing, and IEEE Transactions on Information Forensics and
Security. He received the Best Paper Award in the European Symposium on
Research in Computer Security (ESORICS) 2021. His current research interests
are focused on security and privacy related to cloud computing, IoT, machine
learning, and multimedia.

Yushu Zhang received the BS degree from the School
of Science, North University of China, Taiyuan,
China, in 2010, and the PhD degree from the Col-
lege of Computer Science, Chongqing University,
Chongqing, China, in 2014. He held various research
positions with the City University of Hong Kong,
Southwest University, the University of Macau, and
Deakin University. He is currently a professor with
the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics,
China. He has authored or coauthored more than 100

research peer-reviewed journal and conference papers. His research interests
include multimedia security, artificial intelligence, and blockchain. He is an
associate editors for the Information Sciences and Signal Processing.

Cong Wang (Fellow, IEEE) is currently a professor
with the Department of Computer Science, City Uni-
versity of Hong Kong. His research interests include
data and network security, blockchain and decentral-
ized applications, and privacy-enhancing technolo-
gies. He has been one of the founding members of
the Young Academy of Sciences of Hong Kong since
2017, and has been conferred the RGC research fel-
low in 2021. He received the Outstanding Researcher
Award (junior faculty) in 2019, the Outstanding Su-
pervisor Award in 2017 and the President’s awards in

2019 and 2016, all from the City University of Hong Kong. He is a co-recipient
of the Best Paper Award of IEEE ICDCS 2020, ICPADS 2018, MSN 2015,
Best Student Paper Award of IEEE ICDCS 2017, and the IEEE INFOCOM
Test of Time Paper Award 2020. His research has been supported by mul-
tiple government research fund agencies, including National Natural Science
Foundation of China, Hong Kong Research Grants Council, and Hong Kong
Innovation and Technology Commission. He has served as the editor-in-chief
of the IEEE Transactions on Dependable and Secure Computing (TDSC), and
associate editor of the IEEE Transactions on Services Computing (TSC), IEEE
Internet of Things Journal (IoT-J), IEEE Networking Letters, and the Journal
of Blockchain Research, and TPC co-chairs for a number of IEEE conferences
and workshops. He is a member of the ACM.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

