
1

Blockchain-Based Deduplication and Integrity
Auditing over Encrypted Cloud Storage

Mingyang Song, Zhongyun Hua, Yifeng Zheng, Hejiao Huang, Xiaohua Jia, Fellow, IEEE

Abstract—Cloud computing promises great advantages in handling the exponential data growth. Secure deduplication can greatly
improve cloud storage efficiency while protecting data confidentiality. In the meantime, when data are outsourced to the remote cloud,
there is an imperative need to audit the integrity. Most existing works only consider the support for either secure deduplication or
integrity auditing. Recently, there have been some research efforts aiming to integrate secure deduplication with integrity auditing.
However, prior works are unsatisfactory in that they suffer from the leakage of ownership privacy and forgeability of auditing results for
low-entropy data. In this paper, we propose a new scheme that delicately bridges secure deduplication and integrity auditing in
encrypted cloud storage. In contrast with prior works, our scheme protects the ownership privacy and prevents the cloud service
provider from forging the auditing results for low-entropy data. Furthermore, we propose a blockchain-based mechanism that helps to
ensure key recoverability and reduce local storage cost of keys. Formal analysis is provided to justify the security guarantees.
Experiment results demonstrate the modest performance overhead of our scheme.

Index Terms—Secure deduplication; integrity auditing; ownership privacy; blockchain.

✦

1 INTRODUCTION

IN the big data era, large volumes of digital data are
exponentially produced everyday and the data growth

tendency is accelerated. To save storage space, individuals
and enterprises are more and more willing to outsource
their data to cloud servers for storage. As reported by
International Data Corporation, the amount of data stored
in cloud will increase to 175ZB by 2025 [1]. Fortunately,
almost 75% of the data in cloud are duplicate [2]. Therefore,
data deduplication can greatly improve storage efficiency
and thus is very meaningful. Nowadays, data deduplication
techniques have been employed by many cloud service
providers (CSPs) such as Google Drive [3], Dropbox [4] and
Mozy [5].

From the view of users, they are more concerned about
the security of their outsourced data. Data encryption is the
most straightforward way of protecting data confidentiality
and thus users are prone to encrypt their data before up-
loading them to cloud servers for storage. This requires the
CSP to own the ability to deduplicate the encrypted data.
In the past decades, many secure deduplication schemes
have been proposed [6–9] and they can directly remove the
duplicate copies in the encrypted domain without accessing
the data content. Besides the data confidentiality, users are
also concerned about the integrity of their data stored in the
cloud, since data loss may happen in the cloud due to some
objective exceptions such as hardware failure [10]. Remote

• Mingyang Song, Zhongyun Hua, Yifeng Zheng and Hejiao Huang
are with School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, Shenzhen 518055, China (E-
mail: songmingyang2022@gmail.com; huazhongyun@hit.edu.cn;
yifeng.zheng@hit.edu.cn; hjhuang@aliyun.com).

• Xiaohua Jia is with department of Computer Science, City University of
Hong Kong, Hong Kong 518057, China, and also with School of Com-
puter Science and Technology, Harbin Institute of Technology, Shenzhen,
Shenzhen 518055, China (E-mail: csjia@cityu.edu.hk).
(Corresponding authors: Zhongyun Hua; Yifeng Zheng.)

data integrity auditing is an effective and widely used
solution to help users check the integrity of their outsourced
data [11, 12]. Therefore, it is important to simultaneously
support secure deduplication and integrity auditing for a
cloud storage system.

The previous integrity auditing schemes cannot be di-
rectly applied to secure deduplication systems. This is be-
cause an authentication tag for each data block should be
computed to help a user check the integrity and users hold-
ing different secret keys generate different authentication
tags for the same data block. When auditing an identical file,
the authentication tags generated by different users cause
considerable storage consumption. For example, a 4GB file
uploaded by 100 users will require 2.5GB (62.5% of the data)
additional storage to store the authentication tags for audit-
ing. However, the storage overhead can reduce to 25.6MB
if the CSP can perform deduplication to the authentication
tags [13]. Nowadays, there already exist some efforts [10, 14–
16] that combine existing secure deduplication and integrity
auditing techniques. However, these studies only focus on
deduplicating the authentication tags to improve the storage
efficiency of cloud servers and do not consider the leakage
of ownership privacy (OP) and forgeability of auditing
results for low-entropy data.

Deduplicating both ciphertext and authentication tags
leaks the OP of users, which means that a third-party
auditor (TPA) and other users can get the information about
1) which files are owned by a user and 2) which users own
an identical file. Although it is inevitable to leak OP to the
cloud, we should ensure that no other parties except the
cloud can know the OP. It has become a common practice
to use a TPA proposed in [17] to help users audit data
integrity [18–21]. The leakage of OP occurs when different
users delegate the TPA to audit an identical file. Specifically,
in previous methods [10, 14–16, 22–24], the users (UA, UB)
owning an identical file use an identical deterministic file

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

2

tag to index the file in the CSP and send the same file tag
to the TPA. The deterministic file tag leaks the first type
OP of UA and UB. Meanwhile, both the deterministic file
tag and other auditing information leak the second type
OP that UA and UB own the same file. For example, when
two companies UA and UB store the same contract in the
cloud. Then the TPA can snoop on that there is cooperation
between UA and UB, which is an indirect privacy leakage of
UA and UB. The leakage of OP has a similar impact as the
side-channel attacks. When the auditing logs are publicly
accessible to users for verifying the auditing results, a user
can also snoop on the OP of other users from public auditing
logs. To the best of our knowledge, there does not exist prior
work that can support auditing and secure deduplication,
while addressing the leakage of OP.

In the previous secure deduplication schemes support-
ing auditing [14, 16], the auditing results of the low-entropy
data are unreliable. They use the message-locked encryption
(MLE) key to generate authentication tags for authentication
tag deduplication. However, the MLE is inherently deter-
ministic [7] and its secret key is derived from the plaintext
data itself (e.g., the hash value of plaintext data). When
outsourcing a low-entropy file F that is obtained from a
small message dictionary S = {F1, ..., Fn}, the CSP can get
the MLE key of F after n offline key generation attempts.
Therefore, the cloud server can deduce the MLE key of low-
entropy data such as the electronic medical records [15].
Using the deduced MLE key, the cloud server can further
forge the authentication tags to deceive the TPA even if
the data is damaged or lost [15]. Thus users cannot get
reliable auditing results. As a result, previous studies that
simultaneously support secure deduplication and integrity
auditing mainly focus on deduplicating the authentication
tags and do not consider the leakage of OP and forgeability
of auditing results for low-entropy data caused by the
deduplication of authentication tags.

To address these security issues, in this paper, we pro-
pose an auditable and secure deduplication scheme to pro-
tect OP and ensure reliable auditing results. To protect OP,
we propose a new auditing technique with file tag random-
ization and re-signature strategies. Specifically, different
users use different public keys and different random file tags
to delegate auditing tasks to the TPA even for the same file,
and the cloud server uses different re-signature keys and the
same authentication tags to generate different proofs to the
TPA for different users. To ensure reliable auditing results,
we introduce multiple key servers into our system to partic-
ipate in the generation of the signing key for authentication
tags, following the state-of-the-art schemes [25–28]. Since
the CSP can not obtain the secret value shared among key
servers, it cannot deduce the signing key of authentication
tags even for low-entropy data. Thus, the CSP cannot forge
the authentication tags to deceive the TPA when the audited
data is lost.

Besides the aforementioned security issues, the
duplicate-faking attacks (DFA) launched by the initial up-
loader can destroy the association of the stored file and its
file tag such that the subsequent uploaders owning the same
file obtain a falsified copy [6]. Thus, the DFA should also be
considered for a secure deduplication cloud storage system.
Previous studies resist DFA by verifying the association of

ciphertext and its file tag [6, 16], which is no longer available
in our scheme since our scheme uses random file tags. Our
scheme is designed to resist DFA by checking the association
between the ciphertext of the initial uploader and that of the
subsequent uploader through the authentication tags. Be-
sides, the number of encryption keys linearly increases with
the number of data being uploaded to the cloud in secure
deduplication, which results in intensive key management
overhead for users. Previous studies in [29–32] encrypt these
encryption keys and outsource them to the cloud, but do
not consider the risk of damage. To solve this issue, our
scheme uses the blockchain to record the blind signatures
of the data hash values returned from the key servers. Then
the user only needs to store the seed of random number
generator and can recover the encryption keys from the
blind signatures on-chain. We also use the blockchain to
record the auditing logs to solve the trust issues between
users and the TPA.

The novelty and contributions of this paper are summa-
rized as follows.

• We propose an auditable and secure deduplication
scheme, which is the first time to protect the OP
of users and ensure reliable auditing results of low-
entropy data. Our scheme is designed to also consider
the security issues raised in previous schemes such as
the resistance of DFA.

• We introduce the blockchain into our scheme to manage
the encryption keys. This can greatly reduce the key
storage cost of users and guarantee the key recoverabil-
ity.

• We conduct a comprehensive evaluation to theoretically
prove and experimentally verify the properties of our
scheme. Comparison results show that our scheme can
protect the OP of users and ensure reliable auditing
results with modest performance.

We organize the remainder of this paper as follows. Sec-
tion 2 reviews the related works and Section 3 formulas the
problem that we address in this study. Section 4 describes
our method in detail and Section 5 proves the correctness
and security of our scheme. Section 6 evaluates the perfor-
mance of our scheme. Finally, we draw the conclusion in
Section 7.

2 RELATED WORK

2.1 Secure Deduplication

Secure deduplication is a useful technique to improve the
storage efficiency of cloud while protecting the confiden-
tiality of outsourced data. Traditional encryption methods
are unavailable in secure deduplication, since an identical
file will be encrypted into different ciphertexts by different
users, which cannot be deduplicated. To address this prob-
lem, Douceur et al. introduced the convergent encryption
(CE) [33], which uses the hash value of outsourced data as
the encryption key. Inspired by CE, Bellare et al. proposed
the MLE for the first time [6].

However, the MLE inherently suffers from brute-force
attacks [7]. Thus Bellare et al. [7] proposed the scheme
DupLESS that uses a key server to participate in key gener-
ation [7]. Then the cloud needs to launch online brute-force

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

3

attacks by interacting with the key server instead of offline
brute-force attacks. Nowadays, many schemes use a key
server to enhance security [34, 35]. At present, most secure
deduplication studies focus on client-side deduplication us-
ing file tags. This can mitigate the communication overhead
and reduce the local computational cost, since subsequent
file owners do not need to compute and upload an identical
ciphertext. However, the client-side deduplication requires
a reliable method to do the Proofs of Ownership (PoW) and
easily suffers from DFA [6, 36]. To solve these, Halevi et al.
introduced a novel PoW method based on Merkle tree [37],
which can prevent adversaries deceiving the CSP using only
a file tag. Besides, some schemes were proposed to defense
DFA [6, 38] in the client-side deduplication.

These traditional secure deduplication studies only con-
sider data confidentiality. However, when outsourcing data
to a cloud server, users are also concerned about data in-
tegrity, since data loss may happen in the cloud due to some
objective reasons such as hardware failure. Thus, supporting
auditing in a secure deduplication scheme is meaningful in
practical applications.

2.2 Public Integrity Auditing
Ateniese et al. [39] first considered the public auditing in a
provable data possession (PDP) model, where the homo-
morphic linear authentication tags are used for auditing
data integrity. In their subsequent work [40], the authors
proposed a dynamic version of the prior PDP scheme. Later,
Wang et al. [41] proposed a public verifiable PDP scheme
by employing a fully reliable TPA to reduce users’ burden
of auditing. Concerning the data recovery, Juels et al. [42]
proposed a novel primitive proof of retrievability (PoR) and
then Shacham et al. [43] improved it using publicly veri-
fiable homomorphic authentication tags built from Boneh-
Lynn-Shacham (BLS) signature technique [44]. Inspired by
these works, many public auditing schemes have been
proposed [17, 45] using the homomorphic signature tech-
nique. However, directly applying these previous auditing
schemes in secure deduplication system will cause consid-
erable storage costs to store lots of redundant authentication
tags for an identical file.

2.3 Data Deduplication and Integrity Auditing
In 2013, Yuan et al. proposed the first cloud storage system
scheme that simultaneously supports data auditing and
deduplication [22]. To improve the storage efficiency of CSP,
this scheme performs deduplication on both the plaintext
and authentication tags. However, it requires all users to
compute and upload the authentication tags for an identical
file, which sacrifices the local computational efficiency of
users. Xu et al. used blockchain to develop a deduplication
scheme that supports plaintext auditing [23]. The scheme
uses the blockchain to monitor the behavior of the TPA
by recording auditing logs on-chain. However, it can only
perform deduplication and auditing over plaintext, and
doesn’t consider the confidentiality of the outsourced data.

Li et al. proposed the first cloud storage system sup-
porting auditing and deduplication over encrypted data by
using a fully trusted proxy server to generate the authenti-
cation tags [10]. But it is practically costly to implement such

a fully trusted proxy server over insecure public networks.
Later, Liu et al. first proposed such a cloud storage sys-
tem without a fully trusted proxy server [14]. This scheme
achieves authentication tags deduplication using the MLE
key as the signing key of authentication tags. However, it
requires users to stay online to participate in auditing, which
causes extra cost and inconvenience to users in practice. Be-
sides, the scheme cannot guarantee that the auditing result
of low-entropy data is reliable. To solve this defect, Gao
et al. proposed a new scheme [15], which generates authen-
tication tags using the private key of the initial uploader,
rather than the MLE key. However, this scheme can only
guarantee the reliability of auditing results for the initial
uploader, and that for the subsequent uploaders still cannot
be guaranteed. Therefore, for these cloud storage systems
supporting auditing and deduplication over encrypted data,
the reliability of auditing results for low-entropy data hasn’t
been fully solved, yet.

Additionally, all the above schemes have been developed
based on a strong assumption that the TPA is completely
reliable, which is practically difficult. To solve this, Yuan
et al. proposed a secure deduplication scheme support-
ing auditing using the blockchain [24], which is a simple
combination of the secure deduplication and auditing. It
uses the smart contract to execute auditing tasks and fair
arbitration. However, this scheme does not preform dedu-
plication to authentication tags. When auditing an identical
file, the authentication tags generated by different users
cause considerable storage consumption to CSP. Besides, all
the owners of an identical file should encrypt the file and
upload the file to CSP, and also need to compute their own
authentication tags for auditing. This causes large duplicate
computations and communication costs. Tian et al. [16] use
the blockchain to record the file index table and auditing
logs. This scheme uses two CSPs to solve the problem of
single-point failure, which increases the economic cost and
causes inconvenience to users. Users should stay online to
interact with the cloud to update the authentication tags
regularly. Besides, the above two schemes do not consider
the leakage of OP and the forgeability of auditing results for
low-entropy data.

In conclusion, previous cloud storage systems support-
ing auditing and deduplication over encrypted data mainly
focus on the storage efficiency of the cloud, and do not
consider the leakage of OP and the forgeability of audit-
ing results for low-entropy data. Besides, some previous
systems require users to stay online to participate in the
auditing process, which goes against the goal of delegating
auditing tasks to a TPA. In this paper, we aim to propose a
new scheme to completely solve the above issues.

3 PROBLEM FORMULATION

In this section, we first present the system model, threat
model and design goals of our scheme and then give an
overview of our scheme.

3.1 System Model

Table 1 summarizes the important notations used in this
paper. The system model of our scheme includes five enti-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

4

TABLE 1: Notations used in this paper.

Notation Description
F The original plaintext to be outsourced.
C The ciphertext of F stored in the cloud.
ci The ith block of ciphertext C.
pk(u,f) The public key of user U for delegating auditing.
rk(u,f) The re-signature key of U for file F .
β(u,f) The random file tag of F generated by U .
C(u) The ciphertext of challenged blocks encrypted by U .
z The signing key of authentication tags.
p, q Two large prime numbers.
ZN A residue class ring.
G1,G2 Two multiplicative cyclic groups.
k The length of encryption key.
θ The seed for generating random numbers.
d The number of sectors in a data block.
I The number of key servers.
t The threshold of key servers cryptosystem.
H1(·),H2(·),
H3(·)

Three hash functions.

π1(·, ·), π2(·, ·) Two pseudo-random functions.
e(·, ·) Bilinear pairing e: G1 × G1 → G2.
|ξ| The bit length of arbitrary element ξ.

ties: users, CSP, TPA, key servers, and blockchain. We define
them as follows:

• The users outsource their encrypted data to the CSP.
They also delegate the TPA to check the integrity of the
outsourced data. Since different users may outsource
an identical file, all users can be divided into the initial
uploader that outsources a new file to the CSP, and the
subsequent uploader that outsources an existing file.

• The CSP provides storage services to users. It performs
secure deduplication, receives the challenging infor-
mation from the blockchain, and publishes the proof
information on-chain during the process of auditing.

• The TPA receives auditing delegation from a user and
generates challenging information for auditing. It pub-
lishes the challenging information on-chain and obtains
the proof information from the blockchain. It also ver-
ifies the proof information and publishes the auditing
result on-chain.

• The key servers interact with users to perform blind
signature protocol and publish the intermediate data
(i.e., blind signatures of data hash values) on-chain.

• The blockchain is a public distributed ledger system
with various nodes. It records the blind signatures of
data hash values in the key generation process and
all auditing logs including the challenging information,
proofs and results.

3.2 Threat Model

Based on the description of the system model in Section 3.1,
we give the specific description of the threat model as
follows.

• Semi-honest users. Users snoop on the OP of other
users from the auditing logs on the blockchain since
these data on-chain are publicly accessible to all entities

and contain the information about file tag and file
owner. A user also attempts to deduce the encryption
keys of other users from the on-chain blind signature
values.

• Semi-honest CSP. The stored data may be lost due
to hardware failures. To maintain its commercial rep-
utation, the CSP attempts to deceive the auditor using
forged files and authentication tags when the files are
lost. The CSP may also snoop on the encryption keys
using on-chain blind signature values or launch brute-
force attacks to obtain plaintext content.

• Semi-honest TPA. The TPA can execute the predefined
rules honestly. But it may also snoop on the OP of users
from the auditing logs.

• Semi-honest key servers. The key servers interact with
users to help them generate encryption keys through
a blind signature protocol. They publish the blind sig-
natures of data hash values on-chain. Key servers are
curious about the encryption keys of users.

Besides, the CSP or the key servers would not collude
with any user for the reason of the commercial reputation.
As claimed in [25, 46–48], we also hold the same assumption
that the CSP can compromise several key servers less than a
predefined number (i.e., t).

3.3 Design Goals
In this paper, we construct a blockchain-based secure dedu-
plication scheme with auditing, which achieves the follow-
ing design goals.

• Functionality. The scheme has two basic functions
deduplication and auditing. This means that it allows
the CSP to deduplicate both the ciphertext and au-
thentication tags and users to audit the integrity of
their outsourced data. The deduplication and integrity
auditing should be supported at the same time.

• Security. The security goals of our scheme includes
the data confidentiality, reliability of auditing results,
OP protection and resistance of DFA. (1) The data
confidentiality indicates that the scheme should ensure
the data confidentiality of different kinds of data, in-
cluding both high-entropy data and low-entropy data.
(2) The reliability of auditing results means that the
CSP cannot deceive the TPA by forging the ciphertext
and its corresponding authentication tags when the real
ciphertext is lost, especially for the low-entropy data.
(3) The OP protection means that other entities except
the CSP cannot get the information that which files are
owned by a user and which users own an identical
file. (4) The resistance of DFA means that the scheme
can protect subsequent uploaders from losing their data
under DFA.

• Convenience for users. The scheme can reduce the
local storage cost of encryption keys, and does not
require users to stay online to participate in the auditing
process. Only the initial uploader needs to encrypt the
whole file and generate authentication tags.

3.4 Overview of Our Scheme
This section presents an overview of our method and dis-
cusses how to achieve the design goals.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

5

Key Servers

Initial uploader

Subsequent

uploader

1. Blind hash

2. Blind signature

3. Blind signature 8. Blind signature

 and auditing logs

1. Blind hash

2. Blind signature

3. Blind signature

8. Blind signature

 and auditing logs

4. Check duplicate

5. Initial upload

A. Audit request

A. Audit request

4. Check duplicate

6. PoW

7. Subsequent upload

B. Challenge

B. Challenge

CSP

B. Challenge

B. Challenge

C.

C.

D.
TPA

()ax
()ay

()ay

()bx

()by

()by

()ay

()by

(,) (,),b f b frk pk

(,)a frk (,)b frk

C.

C.

9. Download

9.Download C

C

C s

(,) () (), ,
a f y aChal IDb

(,) (,), , ,a f a fC rk pks

(,) () (), ,
a f y aChal IDb

(,) (,),b f b fpkb

(,) (,),a f a fpkb

(,)b fb

(,)a fb

() (,)a a fProof b

() (,),b b fProof b

()(,) (), ,
bb f yChal IDb

() (,),b b fProof b

() (,),a a fProof b

()(,) (), ,
bb f yChal IDb

() (,),b b fResult b

D.
() (,),a a fResult b

Fig. 1: The system model and workflow of the proposed scheme.

3.4.1 Overview

Fig. 1 shows the system model and workflow of our scheme.
Before uploading a file, all users need to generate encryption
keys by performing the blind signature protocol with key
servers (the steps 1 and 2), and the key servers publish the
blind signatures of data hash values on the blockchain (the
step 3). During the data uploading process, a user needs to
upload a random file tag to the CSP (the step 4) and the CSP
detects duplication using the file tag. If the outsourced file
does not exist, the user is an initial uploader and uploads
the ciphertext, the authentication tags, the re-signature key
and the public key (the step 5). Otherwise, the user is a
subsequent uploader and performs PoW with the CSP to
prove file ownership (the step 6). Then the user uploads the
re-signature key and the public key (the step 7). For plaintext
data recovery, all users first download the auditing logs and
the blind signatures from the blockchain (the step 8). Then
the user verifies the auditing result locally. If the outsourced
file is integral, the user recovers the encryption keys from
the blind signatures, downloads the ciphertext from the CSP
(the step 9) and decrypts the ciphertext using the encryption
keys.

During the auditing process, a user sends the file tag and
the public key to the TPA and entrusts the TPA to audit the
file (the step A). The TPA generates challenging data and
publishes the file tag, challenging data, and user ID on the
blockchain (the step B). After obtaining the challenging data,
the file tag, and the user ID from the blockchain, the CSP

uses the authentication tags, the re-signature key and the
ciphertext to generate an integrity proof, and publishes the
proof and the file tag on the blockchain (the step C). After
obtaining the proof from the blockchain, the TPA verifies
the proof locally and publishes the auditing results on the
blockchain (the step D). Finally, the user can obtain the
auditing result from the blockchain.

3.4.2 Design Goals Achievement
By design, our scheme can achieve all the design goals. It
is obvious that it can achieve both secure deduplication and
auditing. It can protect the data confidentiality of both high-
entropy data and low-entropy data by adopting multiple
key servers to participate in the key generation process.
Then the encryption key (i.e., the signature value of data
hash value signed by key servers) consists of the hash value
of plaintext data and a secret value shared among multiple
key servers, which can resist the brute-force attacks. The
CSP only stores one copy of the ciphertext and authentica-
tion tags. Although the CSP stores a re-signature key for
each file owner, it occupies little storage space and thus has
high storage efficiency. For the computation cost of users,
only the initial uploader needs to compute and upload
the ciphertext and the authentication tags, which greatly
reduces the computational and communication burden of
subsequent uploaders. Besides, through the design of au-
thentication tags, our scheme ensures that users can stay
offline in auditing processes. The above design goals are
easy to achieve. However, for the OP protection, reliability

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

6

of auditing results, resistance to DFA and recoverability of
encryption keys, these goals should be specifically designed
as follows.

OP protection. For previous studies, the OP leakage
happens when a user uses a deterministic file tag to delegate
an auditing task to the TPA, or different users use the same
file tag to delegate auditing tasks to the TPA. To protect
the OP, we propose a new auditing technique including
file tag randomization and re-signature strategies. The file
tag randomization strategy is to address the first situation.
The file tag randomization strategy follows the idea of
Yang et al. [28] scheme, which has been proven to have
high security. In their scheme, they use the random file
tag to resist brute-force attacks in the scenario of multi-
domain deduplication. Although the design idea is similar,
our focused problem and specific design are different from
theirs. In our design, a random file tag is generated by
multiplying the deterministic file tag with a random item.
Then only the CSP with the secret large prime number can
determine whether two different random file tags correlate
to an identical file. Therefore, the OP is not leaked from file
tags.

The re-signature strategy is used to address the second
situation. Specifically, as depicted in Fig. 1, the initial up-
loader UA uploads the ciphertext C , the authentication tags
σ, and the re-signature key rk(a,f) to the CSP. Meanwhile,
the subsequent uploader UB generates its own re-signature
key rk(b,f) for C and sends it to the CSP. Then the CSP
stores the ciphertext C , the authentication tags σ and dif-
ferent re-signature keys (rk(a,f), rk(b,f)) for all file owners.
During the auditing process, different owners of the same
file use different random file tags (β(a,f), β(b,f)) and public
keys (pk(a,f), pk(b,f)) to delegate auditing tasks. Then the
CSP uses the same authentication tags σ and different re-
signature keys (rk(a,f), rk(b,f)) to generate different user-
related proofs (Proof (a), P roof (b)) for the user UA and
user UB. Therefore, it can prevent the leakage of OP from
auditing logs.

Resistance to DFA. The most straightforward way to
resist DFA is to check the consistency of the file tag and
ciphertext uploaded by the initial uploader. To protect the
OP of users, different users generate random and different
file tags for an identical file, which hinders the CSP from
directly verifying the consistency of the ciphertext and file
tag uploaded by the initial uploader in our system. There-
fore, the resistance of DFA can only be achieved indirectly
through other processes.

• The initial uploader UA uploads the ciphertext C(a),
authentication tags σ and file tag β(a,f) to the CSP.
Then the CSP checks the association between σ and
C(a) instead of the association between β(a,f) and C(a).
Essentially, the CSP verifies that the signed content in σ
is C(a), which will be described in the initial uploading
process in Section 4.4.1. If the verification is invalid, the
CSP rejects the data outsourcing request.

• When a subsequent uploader UB uploads the file tag
β(b,f) to the CSP to detect duplication, the CSP can
detect that β(a,f) and β(b,f) correlate to the same file.
Then the CSP uses the authentication tags to check
the file ownership of the user UB. Essentially, the CSP
verifies that the signed content in σ is C(b), which will

(,)a fb

(,)b fb

()aC

()bC

s

Cloud Cloud

Cloud

Fig. 2: Principle of resisting the DFA.

be described in the subsequent uploading process in
Section 4.4.2. If the verification is invalid, the CSP will
treat C(b) as a new file.

Fig. 2 shows how our design can resist DFA. The afore-
mentioned verifications can ensure the association between
C(a) and C(b) through σ. The association between β(a,f) and
β(b,f) is checked through duplication detection which is a
basic function of the cloud. The association between β(b,f)

and C(b) can be ensured by the subsequent uploader UB
since the user UB is the victim of DFA. Thus the association
between the β(a,f) and C(a) can be ensured and subsequent
uploaders will not suffer from DFA. We will provide a
further theoretical proof in Section 5.2.4.

Reliability of auditing results. To deduplicate the au-
thentication tags, previous methods generate authentication
tags using the MLE key. Since the MLE key can be easily
deduced by the CSP for low-entropy data, the CSP can de-
ceive the TPA using forged ciphertext and its corresponding
authentication tags even if the data is damaged or lost.
We apply multiple key servers to ensure the reliability of
auditing results. The user generates the signing key of au-
thentication tags through the blind signature protocol with
multiple key servers, which prevents the cloud deducing
the signing key. Then for low-entropy data, the CSP cannot
deceive the TPA since it cannot forge authentication tags
without the signing key.

Recoverability of encryption keys. To ensure the recov-
erability of encryption keys, our scheme requires key servers
to publish the blind signatures of data hash values on the
blockchain. Due to the immutability of the blockchain, the
recoverability of encryption keys is guaranteed. This design
can also ensure that the public blind signatures of data hash
values on the blockchain cannot leak the encryption keys,
since the user and key servers perform the BLS blind sig-
nature protocol [44]. Besides, the introduction of blockchain
can also significantly reduce the local key storage cost for
users.

4 PROPOSED SCHEME

In this section, we first introduce the preliminaries, and
then present our scheme, which includes the system setup,
key generation, data uploading, integrity auditing and data
downloading.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

7

4.1 Preliminaries

4.1.1 Bilinear Pairing of Composite Order

We use the bilinear pairing [49] to construct the methods of
duplication detection and auditing, and design the secure
deduplication and auditing scheme based on the discrete
logarithm (DL) problem [50].

Given a security parameter κ, the composite bilinear
parameter generator Gen(κ) outputs a six tuple (p, q,N =
pq,G1,G2, e), where p and q are κ-bit primes and e :
G1 × G1 → G2 is a bilinear pairing, which follows the
properties:

• Bilinear: e(xa, yb) = e(x, y)ab for all x, y ∈ G1 and
a, b ∈ ZN .

• Non-degeneracy: If g is a generator of G1, the e(g, g) is a
generator of G2 with the order N .

• Computability: For all x, y ∈ G1, there exists an efficient
algorithm to compute e(x, y) ∈ G2.

The complexity assumption of the DL problem is given
as follows.

Definition 1. [50] Given x, g ∈ G as input, the complexity of
the DL problem is equal to computing a ∈ ZN such that ga = x.

4.1.2 Blockchain

A blockchain [51, 52] network is generally maintained by
some nodes using a common consensus mechanism. The
blockchain consists of linear set of data units, where each
data unit is called a data block. The data in a block contains a
timestamp, multiple transactions data, and so on. The times-
tamp records the time when the block was generated. The
transaction data generally contain the events of transferring
tokens from one node to another. The data recorded in the
blocks are chained chronologically using a cryptographic
hash function, which ensures the immutability and verifi-
ability of blockchain data.

4.1.3 Authentication Tags

To allow cloud users to check the integrity of their out-
sourced data, integrity auditing is required whereby the CSP
proves to its users that their outsourced data are correctly
stored. Such integrity auditing techniques implement an
algorithm that appends a tag (authentication tag) to every
data segment (block) before storing them on the cloud [13].
These authentication tags are computed under a secret sign-
ing key generated by the user and are further used for the
CSP to generate integrity proofs.

4.1.4 Multiple Servers-aided Message-locked Encryption

Multiple Servers-aided Message-locked Encryption includes
the following steps.

• The Multiple Servers-aided MLE Key Generation: A
user first computes the hash values of the outsourced
data blocks and then generates encryption keys by
running the blind signature protocol with multiple key
servers. The signatures of data hash values are used as
the encryption keys.

• Encryption: The user encrypts the outsourced data
blocks using the encryption keys and an existing sym-
metric encryption algorithm (e.g., ASE-256).

• Decryption: The user decrypts the ciphertext using the
encryption keys and the symmetric decryption algo-
rithm.

4.2 System Setup
In this phase, the key servers {KSi}(1≤i≤I) and CSP gen-
erate some public parameters and some secret parameters
kept by themselves.

4.2.1 Setup of the Cloud
The CSP performs the setup phase as follows.

• Randomly choose a security parameter κ and run the
composite order bilinear parameter generator Gen(κ)
to output a tuple (p, q,N = pq,G1,G2, e).

• Randomly choose two generators g1, g2 ∈ G1 and an
element µ ∈ G1.

• Choose two pseudo-random functions π1 : {1, ..., n} ×
Z∗
N → {1, ..., n} and π2 : {1, ..., n} × Z∗

N → Z∗
N .

• Choose a hash function H1 : G1 → {0, 1}k; a hash
function H2 : {0, 1}∗ → G1; a hash function H3 :
G1 → ZN .

• Compute parameter ν = g q
2 .

Finally, the CSP publishes the public parameters
{ν, g1, µ,N, e,π1,π2,H1,H2,H3} to all entities of the sys-
tem and holds the secret parameters {p, q}.

4.2.2 Setup of Key Servers
The key server KSi performs the setup phase as follows.

• KSi randomly chooses an element ai,0 ∈ Z∗
N and a

polynomial fi(x) = ai,0 + ai,1x+ · · ·+ ai,t−1x
t−1 over

ZN with degree at most t− 1 such that fi(0) = ai,0.
• KSi computes {gai,ϵ

1 }(0≤ϵ≤t−1) and {fi(j)}(1≤j≤I,j ̸=i).
Then KSi publishes {gai,ϵ

1 }(0≤ϵ≤t−1) and sends fi(j) to
KSj via secret channel.

• KSi obtains {fj(i)}(1≤j≤I,j ̸=i) from all the other key
servers {KSj}(1≤j≤I,j ̸=i). For j = 1, 2, ..., I, j ̸= i, if
Eq. (1) holds, KSi accepts fj(i).

g
fj(i)
1

?
=

t−1∏
ϵ=0

g
aj,ϵ·iϵ
1 (1)

• KSi computes its secret share si =
∑I

j=1 fj(i) and its
public share psi = gsi1 .

Finally, the secret key s =
∑I

i=1 ai,0 is shared among all
key servers {KSi}(1≤i≤I).

4.3 Key Generation
When a user U wants to outsource a file F =
m1||m2|| · · · ||mn to the CSP, the user first interacts with the
key servers to generate the encryption keys as follows.

• The user U chooses a seed θ ∈ Z∗
N and generates

random numbers {rϵ = π2(ϵ, θ)}(1≤ϵ≤n+1).
• The user U first computes the initial data hash values
hϵ = H2(mϵ), (1 ≤ ϵ ≤ n) and hn+1 = H2(F), and
then computes the blind hash values xϵ = hrϵ

ϵ , (1 ≤
ϵ ≤ n+1). Finally, the user sends the blind hash values
{xϵ}(1≤ϵ≤n+1) to all the key servers.

• After receiving the blind hash values {xϵ}(1≤ϵ≤n+1),
every key server KSi computes the blind signatures

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

8

y
(i)
ϵ = xsi

ϵ (1 ≤ ϵ ≤ n+1). Then it sends {y(i)ϵ }(1≤ϵ≤n+1)

to the user U and publishes them on the blockchain.
• Upon obtaining {{y(i)ϵ }(1≤ϵ≤n+1)}(1≤i≤I), the user U

verifies whether Eq. (2) holds for i = 1, 2, ..., I , ϵ =
1, 2, ..., n+ 1.

e(xϵ, psi)
?
= e(y(i)ϵ , g1) (2)

After obtaining t valid signatures. U computes

wi =
∏

1≤k≤t,k ̸=i

k

k − i
, (1 ≤ i ≤ t) (3)

zϵ =
t∏

i=1

(y(i)ϵ)r
−1
ϵ ·wi , (1 ≤ ϵ ≤ n+ 1) (4)

Finally, the user U can compute the encryption keys
{skϵ = H1(zϵ)}(1≤ϵ≤n), and the signing key z =
H3(zn+1) of authentication tags.

The blockchain is used to record the blind signatures
of data hash values in the key generation process. The
blind signatures cannot leak any useful information about
encryption keys, which will be proved in Section 5.2.1.
The recoverability of encryption keys can also be ensured
due the immutability of blockchain. The user only need to
store the seed θ and can recover the encryption keys from
the blind signatures on-chain. This can significantly reduce
the key storage cost for users and achieves considerable
convenience and key security for users.

4.4 Data Uploading

After generating the encryption keys {ski}(1≤i≤n) and the
signing key z of authentication tags, the user U interacts
with the CSP to check whether the file already exists in the
cloud as follows.

• The user U chooses two random values s(u) and x(u)

from ZN as the re-signature key rk(u,f) = {s(u), x(u)}.
The user also chooses a random r(u) from ZN and
computes a random file tag β(u,f) = gz1 · νr(u)

and the
public key pk(u,f) = gz·s

(u)

1 .
• The user U sends β(u,f) and the length of outsourced

file Len to the CSP.
• For each Len-length file F ∗ stored in the cloud, the CSP

checks whether the Eq. (5) holds or not.

e(β(u,f), g1)
p ?
= e(β(u∗,f∗), g1)

p (5)

If it holds, the file F has already existed in the cloud
and the CSP replies Dup to the user. Otherwise, the file
does not exist in the cloud and the CSP replies NoDup
to the user.

The reply with NoDup means that the user is an initial
uploader, while the reply with Dup means that the user is a
subsequent uploader. Note that the efficiency of detecting
duplication in the cloud is not the focus of this study.
Many existing works (e.g., B+ tree and method in [53]) have
focused on this issue and we directly use an existing method
in our scheme. Besides, for convenience, we use UA to
present an initial uploader and UB to present a subsequent
uploader in the remainder of this study.

4.4.1 Initial Uploading

When receiving the reply with NoDup from the CSP, the
initial uploader UA interacts with the CSP to execute the
initial uploading as follows.

• The initial uploader encrypts the n data blocks F =
m1||m2|| · · · ||mn using an existing symmetric encryp-
tion algorithm (e.g., the AES-256) with the secret
keys {ski}(1≤i≤n) and generates the ciphertext C =
c1||c2|| · · · ||cn. For each ci, the user first divides it into
d sectors with equal length and then signs it using z to
generate the authentication tag as follows.

σi = [H2(ci||i) ·
d∏

j=1

µci,j]z, (1 ≤ i ≤ n) (6)

Then the user UA sends the ciphertext C , authentication
tags σ = {σi}(1≤i≤n), re-signature key rk(a,f), and
public key pk(a,f) to the CSP.

• The CSP chooses a seed α from Z∗
N and generates

the random numbers ai = π2(i, α) (1 ≤ i ≤ n).
The CSP checks the association of the ciphertext C =
c1||c2|| · · · ||cn and the authentication tags {σi}(1≤i≤n)

using the Eq. (7)

e(
n∏

i=1

H2(ci||i)ai · µ
∑d

j=1

∑n
i=1 ai·ci,j , pk(a,f))

?
=e(

n∏
i=1

σai
i , gs

(a)

1)

(7)

If the above equation holds, the CSP stores the file tag
β(a,f), the re-signature key rk(a,f), the ciphertext C
and the authentication tags {σi}(1≤i≤n). Otherwise, the
CSP rejects the storage requirement, since the uploaded
ciphertext does not match the authentication tags.

Note that our scheme can also achieve the block-level
deduplication by adding two extra interactions. Specifically,
before uploading the ciphertext, the user UA sends the hash
values of the n ciphertext blocks {H2(ci)}(1≤i≤n) to the
CSP to further detect duplicate blocks. Then the CSP checks
whether it has stored the same blocks and creates a set
B to indicate which blocks are not stored and should be
uploaded according to the {H2(ci)}(1≤i≤n). The CSP sends
B to the user. The user UA uploads the ciphertext blocks
{ci}(i ∈ B) to the CSP, rather than the whole ciphertext C .

4.4.2 Subsequent Uploading

When receiving the reply with Dup from the CSP, the
subsequent uploader UB executes the PoW protocol with
the CSP.

• When detecting the user is a subsequent uploader, the
CSP chooses two seeds r1, r2 from Z∗

N and a random
number l1 ∈ [1, n]. Then the CSP sends the challenging
data Chal(x) = {r1, r2, l1} to the user UB.

• The user UB computes ai = π1(i, r1) and bi = π2(i, r2)
for each 1 ≤ i ≤ l1. Then the user computes cai =
Enc(skai

,mai
), pj =

∑l1
i=1 bi · cai,j (1 ≤ j ≤ d), ρ(x) =∑d

j=1 pj and T (x) =
∏l1

i=1 H2(cai ||ai)bi .
• The user UB sends the Proof (x) = {T (x), ρ(x)}, re-

signature key rk(b,f) and public key pk(b,f) to the CSP.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

9

• The CSP computes ai = π1(i, r1) and bi = π2(i, r2) for
each 1 ≤ i ≤ l1. Then it computes δ(x) =

∏l1
i=1 σ

bi
ai

.
• The CSP verifies whether the Eq. (8) holds.

e(T (x) · µρ(x)

, pk(b,f))
?
= e(δ(x), gs

(b)

1) (8)

If it holds, the user UB is an actual owner of F and the
CSP stores the re-signature key rk(b,f). Otherwise, the
user UB is not an actual owner.

4.5 Integrity Auditing

The user U sends the file tag β(u,f) and public key pk(u,f) to
the TPA to delegate the auditing task. Then the TPA interacts
with the CSP through the blockchain as follows.

• The TPA chooses two seeds r3, r4 from Z∗
N and a

random number l2 ∈ [1, n]. Then it publishes the
challenging data Chal(y) = {r3, r4, l2}, ID(u), β(u,f)

on the blockchain, where ID(u) is the ID of the user.
• After obtaining the Chal(y), ID(u), β(u,f) from the

blockchain, the CSP first retrieves all the files owned by
the user U . For each file of the user U , the CSP checks
Eq. (5) to find the audited file F . The CSP computes
ai = π1(i, r3) and bi = π2(i, r4) for each 1 ≤ i ≤ l2.
Then the CSP computes

δ(y) = (
∏l2

i=1 σ
bi
ai
)s

(u)·x(u)

pai
=

∑d
j=1 x

(u) · cai,j , (1 ≤ i ≤ l2)

T (y) = (
∏l2

i=1 H2(cai
||ai)bi)x

(u)

(9)

and publishes the proof information Proof (y) =
{T (y), {pai}(1≤i≤l2), δ

(y)}, β(u,f) on the blockchain
• After obtaining the Proof (y), β(u,f) from the

blockchain, the TPA computes bi = π2(i, r4), (1 ≤ i ≤
l2), ρ(y) =

∑l2
i=1 bi · pai

and verifies the Eq. (10).

e(T (y) · µρ(y)

, pk(u,f))
?
= e(δ(y), g1) (10)

If the above equation holds, the TPA publishes (β(u,f),
integral) on the blockchain. Otherwise, it publishes
(β(u,f), non-integral)

• The user U can get the auditing result from the
blockchain.

Although the random file tag is used to protect OP in
the challenging data, the CSP can still detect which file is
audited using the method of duplication detection. Using
the Eq. (5), the CSP can compare the random file tag in
the challenging data with that stored on the cloud, and
then detect which file is audited. For the proof information,
the TPA can know the association between the integrity
proofs and challenges and thus obtains the integrity proof
accurately. This is because the random file tags in the proof
information and challenging information are the same for
each auditing. Besides, even though our auditing scheme
publishes all the auditing logs on-chain, it can still protect
the OP of the user U . We will provide the theoretical proof
in Section 5.2.3.

4.6 Data Downloading

When a user U would like to recover a file, the user should
first verify the auditing result. If the requested file is integral,

the user can retrieve the ciphertext file from the cloud and
recover the encryption keys from the blockchain. Then the
user can recover the plaintext from the ciphertext.

The user U first downloads the latest auditing logs (i.e.,
the challenging information, integrity proofs and auditing
result) of the requested file β(u,f). If the on-chain auditing
result published by the TPA is non-integral, the user U
detects the corruption of the requested file. Otherwise, the
user U computes bi = π2(i, r4), (1 ≤ i ≤ l2) and verifies the
on-chain integrity proof (T (y), {pai}(1≤i≤l2), δ

(y)) published
by the CSP using Eq. (10). If the verification is valid, the user
U can recover the plaintext as follows.

• The user U sends a file downloading request with the
user ID ID(u) and the file tag β(u,f) to the CSP.

• The CSP first retrieves all the files of the user with ID
ID(u), and then checks Eq. (5) for each file to find
the requested file F . If no file satisfies Eq. (5), the
CSP rejects the request. Otherwise, the CSP sends the
requested ciphertext C = c1||c2|| · · · ||cn to the user.

• The user downloads the blind signatures
{{y(i)ϵ }(1≤ϵ≤n)}(1≤i≤I) from the blockchain.

• The user first generates n random numbers {rϵ}(1≤ϵ≤n)

using the secret seed θ, and then computes {zϵ}(1≤ϵ≤n)

using Eqs. (3) and (4). Finally, the user U computes the
encryption keys {skϵ = H1(zϵ)}(1≤ϵ≤n).

• The user decrypts the ciphertext C using the en-
cryption keys {skϵ}(1≤ϵ≤n). Finally, the plaintext file
F = m1||m2|| · · · ||mn can be obtained.

For the convenience of reading and understanding, we
list the private parameters of each entity in Table 2, and
other parameters are publicly available to all entities.

TABLE 2: Private parameters of each entity.

Entity Parameters

User (U) θ, z, r(u), rk(u,f) = {x(u), s(u)}
CSP p, q, rk(u,f) = {x(u), s(u)}

Key server (KSi) si

TPA -

Blockchain -

5 SCHEME ANALYSIS

In this section, we prove the correctness of our scheme and
analyze its security.

5.1 Correctness
5.1.1 Correctness of Deduplication
We prove that the CSP can detect duplicate files using
the random file tags. For two users U and U∗ owning an
identical file F , even though they generate different random
file tags, the CSP can still detect duplication using Eq. (5).

We use z and z∗ to present the signatures of file hash
values for the files owned by the user U and the user U∗,
respectively. Suppose that the user U∗ has uploaded the
ciphertext C and the file tag β(u∗,f∗) = gz

∗

1 · νr(u
∗)

(ν = gq2
and q is a large prime) to the CSP. When the user U uploads

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

10

his/her file tag β(u,f) = gz1 · νr(u)

to the CSP for checking
duplication, the CSP uses its secret large prime p to compute
the two sides of Eq. (5) as follows.

e(β(u,f), g1)
p = e(gz1ν

r(u)

, g1)
p

= e(gz1 , g1)
p · e(νr

(u)

, g1)
p

= e(gz1 , g1)
p · e(gq·r

(u)

2 , g1)
p

= e(gz1 , g1)
p · e(g2, g1)p·q·r

(u)

= e(gz1 , g1)
p

(11)

e(β(u∗,f∗), g1)
p = e(gz

∗

1 νr
(u∗)

, g1)
p

= e(gz
∗

1 , g1)
p · e(νr

(u∗)

, g1)
p

= e(gz
∗

1 , g1)
p · e(gq·r

(u∗)

2 , g1)
p

= e(gz
∗

1 , g1)
p · e(g2, g1)p·q·r

(u∗)

= e(gz
∗

1 , g1)
p

(12)

It has been proved that e(β(u,f), g1)
p = e(β(u∗,f∗), g1)

p only
when z = z∗ [28]. Besides, z is equal to z∗ only when the
users U and U∗ have the same file. Thus, the CSP can detect
duplicate files through the file tags.

5.1.2 Correctness of Auditing

Assume that the user U delegates the TPA to audit a
ciphertext file C by sending the file tag β(u,f) and public
key pk(u,f) to the TPA. The TPA verifies the integrity proof
data Proof (y) = {T (y), {pai}(1≤i≤l2), δ

(y)} by verifying
that Eq. (10) is correct, where ρ(y) =

∑l2
i=1 bi · pai . The TPA

computes the two sides of Eq. (10) as follows

e(T (y) · µρ(y)

, pk(a,f))

=e((
l2∏
i=1

H2(cai
||ai)bi)x

(u)

· µ
∑d

j=1 x(u)·
∑l2

i=1 bi·cai,j , gz·s
(u)

1)

=e(
l2∏
i=1

H2(cai
||ai)bi · µ

∑d
j=1 ·

∑l2
i=1 bi·cai,j , gz·s

(u)·x(u)

1)

(13)

e(δ(y), g1)

=e(
l2∏
i=1

((H2(cai
||ai) ·

d∏
j=1

µcai,j)z)bi·s
(u)·x(u)

, g1)

=e(
l2∏
i=1

((H2(cai
||ai) ·

d∏
j=1

µcai,j)z)bi , gs
(u)·x(u)

1)

=e(
l2∏
i=1

H2(cai ||ai)bi · µ
∑d

j=1 ·
∑l2

i=1 bi·cai,j , gz·s
(u)·x(u)

1)

(14)

It can be seen that e(T (y) ·µρ(y)

, pk(a,f)) = e(δ(y), g1), which
verifies the correctness of the auditing method. Besides, we
will further prove that the CSP can not deceive the TPA us-
ing forged ciphertext and its corresponding authentication
tags in Section 5.2.2.

5.2 Security Analysis
We analyze the security that is expected to achieve in our
scheme from the aspects of data confidentiality, reliability of
auditing results, OP protection and resistance to DFA.

5.2.1 Data Confidentiality
Our scheme should protect the data confidentiality, which
indicates that only the file owners can obtain the plaintext
content F = {mi}(1≤i≤n) and other unauthorized entities
cannot get the content. Since the well-known AES-256 is
used to encrypt the F and it is semantically secure, the
adversary can only recover the plaintext by restoring the
encryption keys {ski}(1≤i≤n). On one hand, the encryption
keys {ski}(1≤i≤n) may be recovered using on-chain blind
signatures. On the other hand, to achieve deduplication, the
encryption keys are deterministic and related to the hash
values of data blocks. This strategy can be used by the
adversary to launch brute-force attacks. We analyze the data
confidentiality from the above two aspects.

Since the CSP knows more knowledge than other enti-
ties, we only need to prove that the data is secure when the
adversary is the CSP. First, we state that

Theorem 1. The CSP cannot deduce the encryption keys using
the on-chain blind signatures generated in the key generation
phase.

Proof. Let C be a challenger, A be an adversary (the CSP)
that can attack our scheme with advantage ϵ(κ).

• Init: For the given parameters G1,Z∗
N and r ∈ Z∗

N , the
challenger C sends the public parameters G1,Z∗

N to A.
• Challenge: The adversary A selects two messages
m0,m1 ∈ G1, and submits them to C. Then C flips
a fair binary coin α∗, and returns an ciphertext of
mα∗ ∈ {m0,m1}. Then the ciphertext Cα∗ = mr

α∗ is
outputted to A.

• Guess: The A outputs a guess α
′

of α∗. If α
′

is equal
to the α∗, the challenger C outputs 1. Otherwise, the C
outputs 0.

Then we have that

Pr[A(α∗ = α
′
)] =

1

2
+ ϵ(κ) (15)

When r is a random element from Z∗
N , the mr

α∗ is also
a random element in G1 from the view of A. This means
that the adversary A obtains no information related to α∗.
Hence,

Pr[A(α∗ = α
′
)] =

1

2
(16)

Thus, the adversary cannot obtain any information about
the encryption keys using these on-chain blind signatures
generated in the key generation phase.

Besides, we analyze the resistance of brute-force attacks.
Suppose that the adversary A knows the ciphertext C =

{ci}(1≤i≤n) and the file tag, namely β(u,f) = gz1 · νr(u)

=

gz1 · gq·r
(u)

2 . It may perform brute-force attacks using the file
tag β(u,f) and the method of duplication checking in Eq. (5),
or using the ciphertext {ci}(1≤i≤n).

In the general case, the CSP can only compromise at
most t − 1 key servers which is discussed in our threat

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

11

model in Section 3.2. Thus the adversary A cannot compute
the parameter z = H3(F)s, because s is a secret shared
among all the key servers and should be recovered from
t key servers. Thus the adversary A can not launch brute-
force attacks using the file tag. When launching the brute-
force attacks using the ciphertext {ci}(1≤i≤n), it should also
compute the encryption keys ski = H2(mi)

s. Since the
CSP cannot obtain the secret s shared among key servers, it
also cannot launch brute-force attacks using the ciphertext.
Therefore, the CSP cannot get the plaintext even though it
compromises t− 1 key servers.

5.2.2 Reliability of Auditing Result

During the auditing process, the CSP can use a forged file
and its corresponding authentication tags to deceive the
auditor if it obtains the secret signing key of authentication
tags [43]. Thus, the reliability of auditing results depends on
whether the CSP can deduce the signing secret key z.

Theorem 2. The CSP cannot deduce the signing key z of
authentication tags using its background knowledge if the Discrete
Logarithm (DL) assumption holds.

Proof. As discussed in our threat model in Section 3.2, the
CSP cannot collude with several key servers that is equal
to or more than t. Then it cannot obtain the secret s shared
among all the key servers. Thus, the CSP cannot deduce the
signing key z = H3(F)s through brute-force attacks.

The CSP can obtain the public key pk(u,f), re-signature
key rk(u,f) of the file and file tag β(u,f), where pk(u,f) =

gz·s
(u)

1 , rk(u,f) = {s(u), x(u)} and β(u,f) = gz1 · νr(u)

. For
the β(u,f), since the CSP has the secret p, it can deduce
z through the following way. Using the bilinear pairing e
and the method of duplication checking (the left-hand side
of Eq. (5)), the CSP can get e(β(u,f), g1)

p = e(gz1 , g1)
p =

e(gp1 , g1)
z . Meanwhile, since the CSP has the parameters

g1, p, it can compute e(gp1 , g1). For convenience, we use g
to replace the e(gp1 , g1) and gz to replace the e(gp1 , g1)

z . The
difficulty of computing z from g, gz is equal to solving the
DL problem.

Besides, for the pk(u,f), rk(u,f), the CSP can compute
gs

(u)

1 , since it has the rk(u,f) = {x(u), s(u)} and g1. We
also use g and gz to replace gs

(u)

1 and pk(u,f) = gz·s
(u)

1 ,
respectively. The difficulty of computing z from g, gz is also
equal to solving the DL problem.

For the CSP, the difficulty of computing z from its back-
ground knowledge is equal to solving the DL problem. Thus
it is hard for any probabilistic polynomial-time adversary to
obtain z. As a result, the CSP cannot deduce the signing key
z of authentication tags.

Since the CSP cannot deduce the signing key of au-
thentication tags, it may use a wrong signing key z′

to forge the authentication tags {σ′
i}(1≤i≤n) = {σ′

i =

[H2(c
′
i||i) ·

∏d
j=1 µ

c′i,j]z
′}(1≤i≤n) for the forged ciphertext

C ′ = c′1||c′2|| · · · ||c′n. Then the CSP can generate the
proof data Proof (y) = {T ′(y), {p′ai

}(1≤i≤l2), δ
′(y)}, where

T ′(y) = (
∏l2

i=1 H2(c
′
ai
||ai)bi)x

(u)

, ρ′(y) =
∑l2

i=1 bi · p′ai
=∑l2

i=1 bi ·
∑d

j=1 x
(u) · c′ai,j

, δ′(y) = (
∏l2

i=1 σ
′bi
ai
)s

(u)·x(u)

.

When receiving the proof information, the TPA verifies the
following equations.

e(T ′(y) · µρ′(y)

, pk(a,f))

=e(
l2∏
i=1

H2(c
′
ai
||ai)bi · µ

∑d
j=1 ·

∑l2
i=1 bi·c′ai,j , gz·s

(u)·x(u)

1)
(17)

e(δ′(y), g1)

=e(
l2∏
i=1

H2(c
′
ai
||ai)bi · µ

∑d
j=1 ·

∑l2
i=1 bi·c′ai,j , gz

′·s(u)·x(u)

1)

(18)
Since z′ in Eq. (18) is not equal to the z in Eq. (17),

the Eq. (18) is not equal to Eq. (17). Then the CSP cannot
deceive the TPA. Thus we can conclude that our scheme can
ensure the reliability of auditing results even though the
CSP colludes with t− 1 key servers.

Besides, our scheme can ensure that the decrypted con-
tent is integral. The user can check the auditing result before
downloading and decrypting the ciphertext. The user can
download the latest auditing logs of the requested file. If
the on-chain auditing result published by the TPA is non-
integral, the user can detect the corruption of the requested
file and does not decrypt the ciphertext. Otherwise, the
user verifies the on-chain integrity proof published by the
CSP using Eq. (10). Only when the verification of integrity
proof is valid, then the user downloads and decrypts the
ciphertext. Thus, our scheme can ensure that the decrypted
content is integral.

5.2.3 OP Protection
According to the threat model discussed in Section 3.2, the
adversary A may snoop on the OP from the auditing logs
on-chain. Here, we analyze how our scheme can protect the
OP.

Since our scheme uses random file tags, it is obvious that
the adversary A cannot exactly know the files owned by a
user. We mainly prove that the adversary A cannot obtain
which users own an identical file.

To snoop on OP, the TPA tends to publish the same
challenging data {r3, r4, l2} in different auditing processes,
which results in the same {ai = π1(i, r3)}(1≤i≤l2) and
{bi = π2(i, r4)}(1≤i≤l2) generated by the CSP in different
auditing processes. Suppose that two users U and U ′

out-
source an identical ciphertext C to the CSP and delegate
the TPA to audit the same file. We prove that even though
the challenged blocks cai

(1 ≤ i ≤ l2) and the random
coefficients bi(1 ≤ i ≤ l2) are the same in two auditing
processes, the auditing logs on-chain still cannot leak the
OP of U and U ′

. Table 3 lists the public information during
the auditing processes for the two users U and U ′

. We next
prove that the public information cannot leak that U and U ′

own an identical file.
For the file tags in the challenging information, it is

hard for any probabilistic polynomial-time adversary to
distinguish β(u,f) or β(u′,f) from a random element in G1.
since the r(u) in β(u,f) is randomly chosen by U and the
r(u

′) in β(u′,f) is randomly chosen by U ′
. Besides, it is

also hard for any probabilistic polynomial-time adversary
to detect that β(u,f) and β(u′,f) correlate to an identical file

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

12

TABLE 3: Auditing logs on-chain.

User ID File tag Challenge Public key Proof Result

U β(u,f) = gz1 · νr(u) {r3, r4, l2} pk(u,f) = gz·s
(u)

1

pai =
∑d

j=1 x
(u) · cai,j(1 ≤ i ≤ l2)

T (y,u) = (
∏l2

i=1 H2(cai ||ai)bi)x
(u)

δ(y,u) = (
∏l2

i=1 σ
bi
ai
)s

(u)·x(u)

Res(u)

U ′
β(u′,f) = gz1 · νr(u

′) {r3, r4, l2} pk(u
′,f) = gz·s

(u′)
1

p′ai
=

∑d
j=1 x

(u′) · cai,j(1 ≤ i ≤ l2)

T (y,u′) = (
∏l2

i=1 H2(cai ||ai)bi)x
(u′)

δ(y,u
′) = (

∏l2
i=1 σ

bi
ai
)s

(u′)·x(u′)

Res(u
′)

without the secret key of the CSP. Thus, the OP of U and
U ′

is not leaked from file tags. Besides, it is obvious that the
challenging data {r3, r4, l2} cannot leak the OP, since they
are selected by the TPA and independent on users.

For the public keys of the user U and the user U ′
, the s(u)

in the public key pk(u,f) = gz·s
(u)

1 is randomly chosen by U
and the s(u

′) in pk(u
′,f) is randomly chosen by U ′

, pk(u,f)

does not equal to pk(u
′,f). Therefore, the OP of U and U ′

is
not leaked from public keys.

For the integrity proofs, the CSP generates the proofs
for different users using different re-signature keys. The re-
signature key {x(u), s(u)} is randomly chosen by U and
the re-signature key {x(u′), s(u

′)} is randomly chosen by
U ′

. Since the x(u) in pai
and the x(u′) in p′ai

are different,
the pai

does not equal to p′ai
for every 1 ≤ i ≤ l2.

Since the x(u) in T (y,u) and the x(u′) in T (y,u′) are differ-
ent, the T (y,u) does not equal to T (y,u′). Since {x(u), s(u)}
in δ(y,u) does not equal to {x(u′), s(u

′)} in δ(y,u
′), δ(y,u)

does not equal to δ(y,u
′). Therefore, the TPA and all users

cannot detect that U and U ′
own an identical file us-

ing the integrity proofs {T (y,u), {pai}(1≤i≤l2), δ
(y,u)} and

{T (y,u′), {p′ai
}(1≤i≤l2), δ

(y,u′)}. Besides, it is obvious that the
auditing result cannot leak the OP, since auditing results for
all files can be either true or false. From the analysis above,
our scheme can protect the OP of users.

5.2.4 Resistance to DFA
We take UA as an initial uploader and UB as a subsequent
uploader in the following analysis. Our scheme targets to
prevent the subsequent uploaders from obtaining falsified
copies, which is shown in Fig. 2 in Section 3.4.2.

• In the initial uploading process, our design requires the
CSP to check the association between the ciphertext and
authentication tags uploaded by the user UA. Thus, to
nullify the above primary verification of the CSP, the
user UA can only upload falsified ciphertext C(a) and
its corresponding falsified authentication tags σ to store
poisoned ciphertext on the cloud.

• In the subsequent uploading process, the user UB up-
loads the file tag β(b,f) and the CSP can detect that
β(a,f) and β(b,f) correlate to the same file. Then our
design requires the CSP to check the file ownership of
the user UB using the authentication tags σ uploaded
by the user UA. Because the ciphertext C(b) computed
by the user UB is different from the falsified content
C(a) in σ. The CSP treats C(b) as a new file and the
DFA launched by the user UA is invalid.

As the description above, the resistance of DFA relies on the
association verification between the ciphertext and authen-
tication tags uploaded by the initial uploader and the PoW.
We next further prove the above two operations.

Association Between Ciphertext and Authentication
Tags: Assume that the initial uploader UA uploads a forged
ciphertext C ′ = c′1||c′2|| · · · ||c′n and the real authentication
tags σ = {σi = [H2(ci||i) ·

∏d
j=1 µ

ci,j]z}(1≤i≤n) of the real
ciphertext C = c1||c2|| · · · ||cn. Then the CSP checks the
association between the ciphertext and authentication tags.
The CSP computes

e(
n∏

i=1

H2(c
′
i||i)ai · µ

∑d
j=1

∑n
i=1 ai·c′i,j , pk(a,f))

=e(
n∏

i=1

H2(c
′
i||i)ai · µ

∑d
j=1

∑n
i=1 ai·c′i,j , gz·s

(a)

1)

(19)

e(
n∏

i=1

σai
i , gs

(a)

1)

=e(
n∏

i=1

((H2(ci||i) ·
d∏

j=1

µci,j)z)ai , gs
(a)

1)

=e(
n∏

i=1

H2(ci||i)ai ·
n∏

i=1

d∏
j=1

µai·ci,j , gz·s
(a)

1)

=e(
n∏

i=1

H2(ci||i)ai · µ
∑d

j=1

∑n
i=1 ai·ci,j , gz·s

(a)

1)

(20)

Obviously, Eq. (19) is equal to Eq. (20) only when c′i = ci
(1 ≤ i ≤ n). Thus, the CSP can check the association
between the ciphertext and the authentication tags of the
initial uploader.

PoW: When the subsequent uploader UB interacts with
the CSP to upload an already existing file, the CSP should
check the ownership of the user UB by verifying whether
the Eq. (8) is correct. The CSP computes the two sides of
Eq. (8) as follows,

e(T (x) · µρ(x)

, pk(b,f))

=e(
l1∏
i=1

H2(cai ||ai)bi · µ
∑d

j=1

∑l1
i=1 bi·cai,j , gz·s

(b)

1)
(21)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

13

e(δ(x), gs
(b)

1)

=e(
l1∏
i=1

((H2(c
′
ai
||ai) ·

d∏
j=1

µc′ai,j)z)bi , gs
(b)

1)

=e(
l1∏
i=1

H2(c
′
ai
||ai)bi · µ

∑d
j=1

∑l1
i=1 bi·c′ai,j , gz·s

(b)

1)

(22)

where c′ai
and cai

are the ciphertexts of challenged blocks
signed in authentication tags by UA and encrypted by the
subsequent uploader UB respectively. It is obvious that
Eq. (21) is equal to Eq. (22) only when c′ai

= cai
(1 ≤ i ≤ l1).

Thus the correctness of the PoW is verified.
Since the association between the ciphertext and authen-

tication tags uploaded by the initial uploader can be verified
by the CSP and the association between the ciphertext of
the subsequent uploader and the authentication tags can be
checked through PoW, we can conclude that the subsequent
uploader will not suffer from DFA.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
in terms of functionality, theoretical analysis, and simulation
analysis, and compare it with state-of-the-art schemes.

6.1 Functionality and Security Comparisons

Our scheme allows users to outsource their encrypted data
to the cloud and audit the data integrity. During the auditing
process, the user can stay offline and only the initial user
needs to generate and upload the authentication tags while
the subsequent users owning the same file do not need. The
cloud can perform deduplication to both the authentication
tags and encrypted data. Besides, our scheme is designed to
protect OP, ensure reliable auditing results for low-entropy
data, resist DFA, and reduce key storage cost of users.

Table 4 lists the functionality and security compar-
isons of different auditing and deduplication schemes. The
schemes in [22, 23] focus on plaintext data and thus cannot
protect data confidentiality. The other schemes focus on
ciphertext data. However, the schemes in [10, 14, 15, 24]
do not consider the threat of DFA. The scheme in [10]
achieves authentication tags deduplication by introducing
an additional fully trusted proxy server and the scheme
in [24] does not support authentication tags deduplication.
The schemes in [14, 16] require the user to stay online for
integrity auditing and authentication tags updates, respec-
tively. In particular, all previous schemes do not consider
the leakage of OP, unreliability of auditing results for low-
entropy data and key management. Our scheme is the first
solution to consider these security issues and completely
solve them.

Besides the functionalities list in Table 4, our scheme
can also resist brute-force attacks, which also indicates the
superiority and availability of our design.

6.2 Theoretical Analysis

Here, we calculate the computation, communication, and
storage cost of our scheme in theory. Since the schemes
in [22, 23] focus on plaintext data and the scheme in [10]

introduces an additional fully trusted proxy server to gen-
erate authentication tags, we only compare the related
schemes [14–16, 24] in both theoretical and simulation anal-
ysis. Let he, hpr, hh, hm, hm∗ , ha, hbm, hec denote the
computational costs of an exponentiation operation over G1,
a pseudo-random number generation, a hash operation, a
multiplication operation over ZN , a multiplication operation
over G1, an addition operation over ZN , a bilinear map
operation, one-time AES-256 encryption operation, respec-
tively.

6.2.1 Computation Cost
Table 5 shows the computational complexity for different
schemes in the data uploading process. For a file with n
blocks, all users should generate n encryption keys for the
n data blocks and the signing key of authentication tags in
the phase of key generation. A user first generates n + 1
random numbers with a cost of (n+ 1)hpr , computes n+ 1
hash values with a cost of (n+1)hh and computes n+1 blind
hash values with a cost of (n + 1)he. After obtaining blind
signature values from t key servers, the user needs to verify
these blind signature values with a cost of t(n+ 1)hbm and
compute the encryption keys and signing key with a cost
of (n + 1)(t(hm + he) + hh). Thus the total computation
cost is (n+ 1)(hpr + 2hh + (t+ 1)he + t(hm + hbm)) in the
key generation process. The user also needs to compute a
random file tag with a cost of 2he + hm∗ . If the outsourced
file does not exist on the cloud, the user needs to encrypt
all the n blocks and generate n authentication tags for the n
encrypted blocks with costs of nhec and n(hh+hm∗ +2he+
dha), respectively. If the outsourced file exists on the cloud,
the user needs to compute ownership proof with a cost of
l1(2hpr + hec + dha + hm∗ + hh + he) + dhm.

Table 6 shows the computational complexity for different
schemes in the auditing process. The CSP computes the
integrity proof with a cost of l2(2hpr + 2he + dha + hm +
hh) + hm + 2he, while the TPA verifies the integrity proof
with a cost of l2(hpr + hm + ha) + he + hm + 2hbm. Our
scheme does not require users to participate in the auditing
process.

6.2.2 Communication Cost
Table 7 shows the communication overhead for different
schemes. All users should interact with key servers to gen-
erate the encryption keys and signing key of authentication
tags. A user first needs to send (n+ 1) blind hash values to
all I key servers and receives (n+1) blind signature values
from every key server. Thus the communication overhead of
the user is (2n + 2)I|G1| in the key generation process. For
an initial uploader, the user needs to upload the ciphertext
with |C| bits, the authentication tags with n|G1| bits, the file
tag with |G1| bits, the public key with |G1| bits and the re-
signature key with 2|ZN | bits. For a subsequent uploader,
the user needs to receive the challenging information for
PoW with 2|ZN | bits and upload the file tag with |G1| bits,
the re-signature key with 2|ZN | bits, the public key with |G1|
bits and the ownership proof with |G1| + |ZN | bits. For the
auditing, the user needs to send the file tag with |G1| bits
and the public key with |G1| bits to the TPA for delegating
auditing. For data retrieval, the user first needs to download
the auditing log with 5|G1|+(l2 +2)|ZN | bits and the blind

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

14

TABLE 4: Functionality and security comparisons of different auditing and deduplication schemes.

Scheme
Data

confidentiality
Authentication tag

deduplication
Authentication
tag generation

User
offline

Key
management

Resistance
to DFA

Protection
of OP

Reliability of
auditing results for
low-entropy data

Scheme [22] No Yes All Users Yes No No No No
Scheme [23] No Yes Initial user Yes No No No No
Scheme [10] Yes Yes Other entity Yes No No No No
Scheme [14] Yes Yes Initial user No No No No No
Scheme [15] Yes Yes Initial user Yes No No No No
Scheme [24] Yes No All users No No No No No
Scheme [16] Yes Yes Initial user No No Yes No No
Our scheme Yes Yes Initial user Yes Yes Yes Yes Yes

TABLE 5: Comparisons of user computation cost in data uploading process.

Scheme
All users

Initial
uploader

Subsequent
uploader

Key
generation

File tag
generation

Scheme [14]
n(2he + 2hm∗

+hh + ha)
hh

n((d+ 1)hm∗ + hh

+(d+ 1)he + hec)
-

Scheme [15]
(n+ 2)hh+

hm + 2he
hh

n(hec + (d+ 1)hm∗

+hh + (d+ 1)he)

n(hm + hh+

ha + hce) + he

Scheme [24]
nhh + he

+hbm
hh

n(hh + hm∗

+hec + 2he)

n(hh + hm∗

+hec + 2he)

Scheme [16] nhh hh + he
2n(hh + he)

+n(hm∗ + hec)

l1(2hpr + hec + hh

+hm + ha)

Our Scheme
(n+ 1)(hpr + (t+ 1)he

+2hh + t(hm + hbm))
2he + hm∗

n(hh + hm∗+

2he + dha + hec)

l1(2hpr + hec + dha+

hm∗ + hh + he) + dhm

TABLE 6: Comparisons of computation cost in data auditing.

Scheme User CSP TPA

Scheme [14] he l2(d(hm + ha) + 2(hpr + hm + he + hm∗)) 2hbm + hm∗ + l2(2hpr + hh + (d+ 1)(he + hm∗))

Scheme [15] - l2(2hpr + he + hm∗ + d(hm + ha)) l2(2hpr + hh + (d+ 1)(he + hm∗)) + 2hbm

Scheme [24] l2hpr l2(2hpr + hm + ha + he + hm∗) + hh + hm∗ l2(hh + he + hm∗) + hh + 3he + 2hbm + hm∗

Scheme [16] nhm∗ + (n+ 1)he l2(2hpr + hh + hm + ha) l2(2(hpr + he + hm∗) + hh) + 2hbm + he + hm∗

Our Scheme - l2(2hpr + 2he + dha + hm + hh) + hm + 2he l2(hpr + hm + ha) + he + hm + 2hbm

signature values with tn|G1| bits from the blockchain. The
user also downloads the ciphertext with |C| bits from the
cloud.

6.2.3 Storage Cost

Table 8 shows the storage cost for different schemes. After
outsourcing a file, a user only needs to store the file tag
and the seed of random number generator, which occupies
|G1| + |θ| bits. The CSP stores the ciphertext, the authenti-
cation tags, the file tag, and the re-signature key of the user,
which occupies |C| + 2|ZN | + (n + 1)|G1| bits in total. The
blockchain records all the data of the auditing process and
the blind signatures in the key generation process, which
occupies (I(n+ 1) + 5)|G1|+ (l2 + 2)|ZN | bits.

The comparison results show that our scheme slightly
increases the computation cost and communication cost
compared to the schemes in [14–16, 24] in some operations.
This is because our scheme is designed to protect OP and

ensure the reliability of auditing results for low-entropy
data, and the other schemes cannot. Besides, although the
cost of some operations slightly increases, the overall cost
does not increase significantly, which is also verified by the
simulation results in Section 6.3.

6.3 Simulation Results

In this section, we simulate our scheme and analyze its
actual performance. We use C++ to implement the off-chain
programs of our scheme with Pairing Based Cryptography
(PBC) Library [54], GNU Multiple Precision Arithmetic
(GMP) Library [55] and OpenSSL Library [56]. We test the
off-chain computation cost of users using a windows laptop
with 2.30GHz Intel Core i5-6200U CPU and 8GB memory.
Our on-chain data is recorded in the Ethereum [51], and we
use the gas consumption to estimate the on-chain opera-
tions. We use Solidity to implement a simple smart contract,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

15

TABLE 7: Comparisons of user communication overhead.

Scheme
Key generation

with key servers

Initial upload

with CSP

Subsequent upload

with CSP

Auditing

with TPA

Data retrieval

from CSP

Data retrieval

from blockchain

Scheme [14] - |C|+ (n+ 1)|G1|+ 3|ZN | 3|ZN |+ |G1| |ZN |+ 3|G1| |C| -

Scheme [15] - |C|+ (n+ 4)|G1|+ 3|ZN | 5|ZN |+ 8|G1| 2|G1| |C| -

Scheme [24] - |C|+ n|G1|+ 2|ZN | |C|+ n|G1|+ 2|ZN | 3|ZN | |C| -

Scheme [16] - |C|+ (n+ 1)|G1|+ nk
|G1|+ (n+ 2)|ZN |

+nk
|G1| |C|+ nk -

Our Scheme (2n+ 2)I|G1| |C|+ (n+ 2)|G1|+ 2|ZN | 5|ZN |+ 3|G1| 2|G1| |C|
(tn+ 5)|G1|
+(l2 + 2)|ZN |

TABLE 8: Comparisons of storage cost.

Scheme User CSP Blockchain

Scheme [14] |ZN |+ |G1|+ nk |C|+ 3|ZN |+ n|G1| -

Scheme [15] |ZN |+ 2|G1|+ nk |C|+ 2|ZN |+ (n+ 4)|G1| -

Scheme [24] 2|ZN |+ nk |C|+ 2|ZN |+ n|G1| (2l2 + 2)|ZN |+ 2|G1|+ |G2|

Scheme [16] |ZN |+ |G1|+ k |C|+ |ZN |+ (n+ 1)|G1|+ nk 4|ZN |+ 2|G1|

Our Scheme |G1|+ |θ| |C|+ 2|ZN | +(n+ 1)|G1| (I(n+ 1) + 5)|G1|+ (l2 + 2)|ZN |

0 2 4 6 8 10

Data size (MB)

0

1

2

3

4

5

T
im

e
 c

o
s
t

(s
)

Scheme [14]

Scheme [15]

Scheme [24]

Scheme [16]

Our scheme

(a)

0 2 4 6 8 10

Data size (MB)

0

1

2

3

4

5

T
im

e
 c

o
s
t

(s
)

Scheme [14]

Scheme [15]

Scheme [24]

Scheme [16]

Our scheme

(b)

0 2 4 6 8 10

Data size (MB)

0

1

2

3

4

5

T
im

e
 c

o
s
t

(s
)

Scheme [14]

Scheme [15]

Scheme [24]

Scheme [16]

Our scheme

(c)

0 2 4 6 8 10

Data size (MB)

0

0.01

0.02

0.03

0.04

0.05

T
im

e
 c

o
s
t

(s
)

Scheme [14]

Scheme [15]

Scheme [24]

Scheme [16]

Our scheme

(d)

Fig. 3: Comparisons of actual off-chain computation cost for different auditable and secure deduplication schemes. (a) The
computation cost of initial uploader; (b) the computation cost of subsequent uploader; (c) the computation cost of CSP in
proof generation during auditing process; (d) the computation cost of TPA in proof verification during auditing process.

and use Web3j Library [57] to implement an interface to call
data uploading and downloading functions.

During the simulation, the κ inputted by CSP is set as
512. We instantiate the bilinear pairing using the A1 type
and encrypt the outsourced file using AES-256. The number
of key servers (i.e., I) is set as 10 and the threshold t is set
as 5. Besides, we execute all experiments 20 times to obtain
an average result.

6.3.1 Off-chain Computation Cost

Here, we evaluate the actual computation cost of the initial
uploader, subsequent uploader, CSP and TPA. We assume
that the 1/3 blocks are challenged in PoW and auditing,
and set the block size as 1KB and the sector size as 128B.

Fig. 3 shows the computation cost of the initial uploader,
subsequent uploader, CSP and TPA for different schemes.
The spent time in Fig. 3(a) is the total time of one-time
file uploading for the initial uploader. These operations
include the key generation, file tag generation, encryption
and authentication tags generation. The actual time cost of

the initial uploader is close to that in [14–16, 24]. However,
the scheme in [24] should limit the block size while the
schemes in [14, 16] require users to stay online in auditing
processes.

Fig. 3(b) is the total time of one-time file uploading for
the subsequent uploader. The operations include key gen-
eration, file tag generation, and proof generation for PoW.
It shows that the subsequent uploader in the scheme [14]
needs significantly lower time than other schemes. This
is because the scheme in [14] does not consider the file
ownership security and the subsequent uploader does not
need to compute ownership proof.

For the computation cost of the CSP shown in Fig. 3(c),
our scheme has a slightly higher computation cost than
the schemes in [14–16] during the integrity proof genera-
tion process, because our scheme needs an additional re-
signature operation to protect the OP of users. However, in
a cloud-based service, one cares more about the efficiency of
local users, rather than cloud servers, since the cloud server
usually has a large computation ability and these computa-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

16

Key Generation

Data upload

Challenge

Proof
Verification

Total

0

1

2

3

4

5

6
G

a
s
 c

o
s
ts

 (
G

w
e

i)
10

6

Our scheme

Scheme[24]

Scheme[16]

Fig. 4: Comparisons of on-chain operation cost for different
auditable and secure deduplication schemes.

tions cannot cause a significant burden to it. Besides, from
Fig. 3(d), our scheme has the lowest verifying time on TPA
during the auditing process. As a result, the computation
cost of our scheme is very similar compared to the previous
state-of-the-art similar schemes. However, our scheme can
achieve more security performance, as shown in Table 4.

6.3.2 On-chain Operation Cost
We also test the on-chain gas cost of our scheme. The exper-
iment is designed under the situation that a user uploads
and audits a file with size 10MB and 10 blocks. Fig. 4 shows
the experiment results. Since only the schemes in [16, 24]
are built based on blockchain, we compare our scheme with
the schemes in [16, 24]. In the key generation process, to
ensure the recoverability of encryption keys and reduce the
key storage cost of users, our scheme publishes the blind
signatures of data hash values on-chain, and thus has a gas
cost. In the process of data uploading, since our scheme and
the scheme in [24] do not need to create index tables on-
chain, they have no gas cost, whereas the scheme in [16]
has. In the challenging process, the gas cost of the scheme
in [24] is higher than the other two schemes. In the proof
process, our scheme has a higher gas cost than the other
two schemes. Besides, in the verification process, the gas
cost of the scheme in [24] is far higher than other schemes,
because lots of on-chain computations are involved in the
scheme in [24]. As a result, the total gas cost of the scheme
in [24] is the highest, and our scheme has a slightly higher
gas cost than the previous state-of-the-art scheme.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new auditable and secure
deduplication scheme for cloud storage. The users can audit
the integrity of their outsourced files, while the CSP can
deduplicate both the outsourced encrypted files and authen-
tication tags on the cloud. Our scheme can protect the OP of
users and ensure the reliability of auditing results for low-
entropy data. By introducing the blockchain, our scheme can
greatly reduce the key storage cost for users, guarantee key
recoverability, and solve the trust issues between the users
and TPA. Besides, our scheme can also protect users from

losing data under DFA. We theoretically prove the correct-
ness and security of our scheme. Analysis and experimental
results show that our scheme can protect the OP of users
and ensure the reliability of auditing results for low-entropy
data with modest computation costs. However, the previous
schemes cannot achieve these security effects. Since a user
usually stores a large number of files to the cloud and audits
these files one-by-one is time-consuming and inconvenient,
our future work will extend the functionality of our scheme
by supporting batch auditing.

ACKNOWLEDGMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 62071142,
in part by the Guangdong Basic and Applied Basic Re-
search Foundation under Grants 2021A1515110027 and
2021A1515011406, and in part by the Shenzhen College Sta-
bility Support Plan under grant GXWD20201230155427003-
20200824210638001.

REFERENCES
[1] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: the digitiza-

tion of the world from edge to core,” Seagate, 2018.
[2] J. Gants, “Digital universe decade-are you ready?” http://idcdocserv.

com/925, 2010.
[3] D. Quick and K.-K. R. Choo, “Google drive: Forensic analysis

of data remnants,” Journal of Network and Computer Applications,
vol. 40, pp. 179–193, 2014.

[4] A. Dropbox, “file-storage and sharing service.(2016).”
[5] M. Mozy, “A file-storage and sharing service.(2016).”
[6] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked

encryption and secure deduplication,” in Annual international
conference on the theory and applications of cryptographic techniques.
Springer, 2013, pp. 296–312.

[7] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dupless: Server-
aided encryption for deduplicated storage,” in 22nd {USENIX}
Security Symposium ({USENIX} Security 13), 2013, pp. 179–194.

[8] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of en-
crypted data without additional independent servers,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 874–885.

[9] J. Li, C. Qin, P. P. Lee, and X. Zhang, “Information leakage in
encrypted deduplication via frequency analysis,” in 2017 47th
Annual IEEE/IFIP international conference on dependable systems and
networks (DSN). IEEE, 2017, pp. 1–12.

[10] J. Li, J. Li, D. Xie, and Z. Cai, “Secure auditing and deduplicating
data in cloud,” IEEE Transactions on Computers, vol. 65, no. 8, pp.
2386–2396, 2015.

[11] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au, and Q. Wang,
“Enabling secure and efficient decentralized storage auditing with
blockchain,” IEEE Transactions on Dependable and Secure Computing,
2021, to appear, doi:10.1109/TDSC.2021.3081826.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing,” in 2010
proceedings ieee infocom. IEEE, 2010, pp. 1–9.

[13] D. Vasilopoulos, M. Önen, K. Elkhiyaoui, and R. Molva, “Message-
locked proofs of retrievability with secure deduplication,” in Pro-
ceedings of the 2016 ACM on Cloud Computing Security Workshop,
2016, pp. 73–83.

[14] X. Liu, W. Sun, W. Lou, Q. Pei, and Y. Zhang, “One-tag checker:
Message-locked integrity auditing on encrypted cloud deduplica-
tion storage,” in IEEE INFOCOM 2017-IEEE Conference on Com-
puter Communications. IEEE, 2017, pp. 1–9.

[15] X. Gao, J. Yu, W.-T. Shen, Y. Chang, S.-B. Zhang, M. Yang, and
B. Wu, “Achieving low-entropy secure cloud data auditing with
file and authenticator deduplication,” Information Sciences, vol. 546,
pp. 177–191, 2021.

[16] G. Tian, Y. Hu, J. Wei, Z. Liu, X. Huang, X. Chen, and W. Susilo,
“Blockchain-based secure deduplication and shared auditing in
decentralized storage,” IEEE Transactions on Dependable and Secure
Computing, 2021, to appear, doi:10.1109/TDSC.2021.3114160.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

17

[17] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE trans-
actions on computers, vol. 62, no. 2, pp. 362–375, 2011.

[18] C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang, “A
blockchain-based multi-cloud storage data auditing scheme to lo-
cate faults,” IEEE Transactions on Cloud Computing, 2021, to appear,
doi:10.1109/TCC.2021.3057771.

[19] W. Shen, J. Qin, J. Yu, R. Hao, J. Hu, and J. Ma, “Data integrity
auditing without private key storage for secure cloud storage,”
IEEE Transactions on Cloud Computing, vol. 9, no. 4, pp. 1408–1421,
2019.

[20] Y. Su, J. Sun, J. Qin, and J. Hu, “Publicly verifiable shared
dynamic electronic health record databases with functional
commitment supporting privacy-preserving integrity audit-
ing,” IEEE Transactions on Cloud Computing, 2020, to appear,
doi:10.1109/TCC.2020.3002553.

[21] J. Li, H. Yan, and Y. Zhang, “Efficient identity-based provable
multi-copy data possession in multi-cloud storage,” IEEE Trans-
actions on Cloud Computing, vol. 10, no. 1, pp. 356–365, 2022.

[22] J. Yuan and S. Yu, “Secure and constant cost public cloud storage
auditing with deduplication,” in 2013 IEEE Conference on Commu-
nications and Network Security (CNS). IEEE, 2013, pp. 145–153.

[23] Y. Xu, C. Zhang, G. Wang, Z. Qin, and Q. Zeng, “A blockchain-
enabled deduplicatable data auditing mechanism for network
storage services,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 9, no. 3, pp. 1421–1432, 2021.

[24] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo,
“Blockchain-based public auditing and secure deduplication with
fair arbitration,” Information Sciences, vol. 541, pp. 409–425, 2020.

[25] Y. Duan, “Distributed key generation for encrypted deduplication:
Achieving the strongest privacy,” in Proceedings of the 6th edition of
the ACM Workshop on Cloud Computing Security, 2014, pp. 57–68.

[26] Y. Zhang, C. Xu, N. Cheng, and X. Shen, “Secure password-
protected encryption key for deduplicated cloud storage systems,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2789–2806, 2021.

[27] X. Yang, R. Lu, J. Shao, X. Tang, and A. Ghorbani, “Achieving
efficient secure deduplication with user-defined access control
in cloud,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 1, pp. 591–606, 2022.

[28] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani, “Achieving
efficient and privacy-preserving multi-domain big data dedupli-
cation in cloud,” IEEE Transactions on Services Computing, vol. 14,
no. 5, pp. 1292–1305, 2021.

[29] H. Kwon, C. Hahn, K. Kang, and J. Hur, “Secure deduplication
with reliable and revocable key management in fog computing,”
Peer-to-Peer Networking and Applications, vol. 12, no. 4, pp. 850–864,
2019.

[30] H. Kwon, C. Hahn, D. Koo, and J. Hur, “Scalable and reliable
key management for secure deduplication in cloud storage,” in
2017 IEEE 10th international conference on cloud computing (CLOUD).
IEEE, 2017, pp. 391–398.

[31] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou, “Secure dedu-
plication with efficient and reliable convergent key management,”
IEEE transactions on parallel and distributed systems, vol. 25, no. 6,
pp. 1615–1625, 2013.

[32] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and C. Li,
“Secdep: A user-aware efficient fine-grained secure deduplication
scheme with multi-level key management,” in 2015 31st Sympo-
sium on Mass Storage Systems and Technologies (MSST). IEEE, 2015,
pp. 1–14.

[33] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed
file system,” in Proceedings 22nd international conference on dis-
tributed computing systems. IEEE, 2002, pp. 617–624.

[34] Q. Xie, C. Zhang, and X. Jia, “Security-aware and effi-
cient data deduplication for edge-assisted cloud storage sys-
tems,” IEEE Transactions on Services Computing, 2022, to appear,
doi:10.1109/TSC.2022.3195318.

[35] T. Jiang, X. Yuan, Y. Chen, K. Cheng, L. Wang, X. Chen, and J. Ma,
“Fuzzydedup: Secure fuzzy deduplication for cloud storage,”
IEEE Transactions on Dependable and Secure Computing, 2022, to
appear, doi:10.1109/TDSC.2022.3185313.

[36] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in
cloud services: Deduplication in cloud storage,” IEEE Security &
Privacy, vol. 8, no. 6, pp. 40–47, 2010.

[37] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of

ownership in remote storage systems,” in Proceedings of the 18th
ACM conference on Computer and communications security, 2011, pp.
491–500.

[38] G. Tian, H. Ma, Y. Xie, and Z. Liu, “Randomized deduplication
with ownership management and data sharing in cloud storage,”
Journal of Information Security and Applications, vol. 51, p. 102432,
2020.

[39] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and commu-
nications security, 2007, pp. 598–609.

[40] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proceedings of the 4th
international conference on Security and privacy in communication
netowrks, 2008, pp. 1–10.

[41] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud
computing,” IEEE transactions on parallel and distributed systems,
vol. 22, no. 5, pp. 847–859, 2010.

[42] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security, 2007, pp. 584–597.

[43] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
International conference on the theory and application of cryptology and
information security. Springer, 2008, pp. 90–107.

[44] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in International conference on the theory and application
of cryptology and information security. Springer, 2001, pp. 514–532.

[45] K. Yang and X. Jia, “An efficient and secure dynamic auditing
protocol for data storage in cloud computing,” IEEE transactions
on parallel and distributed systems, vol. 24, no. 9, pp. 1717–1726,
2012.

[46] Y. Zhang, C. Xu, N. Cheng, and X. S. Shen, “Secure password-
protected encryption key for deduplicated cloud storage systems,”
IEEE Transactions on Dependable and Secure Computing, 2021, to
appear, doi:10.1109/TDSC.2021.3074146.

[47] S. Li, C. Xu, Y. Zhang, Y. Du, and K. Chen, “Blockchain-based
transparent integrity auditing and encrypted deduplication for
cloud storage,” IEEE Transactions on Services Computing, 2022, to
appear, doi:10.1109/TSC.2022.3144430.

[48] M. Miao, J. Wang, H. Li, and X. Chen, “Secure multi-server-aided
data deduplication in cloud computing,” Pervasive and Mobile
Computing, vol. 24, pp. 129–137, 2015.

[49] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Theory of cryptography conference. Springer,
2007, pp. 535–554.

[50] N. P. Smart, “The discrete logarithm problem on elliptic curves of
trace one,” Journal of cryptology, vol. 12, no. 3, pp. 193–196, 1999.

[51] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[52] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Business Review, p. 21260, 2008.

[53] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure
and efficient cloud data deduplication with randomized tag,” IEEE
transactions on information forensics and security, vol. 12, no. 3, pp.
532–543, 2016.

[54] B. Lynn, “The pairing-based cryptography (pbc) library,” 2010.
[55] T. Granlund, “Gnu multiple precision arithmetic library,”

http://gmplib. org/, 2010.
[56] “Openssl,” [Online], https://www.openssl.org/.
[57] “Web3j library,” [Online], https://github.com/web3j/web3j.

Mingyang Song received his B.E. and M.E.
degrees in software engineering from Sun Yat-
sen University, Guangzhou, China, in 2019 and
2021, respectively. He is currently pursuing the
Eng.D. degree with the Department of Elec-
tronic Information, Harbin Institute of Technol-
ogy, Shenzhen. His research interests include
security and privacy related to cloud computing,
applied cryptography, and blockchain.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

https://www.openssl.org/
https://github.com/web3j/web3j

18

Zhongyun Hua (Member, IEEE) received the
B.S. degree in software engineering from
Chongqing University, Chongqing, China, in
2011, and the M.S. and Ph.D. degrees in soft-
ware engineering from the University of Macau,
Macau, China, in 2013 and 2016, respectively.

He is currently an Associate Professor with the
School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China.
His research interests include chaotic system,
chaos-based applications, data hiding, and mul-

timedia security. He has published more than sixty papers on the sub-
ject, receiving more than 3900 citations.

Yifeng Zheng is an Assistant Professor with
the School of Computer Science and Technol-
ogy, Harbin Institute of Technology, Shenzhen,
China. He received the PhD degree in computer
science from the City University of Hong Kong,
Hong Kong, in 2019. He worked as a postdoc
with the Commonwealth Scientific and Industrial
Research Organization (CSIRO), Australia and
City University of Hong Kong. His work has ap-
peared in prestigious venues such as ESORICS,
DSN, ACM AsiaCCS, IEEE INFOCOM, IEEE

ICDCS, IEEE Transactions on Dependable and Secure Computing,
IEEE Transactions on Information Forensics and Security, and IEEE
Transactions on Services Computing. He received the Best Paper Award
in the European Symposium on Research in Computer Security (ES-
ORICS) 2021. His current research interests are focused on security
and privacy related to cloud computing, IoT, machine learning, and
multimedia.

Hejiao Huang received the B.S. and M.S. de-
grees in mathematics from Shaanxi Normal Uni-
versity, Xi’an, China, in 1996 and 1999, respec-
tively, and the Ph. D. degree in computer science
from the City University of Hong Kong, Hong
Kong, in 2004.

She was an Invited Professor with INRIA, Bor-
deaux, France. She is currently a Professor with
the Harbin Institute of Technology, Shenzhen,
China. Her research interests include cloud com-
puting, network security, trustworthy computing,

and formal methods for system design and wireless networks.

XiaoHua Jia (F’13) received the BSc and MEng
degrees in 1984 and 1987, respectively, from the
University of Science and Technology of China,
and the DSc degree in 1991 in information sci-
ence from the University of Tokyo. He is cur-
rently the chair professor with the Department
of Computer Science at the City University of
Hong Kong. His research interests include cloud
computing and distributed systems, computer
networks, wireless sensor networks and mobile
wireless networks. He is an editor of the IEEE

Transactions on Parallel and Distributed Systems (2006-2009), Wire-
less Networks, Journal of World Wide Web, Journal of Combinatorial
Optimization, etc. He is the general chair of ACM MobiHoc 2008, TPC
co-chair of IEEE MASS 2009, area-chair of IEEE INFOCOM 2010,
TPC co-chair of IEEE GlobeCom 2010-Ad Hoc and Sensor Networking
Symposium, and Panel co-chair of IEEE INFOCOM 2011. He is a fellow
of the IEEE Computer Society.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3237221

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:22:07 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Secure Deduplication
	Public Integrity Auditing
	Data Deduplication and Integrity Auditing

	Problem Formulation
	System Model
	Threat Model
	Design Goals
	Overview of Our Scheme
	Overview
	Design Goals Achievement

	Proposed Scheme
	Preliminaries
	Bilinear Pairing of Composite Order
	Blockchain
	Authentication Tags
	Multiple Servers-aided Message-locked Encryption

	System Setup
	Setup of the Cloud
	Setup of Key Servers

	Key Generation
	Data Uploading
	Initial Uploading
	Subsequent Uploading

	Integrity Auditing
	Data Downloading

	Scheme Analysis
	Correctness
	Correctness of Deduplication
	Correctness of Auditing

	Security Analysis
	Data Confidentiality
	Reliability of Auditing Result
	OP Protection
	Resistance to DFA

	Performance Evaluation
	Functionality and Security Comparisons
	Theoretical Analysis
	Computation Cost
	Communication Cost
	Storage Cost

	Simulation Results
	Off-chain Computation Cost
	On-chain Operation Cost

	Conclusion and Future Work
	Biographies
	Mingyang Song
	Zhongyun Hua
	Yifeng Zheng
	Hejiao Huang
	XiaoHua Jia

