
Computers & Security 140 (2024) 103803

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

BopSkyline: Boosting privacy-preserving skyline query service in the cloud

Weibo Wang a, Yifeng Zheng a,∗, Songlei Wang a, Zhongyun Hua a, Lei Xu b, Yansong Gao c

a School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
b School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, China
c Data61, CSIRO, Sydney, Australia

A R T I C L E I N F O A B S T R A C T

Keywords:

Service outsourcing

Cloud computing

Skyline query

Privacy protection

With the widespread adoption of cloud computing, there has been great popularity of storing and querying
databases in the cloud. However, such service outsourcing also entails critical data privacy concerns, as the
cloud providers are generally not in the same trust domain as the data owners/users and could even suffer from
data breaches. In this paper, different from most existing works that propose security designs for keyword search,
we focus on secure realizations of advanced skyline query processing, which plays an important role in multi-

criteria decision support applications. We propose BopSkyline, a new system framework for privacy-preserving
skyline query service in cloud computing. BopSkyline is designed to not only ensure the confidentiality of
outsourced databases, skyline queries, and query results, but also conceal data patterns (like the dominance
relationships among database tuples) and search access patterns that may indirectly lead to data leakages.
Notably, through a delicate synergy of key ideas on secure database shuffling and differentially private database
padding, BopSkyline achieves a significant performance boost over the state-of-the-art. Extensive experiments
demonstrate that compared with the state-of-the-art prior work, BopSkyline is up to 4.7× better in query latency
and achieves up to 99.38% cost savings in communication.
1. Introduction

Storing and querying databases in the cloud has gained great popu-

larity along with widespread adoption of cloud computing that provides
well-understood benefits [34,19]. On another hand, such service out-

sourcing also raises critical data privacy concerns, as the cloud service
providers are not in the same trust domain as the data owners/users and
could even suffer from data breaches. For example, in 2022, FlexBooker
suffered from a data breach that exposed personal information of up to
19 million users due to that their account on Amazon’s AWS servers
got compromised [3]. Consequently, it is essential to integrate secu-

rity measures into such outsourced database query services. Numerous
efforts have been made to support queries over encrypted outsourced
databases, where most existing works have been concentrated on en-

crypted keyword search.

In contrast to the majority of prior research, this paper’s focus lies
on secure realizations of advanced skyline query processing over out-

sourced databases. Skyline query [20] is an advanced type of query
for analytics of multi-dimensional databases, which aims to find data
points/tuples from a database which are not dominated by any other

* Corresponding author.

E-mail addresses: weibo.wang.hitsz@outlook.com (W. Wang), yifeng.zheng@hit.edu.cn (Y. Zheng), songlei.wang@outlook.com (S. Wang),

point in the database. Consider for example two data points 𝐚 and
𝐛 from a database. Given a query point 𝐪, 𝐚 is said to dominate 𝐛
with respect to 𝐪, if 𝐚 is closer to 𝐪 than 𝐛 in at least one dimension
and not farther in any other dimension. Skyline query can benefit a
wide range of multi-criteria decision support applications (especially for
those where it is hard to define a single distance metric for all dimen-

sions [27,28]), such as web information systems [2], wireless mobile
ad-hoc networks [18], and geographical information systems [11].

To illustrate how skyline query works and our target problem with
more clarity, we describe an exemplary use case of skyline query. Let
us consider that a medical center outsources its database of patient
records to the cloud, which can then offer skyline query services to
doctors from other medical centers. For simplicity, assume that there
are 5 patient records in the original database 𝐃, each of which is asso-

ciated with two attributes “Age” and “Systolic Blood Pressure (SBP)”.
The doctors from other medical centers can issue skyline queries to the
cloud to retrieve records similar to their patients, for the purpose of
treatment enhancement and personalization. Specifically, given a query
𝐪 = (46, 130), the skyline query service expects the cloud to retrieve all
Available online 8 March 2024
0167-4048/© 2024 Elsevier Ltd. All rights reserved.

huazhongyun@hit.edu.cn (Z. Hua), xuleicrypto@gmail.com (L. Xu), gao.yansong@h

https://doi.org/10.1016/j.cose.2024.103803

Received 4 September 2023; Received in revised form 11 December 2023; Accepted
otmail.com (Y. Gao).

 4 March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:weibo.wang.hitsz@outlook.com
mailto:yifeng.zheng@hit.edu.cn
mailto:songlei.wang@outlook.com
mailto:huazhongyun@hit.edu.cn
mailto:xuleicrypto@gmail.com
mailto:gao.yansong@hotmail.com
https://doi.org/10.1016/j.cose.2024.103803
https://doi.org/10.1016/j.cose.2024.103803
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103803&domain=pdf

W. Wang, Y. Zheng, S. Wang et al.

Table 1

An Example of Original Database
𝐃 and Mapped Database 𝐁 of Pa-

tient Records.

Original Database Age SBP

𝑑1 50 150

𝑑2 42 135

𝑑3 44 120

𝑑4 52 125

𝑑5 40 145

Mapped Database Age SBP

𝑏1 4 20

𝑏2 4 5

𝑏3 2 10

𝑏4 6 5

𝑏5 6 15

Fig. 1. An example of skyline query under a query point 𝐪.

records from 𝐃 that are not dominated by any other record with re-

spect to 𝐪. To achieve this, the cloud first maps the original database 𝐃
to a new database (called mapped database 𝐁) by utilizing the mapping
function [27,28]: 𝐛𝑖[𝑗] = |𝐝𝑖[𝑗] − 𝐪[𝑗]|, 𝑖 ∈ [1, 5], 𝑗 ∈ [1, 2]. The original
database and mapped database are shown in Table 1, and the mapping
relationships between them are illustrated in Fig. 1. The resulting pa-

tient records returned as the target skyline points are 𝐝2 and 𝐝3. This is
because 𝐛2 dominates 𝐛1, 𝐛4 and 𝐛5; and 𝐛3 dominates 𝐛1 and 𝐛5. The
formal definition of dominance is provided in Section 3.1.

In this paper, we aim to develop techniques that allow the cloud
to process skyline queries over outsourced encrypted databases in an
efficient and privacy-preserving manner. Taking the aforementioned ap-

plication scenario as a concrete example, our goal is to enable the cloud,
which hosts an encrypted version of the database 𝐃 to produce the en-

crypted version of the skyline query result {𝐝2, 𝐝3} with respect to the
query point 𝐪. It is noted that in such outsourced skyline query service,
not only the data content confidentiality demands protection, but also
the data patterns and search access patterns which could be sources of
indirect data leakages [27,28,12]. Here, the data patterns refer to the
relationships of dominance among the database tuples and the number
of database tuples that each skyline tuple dominates; the search pattern
indicates whether a skyline query is a repeated one; and the access pat-

tern indicates which database tuples are identified as the skyline tuples
with respect to the query.

In the literature, a few works [5,27,28,12,44,43,38,40] have been
presented regarding privacy-preserving skyline queries over encrypted
databases. The state-of-the-art design that is most related to our work is
SecSkyline [44], which builds on lightweight cryptographic techniques
to support privacy-preserving skyline queries. However, the solution
of SecSkyline is not yet fully satisfactory due to the high theoretical
performance complexities in the query processing phase. Specifically,
2

in each round of secure skyline finding, to prevent the cloud from
Computers & Security 140 (2024) 103803

learning the dominance relationships, SecSkyline has to let the cloud
obliviously mark skyline tuples and their dominated tuples, without ac-

tually eliminating them from the encrypted mapped/original database.
This undesirably poses a requirement that in each round the cloud has
to always iterate over all database tuples in the ciphertext domain, even
though most tuples should have stayed out of the processing.

In light of the above, in this paper, we design, implement, and
evaluate BopSkyline, a new system framework that achieves a remark-

able performance boost over the state-of-the-art prior work SecSkyline
[44]. At a very high level, BopSkyline is built from a delicate syn-

ergy of lightweight secret sharing techniques [10], differential privacy
(DP) [14], and secure shuffle [15]. The key insight of BopSkyline in
achieving remarkably boosted performance over SecSkyline is to de-

vise mechanisms that allow the cloud to delete the skyline tuple and its
dominated tuples in each round of secure skyline finding while being
oblivious to the true data patterns and access pattern.

To this end, our main idea is to first have the cloud obliviously shuf-

fle the tuples in the encrypted original database by a secret random
permutation before securely processing a skyline query. Subsequently,
in each round of secure skyline finding, the cloud can safely reveal
which tuples in the encrypted permuted database are the skyline and
dominated tuples and delete them. As a result, the performance com-

plexity can gradually decrease over the rounds. It is worth noting that
since the random permutation for (oblivious) database shuffling is un-

known to the cloud, it cannot determine which encrypted tuples in the
original database are the skyline or dominated tuples, and thus cannot
learn the true dominance relationships and access pattern.

Within such secure database shuffling-based framework, however,
there is a subtle issue to be considered. In particular, directly revealing
which tuples are the skyline and dominated tuples in the encrypted per-

muted database will leak the exact number of database tuples that each
skyline tuple dominates, which also demands protection [27,28,12]. To
mitigate such leakage, our key idea is to let the data owner add some
dummy tuples into the original database in the database preparation
phase, so that the number of database tuples that each skyline tuple
dominates is obfuscated. Based on the notion of differential privacy
(DP), we devise a DP-based mechanism for theoretically determining
the number of dummy tuples to be added. Furthermore, we show how
to delicately construct the dummy tuples so that their existence in the
outsourced database will not affect the result accuracy of skyline query.

We implement BopSkyline’s protocols and conduct extensive em-

pirical evaluations on multiple datasets. The results demonstrate that
BopSkyline outperforms SecSkyline [44] with a significant improve-

ment in performance. Specifically, BopSkyline is up to 4.7× better than
SecSkyline in query latency and achieves up to 99.38% savings in com-

munication cost. Moreover, the performance advantage of BopSkyline
over SecSkyline grows sharply as the number of dimensions increases.
Our key contributions are outlined below:

• We present BopSkyline, a new system framework enabling privacy-

preserving skyline query services outsourced to the cloud, with a
significant performance boost over the state-of-the-art.

• We propose the idea of secure database shuffling to allow obliv-

ious tuple deletion in the secure skyline query processing stage.
It greatly reduces the performance complexity compared to the
state-of-the-art SecSkyline, while concealing the true dominance
relationships and access pattern.

• We devise delicate mechanisms for adding dummy tuples to the
outsourced database, which allow protection for the private infor-

mation regarding the number of database tuples each skyline tuple
dominates, while preserving the result accuracy.

• We conduct a formal security analysis of BopSkyline and conduct
extensive empirical evaluations on multiple datasets. The results
show that BopSkyline greatly outperforms the state-of-the-art prior
work SecSkyline [44], with up to 4.7× better performance in query

latency and up to 99.38% cost savings in communication.

W. Wang, Y. Zheng, S. Wang et al.

The rest of this paper is structured as follows. Section 2 reviews
the related work, while Section 3 introduces the necessary preliminar-

ies. In Section 4, we present our system architecture and threat model.
Section 5 presents the design of BopSkyline, followed by the security
analysis and experiments in Sections 6 and 7, respectively. Lastly, Sec-

tion 8 concludes this paper.

2. Related work

2.1. Skyline query without privacy protection

Börzsönyi et al. [4] are the first that propose the skyline opera-

tor for database systems. Since then, a lot of efforts have been pre-

sented for improving the algorithms for skyline query processing. An
approach for processing skyline queries leveraging the nearest neigh-

bor method is designed by Kossmann et al. [21]. Papadias et al. [31]

present the branch-and-bound skyline algorithm, which achieves su-

perior efficiency and storage over prior works. Another line of work
has investigated how to process skyline queries in various scenarios,
such as uncertain skyline [26,33], skyline queries on data streams [36],
subspace skyline [9,32], and group-based skyline [25,42]. Despite the
usefulness, these works deal with skyline queries in the plaintext do-

main and do not provide privacy protection.

2.2. Secure skyline query processing

The problem of secure skyline query processing is first studied by
Bothe et al. [5]. They formulate the secure skyline problem and propose
an approach relying on secret matrices for data protection. However,
their protocol falls short of providing rigorous security guarantees. The
recent works in [28,12] propose cryptography-based schemes which
can provide rigorous security guarantees on data content confidential-

ity, data patterns, and search access patterns. Yet they have limited
practicability since they build on heavy cryptosystems. Very recently,
Zheng et al. [44] present SecSkyline, which fully builds on lightweight
cryptography and achieves performance substantially better than the
schemes in [28,12]. However, as mentioned above, in each round of se-

cure skyline finding, SecSkyline just lets the cloud obliviously flag the
skyline and dominated tuples instead of actually deleting them. In this
way, the cloud has to always go through all the database tuples in each
round, leading to high performance complexity.

There exist other studies [43,40] concentrating on securely process-

ing skyline queries under different scenarios than ours. Zhang et al. [43]

study privacy-preserving user-defined skyline queries, where the client
can select some target dimensions, tailor the preference on each tar-

get dimension, and define a constrained region for the values on the
target dimensions. The type of skyline query considered in [43] is not
a general one and the design in [43] does not protect the data pat-

terns and search access patterns. In another independent work [40],
Wang et al. concentrate on providing support for result verification for
location-based skyline queries that only involve two spatial attributes.
Additionally, Wang et al. [38] leverage trusted hardware for secure
skyline query computation. While in general such kind of approach
achieves better performance than cryptographic approaches, it comes at
the price of a much weaker threat model that demands trust on the ven-

dors of trusted hardware and the enclave implementation. Meanwhile, a
series of several attacks [16,37,23,22] targeting trusted hardware have
emerged, threatening systems that rely on trusted hardware. Yet the at-

tacks are overlooked by [38]. Hence, the state-of-the-art prior work that
is most related to ours is SecSkyline [44].

3. Preliminaries

3.1. Skyline query

Definition 1. (Skyline [4]). Consider a database 𝐃 = {𝐝1, ⋯ , 𝐝𝑛} in an
3

𝑚-dimensional space (each dimension corresponds to an attribute) and
Computers & Security 140 (2024) 103803

Algorithm 1 Plaintext-Domain Skyline Query Processing.

Input: An 𝑚-dimensional database 𝐃 of 𝑛 tuples and a query tuple 𝐪.

Output: The set of skyline tuples 𝐪 with respect to 𝐪.

1: for 𝑖 = 1 to 𝑛 do

2: for 𝑗 = 1 to 𝑚 do

3: 𝐛𝑖[𝑗] = |𝐝𝑖[𝑗] − 𝐪[𝑗]|.
4: end for

5: end for

6: Set {𝐛1, ⋯ , 𝐛𝑛} as the initial mapped database 𝐁(0) .

7: for 𝑖 = 1 to 𝑛 do

8: 𝐬[𝑖] =∑𝑚

𝑗=1 𝐛𝑖[𝑗].
9: end for

10: 𝑘 = 0.

11: while 𝐁(𝑘) ≠ ∅ do

12: Select from the current mapped database 𝐁(𝑘) the tuple 𝐛𝑖∗ with the min-

imum 𝐬[𝑖∗], denoted by 𝐛⋆ .

13: Add the tuple in 𝐃 corresponding to 𝐛⋆ to the skyline pool 𝐪 .

14: Delete 𝐛⋆ and tuples dominated by 𝐛⋆ from 𝐁(𝑘) .

15: 𝐁(𝑘+1) = 𝐁(𝑘) .

16: 𝑘 ++.

17: end while

18: return The set of skyline tuples 𝐪 with respect to 𝐪.

two tuples 𝐝𝑎 and 𝐝𝑏 in 𝐃. 𝐝𝑎 is said to dominate 𝐝𝑏 iff ∀𝑗 ∈ [1, 𝑚],
𝐝𝑎[𝑗] ≤ 𝐝𝑏[𝑗] and ∃𝑗 ∈ [1, 𝑚], 𝐝𝑎[𝑗] < 𝐝𝑏[𝑗]. The skyline tuples are those
which cannot be dominated by any other tuple in the database 𝐃.

Definition 2. (Skyline Query [28,12,44]). Suppose there are a database
𝐃 = {𝐝1, ⋯ , 𝐝𝑛} and a query tuple 𝐪 in the same 𝑚-dimensional space.
For any two tuples 𝐝𝑎 and 𝐝𝑏 in 𝐃, we say 𝐝𝑎 dominates 𝐝𝑏 with respect
to 𝐪 iff ∀𝑗 ∈ [1, 𝑚], |𝐝𝑎[𝑗] −𝐪[𝑗]| ≤ |𝐝𝑏[𝑗] −𝐪[𝑗]| and ∃𝑗 ∈ [1, 𝑚], |𝐝𝑎[𝑗] −
𝐪[𝑗]| < |𝐝𝑏[𝑗] − 𝐪[𝑗]|. The skyline tuples with respect to 𝐪, denoted by
𝐪, are the ones that cannot be dominated by any other tuple in the
database 𝐃.

It is noted that the conventional skyline computation (i.e., Defini-

tion 1) can be seen as a special case of skyline query when the query
tuple is a vector of zeros. Algorithm 1 presents the steps involved in
processing a skyline query in the plaintext domain [44,28]. Specifi-

cally, given a database 𝐃 and a query 𝐪, the skyline query result is
produced through the following steps. The first step involves mapping
the database 𝐃 to a database 𝐁(0), called mapped database, with re-

spect to query 𝐪. After that, the sum across all attributes for each tuple
in 𝐁(0) is computed (i.e., lines 7-9). Skyling query processing then goes
through multiple rounds. During each round 𝑘, the tuple 𝐛⋆ in the cur-

rent mapped database 𝐁(𝑘) with the smallest attribute sum is selected
as the (intermediate) skyline tuple. The tuple in 𝐃 corresponding to 𝐛⋆

is then inserted into the result set of skyline tuples 𝐪. Then, 𝐛⋆ and
the tuples it dominates are removed from 𝐁(𝑘), which produces 𝐁(𝑘+1)

for the subsequent round. The process described above is repeated until
there are no tuples remaining in the mapped database.

3.2. Additive secret sharing

Additive secret sharing [10] is an increasingly popular secure com-

putation technique. It protects a secret value 𝑥 ∈ ℤ2𝑙 by additively
dividing it into two secret shares ⟨𝑥⟩1, ⟨𝑥⟩2 ∈ ℤ2𝑙 , such that 𝑥 = ⟨𝑥⟩1 +
⟨𝑥⟩2. Each individual share does not reveal any information about the
underlying secret value 𝑥. The shares can then be distributed among
two parties, who subsequently can perform some secure computation
over the shares. Given the secret sharings of two values 𝑥 and 𝑦, which
are denoted as �𝑥� and �𝑦� respectively, the operations that can be di-

rectly supported in the secret sharing domain are introduced as follows.
Addition/subtraction between �𝑥� and �𝑦� only needs local computa-

tion at each party, i.e., ⟨𝑧⟩𝑖 = ⟨𝑥⟩𝑖 ± ⟨𝑦⟩𝑖, 𝑖 ∈ {1, 2}. The same applies
to multiplication by a public constant, i.e., ⟨𝑧⟩𝑖 = 𝜂 × ⟨𝑥⟩𝑖, where 𝜂 is a

public constant. As for multiplication between two secret-shared values

W. Wang, Y. Zheng, S. Wang et al.

Fig. 2. The architecture of BopSkyline.

�𝑥� and �𝑦�, denoted by �𝑧� = �𝑥� × �𝑦� for simplicity, it requires one
round of communication among the two parties, with an extra secret-

shared input called Beaver’s triple that is data independent and can be
generated offline by a third-party [35]. So in our design it is assumed
that the secret shares of the triples have been properly distributed in
advance for use in online secure computation.

When the secret values are binary values, i.e., they are in the ring
ℤ2, the addition/subtraction and multiplication in the arithmetic do-

main are simply replaced by binary operations XOR (⊕) and AND (⊗),
respectively. For clarity, we write �⋅�𝐴 for arithmetic secret sharing and
�⋅�𝐵 for binary secret sharing. Accordingly, arithmetic shares are rep-

resented by ⟨⋅⟩𝐴1 and ⟨⋅⟩𝐴2 , while binary shares are represented by ⟨⋅⟩𝐵1
and ⟨⋅⟩𝐵2 . In the binary secret sharing domain, the NOT operation (de-

noted by ¬) can be easily supported. That is, one of the two parties can
locally flip the secret share it holds, e.g., let ⟨¬𝑥⟩𝐵1 = ¬⟨𝑥⟩𝐵1 . Then, the
other share is ⟨¬𝑥⟩𝐵2 = ⟨𝑥⟩𝐵2 .

3.3. Differential privacy

Differential privacy [14] is a rigorous mathematical framework for
ensuring the privacy of individual elements in a dataset. Intuitively, a
differentially private mechanism ensures that the presence or absence
of any individual element in an input dataset should not significantly
alter the outcome. The formal definition of (𝜀, 𝛿)-DP is as follows.

Definition 3. A randomized mechanism  is said to satisfy (𝜀, 𝛿)-DP
if and only if for any two neighboring datasets 𝐃 and 𝐃′ that differ by
adding/removing a tuple, we have ∀𝐓 ∈𝐑,

𝑃𝑟[(𝐃) = 𝐓] ≤ 𝑒𝜀 ⋅ 𝑃𝑟[(𝐃′) = 𝐓] + 𝛿,

where 𝐑 denotes the set of all possible outputs of mechanism , 𝜀 is
the privacy budget, and 𝛿 is a privacy parameter.

In order to achieve differential privacy for a mechanism, one typi-

cally needs to add calibrated noises to the mechanism’s output. We will
use a truncated and discretized Laplace distribution [17] for drawing
Laplace noises in our design. Its formal definition is as follows [17].

Definition 4. A discrete random variable 𝑥 follows 𝐿𝑎𝑝(𝜀, 𝛿, Δ) distri-

bution if its probability density function is

𝑃𝑟[𝑥] = 𝑒
𝜀
Δ − 1

𝑒
𝜀
Δ + 1

⋅ 𝑒
−𝜀⋅|𝑥−𝜇|

Δ ,∀𝑥 ∈ℤ,

where 𝜇 is the mean of the Laplace distribution:

𝜇 = −Δ ⋅ ln[(𝑒
𝜀
Δ + 1) ⋅ (1 − (1 − 𝛿)

1
Δ)]

𝜀
, (1)

and Δ is the sensitivity of a function 𝑓 , defined as Δ = 𝑚𝑎𝑥|𝑓 (𝑥) −
𝑓 (𝑥′)|, which captures the magnitude by which a single user’s data can
4

change the output of 𝑓 in the worst case [14].
Computers & Security 140 (2024) 103803

4. Problem statement

4.1. System architecture

The system architecture of BopSkyline is shown in Fig. 2. At the
core, there are three types of entities: the client, the cloud, and the data
owner. The data owner, such as a medical center, is a trusted entity that
possesses a database and intends to provide the client (e.g., a doctor)
with skyline query services. In order to harness the benefits of cloud
computing while preserving data privacy, the data owner produces an
encrypted version of its database before outsourcing the service. For
high efficiency, BopSkyline resorts to the lightweight additive secret
sharing technique to protect its database and to efficiently facilitate the
subsequent secure skyline query service deployed at the cloud. Accord-

ingly, BopSkyline adopts a distributed trust model, where the power of
the cloud entity is supplied by two independent and non-colluding cloud
service providers, leading to two cloud servers (referred to 𝐶𝑆1 and
𝐶𝑆2 respectively) holding the shares of the outsourced database and
collaboratively providing the secure skyline query service. The adop-

tion of such distributed trust model has also appeared in prior works
[44,27,28,12] on secure skyline query processing as well as in other
secure systems and applications [29,6,13,8,41]. In this paper, for sim-

plicity of presentation, we will simply write 𝐶𝑆{1,2} to represent the
two cloud servers 𝐶𝑆1 and 𝐶𝑆2. Once the encrypted database is de-

ployed at the cloud side, the client can issue an encrypted version of its
query 𝐪, denoted by �𝐪�𝐴, to 𝐶𝑆{1,2}, which will then process the query
as per BopSkyline’s protocol and return the encrypted skyline query re-

sult �𝐪�
𝐴 to the client for reconstruction.

4.2. Trust assumptions and security goals

BopSkyline assumes a non-colluding and semi-honest adversary
model regarding the cloud servers, following prior work on secure
skyline query processing [27,28,12,44] and other secure systems [13,

6,39,1] under the two-server model. In particular, each cloud server
will honestly execute the designated protocol for secure skyline query
processing, yet is interested in inferring private information about the
database and query along the service flow. In addition, the data owner
and the client are considered as trusted entities [28,12]. With the above
trust assumptions and consistent with prior work [44,28,12], BopSky-

line aims to provide the following security guarantees:

• Privacy of data content. The cloud servers should be prevented
from learning the data content of the original database 𝐃, the query
tuple 𝐪, as well as the tuples in the skyline result 𝐪.

• Privacy of data patterns. The cloud servers should be prevented
from learning private data pattern information including the dom-

inance relationships among database tuples, and the number of
database tuples that each skyline tuple dominates.

• Privacy of search access patterns. The cloud servers should be
prevented from learning the search access patterns, which are de-

fined as follows.

– Search pattern. Given two skyline queries 𝐪 and 𝐪′, 𝐪 and 𝐪′ are
identical, if and only if all corresponding attributes values of 𝐪
and 𝐪′ are identical. Let 𝖨(𝐪, 𝐪′) ∈ {0, 1} represent such identical
relationship, i.e., 𝖨(𝐪, 𝐪′) = 1 means that 𝐪 and 𝐪′ are identical.
Given a non-empty sequence of skyline queries 𝐐 = {𝐪1, ⋯ , 𝐪𝑙},
the search pattern reveals an 𝑙 × 𝑙 matrix of the resulting of
𝖨(𝐪𝑖, 𝐪𝑗).

– Access pattern. Given a database 𝐃 and a skyline query 𝐪, the
access pattern reveals the indices of skyline tuples with respect

to 𝐪 in 𝐃.

W. Wang, Y. Zheng, S. Wang et al.

5. The design of BopSkyline

5.1. Overview

We start by describing the starting point SecSkyline [44], which is
the state-of-the-art protocol for privacy-preserving skyline query pro-

cessing. SecSkyline has the same system architecture as ours (as shown
in Fig. 2) and allows the cloud servers 𝐶𝑆{1,2} to obliviously perform
the functionality given in Algorithm 1 in the secret sharing domain.
Specifically, SecSkyline consists of three secure components: 1) secure
database mapping, which allows 𝐶𝑆{1,2} to securely map the out-

sourced encrypted database to a new encrypted mapped database with
respect to the encrypted query; 2) secure skyline fetching, which allows
𝐶𝑆{1,2} to obliviously fetch an encrypted skyline tuple from the en-

crypted mapped database and the corresponding encrypted tuple from
the outsourced encrypted database; 3) secure skyline and dominated
tuples filtering, which allows 𝐶𝑆{1,2} to obliviously filter out the sky-

line tuples and the tuple dominated by it from the encrypted mapped
database as well as the corresponding encrypted tuples from the out-

sourced encrypted database.

Along the processing pipeline in SecSkyline, we observe that a cru-

cial performance limitation exists in the way they deal with the (obliv-

iously) identified skyline tuples and their dominated tuples. In partic-

ular, for protecting the data patterns and access pattern, the skyline
tuple and its dominated tuples are not actually deleted in the compo-

nent of secure skyline and dominated tuples filtering. Instead, they are
just obliviously tagged via a specialized mechanism. Subsequently, in
each round of secure skyline fetching, 𝐶𝑆{1,2} have to always iterate
over all tuples in the encrypted (mapped) database, leading to high per-

formance complexity.

To achieve performance boost over SecSkyline [44], our main in-

sight is to allow 𝐶𝑆{1,2} to actually delete the skyline and dominated
tuples found in each round while being oblivious to the true data pat-

terns and access pattern. The key idea is to first have 𝐶𝑆{1,2} permute
the tuples in the encrypted original database by a random permuta-

tion unknown to them before securely processing a skyline query. After
that, in each round 𝐶𝑆{1,2} can safely reveal which tuples in the en-

crypted permuted database are the skyline and dominated tuples and
delete them. In this way, the performance complexity can gradually de-

crease over the rounds. Since the encrypted tuples are permuted by a
random permutation unknown to 𝐶𝑆{1,2}, they cannot determine which
encrypted tuples in the original database are the skyline or dominated
tuples, and thus cannot learn the true dominance relationships and ac-

cess pattern.

One subtle issue here, however, is that directly revealing which tu-

ples are the skyline and dominated tuples in the encrypted permuted
database will leak the number of database tuples that each skyline tu-

ple dominates. To tackle this issue, our solution is to let the data owner
add some dummy tuples through tailored mechanisms into the original
database in the database preparation phase. In this way, the number of
database tuples that each skyline tuple dominates is obfuscated.

With the synergy of the above insights, we develop BopSkyline
achieving a significant performance boost over SecSkyline. The high-

level protocol workflow in BopSkyline is as follows. Firstly, in the
secure database preparation phase (Section 5.2), the data owner blends
some dummy tuples into its database, and then adequately encrypts
each original tuple and dummy tuple in the padded database via arith-

metic secret sharing, followed by sending the secret shares to 𝐶𝑆{1,2}.
When the client issues its skyline query, it also encrypts the query
via arithmetic secret sharing, and then sends the corresponding secret
shares to 𝐶𝑆{1,2}. In the secure skyline query processing phase (Sec-

tion 5.3), 𝐶𝑆{1,2} obliviously process the encrypted skyline query on
the encrypted outsourced (padded) database as per the tailored design
of BopSkyline. Specifically, this phase is supported by the following se-

cure components: secure database shuffling, secure database mapping,
5

secure skyline fetching, and secure skyline and dominated tuples elimi-
Computers & Security 140 (2024) 103803

nation. After 𝐶𝑆{1,2} obliviously find all encrypted skylines, they return
the corresponding secret shares to the client for reconstruction and pro-

ducing the skyline query result.

5.2. Secure database preparation

In this phase, the data owner takes as input its original database and
then produces an encrypted database to be outsourced. At a high level,
the data owner needs to perform the following. Firstly, as mentioned
above, in order to protect the data patterns and access pattern in the
subsequent online secure query process, the data owner first adds some
dummy tuples to the original database 𝐃, producing a padded database
𝐏. Then, the data owner can encrypt 𝐏 via arithmetic secret sharing,
producing the shares ⟨𝐏⟩𝐴1 and ⟨𝐏⟩𝐴2 which are sent to 𝐶𝑆1 and 𝐶𝑆2
respectively.

Along this workflow, the process of adding dummy tuples requires
a delicate treatment. At a first glance, it seems that one could simply
sample values from the same distribution as the original tuples to form
the dummy tuples and then encrypt them by arithmetic secret sharing.
Since encrypting the same value at different times under arithmetic
secret sharing will always produce different shares, the resulting ci-

phertexts of dummy tuples are indistinguishable from that of original
database tuples. However, the problem here is that the dummy tuples
may affect the query accuracy as the dummy tuples may dominate real
skyline tuples and get chosen to be returned in the query process.

To tackle this problem, our insight is to add an extra dimension
for each database tuple with a delicate value. Specifically, holding an
𝑚-dimensional database 𝐃, the data owner first appends an extra di-

mension to each original database tuple 𝐝𝑖 (𝑖 ∈ [1, 𝑛]) and sets the value
in the (𝑚 + 1)-th dimension to zero, i.e., 𝐝𝑖[𝑚 + 1] = 0. Then the data
owner generates some (𝑚 + 1)-dimensional dummy tuples. Let �̂� de-

note a dummy tuple. The values in the original 𝑚 dimensions, i.e.,
�̂�[1], ⋯ , �̂�[𝑚], are constructed through sampling values from the same
distribution as original tuples. But for the last dimension, �̂�[𝑚 +1] is set
to a random positive number. After encryption, the encrypted dummy
tuple and the encrypted original tuple are indistinguishable to 𝐶𝑆{1,2}.
Like the original tuples, a dummy tuple may be chosen as a skyline tuple
or a dominated tuple, which prevents 𝐶𝑆{1,2} from learning which tuple
is dummy. Meanwhile, such tailored design ensures that any dummy tu-

ples will not dominate the real skyline tuples because the values in their
extra dimensions are definitely greater than that of the real skyline tu-

ples.

With the above design, the query accuracy will not be affected, for
which we analyze as follows. First of all, the extra dimension added to
each original database tuple has no impact on the dominance relation-

ships among the original database tuples themselves. Meanwhile, the
condition that 𝐝𝑖[𝑚 + 1] < �̂�[𝑚 + 1] rules out the possibility that a true
skyline tuple is dominated by any dummy tuple and is missing in the
query result. Lastly, same as the original database tuple, the dummy tu-

ple may be chosen as the skyline tuple which only dominates some other
dummy tuples, but it can be easily filtered out by the client checking the
value on the extra dimension of the tuples returned. Therefore, while
some dummy tuples are added, all the actual skyline tuples with re-

spect to the query can be correctly obtained and thus the skyline query
accuracy is still guaranteed.

To facilitate clearer understanding of the design intuition, we give in
Table 2 a padded version of the example database shown in Table 1. As
shown in Table 2, we add an extra dimension with value 0 to each origi-

nal database tuple, and then add two dummy tuples 𝐝1 = (50, 120, 5) and
𝐝2 = (52, 145, 10) to produce the padded database. The padded database
is mapped to the mapped database with respect to query 𝐪 = (46, 130, 0).
Clearly, the dummy tuples cannot dominate any true tuple since the val-

ues at extra dimensions (i.e., 5 and 10) of dummy tuples are definitely
greater than the zero value at the extra dimension of each true tuple. In
addition, since the true tuples may dominate the dummy tuples (e.g., 𝐛2

dominates 𝐛6 and 𝐛7), the number of tuples dominated by each skyline

W. Wang, Y. Zheng, S. Wang et al.

Table 2

An Example of Skyline Query on Padded Database.

Padded Database Age SBP Extra Dimension

𝑑1 50 150 0

𝑑2 42 135 0

𝑑3 44 120 0

𝑑4 52 125 0

𝑑5 40 145 0

𝑑1 50 120 5

𝑑2 52 145 10

Mapped Database Age SBP Extra Dimension

𝑏1 4 20 0

𝑏2 4 5 0

𝑏3 2 10 0

𝑏4 6 5 0

𝑏5 6 15 0

𝑏6 4 10 5

𝑏7 6 15 10

tuple is obfuscated. The final skyline query result is {𝐝2, 𝐝3} correspond-

ing to {𝐛2, 𝐛3}, same as the result of the example shown in Table 1.

The remaining challenge here is how to appropriately set the num-

ber of dummy tuples to delicately balance the trade-off between effi-

ciency and privacy. Specifically, adding more dummy tuples will incur
more system overhead, while adding less dummy tuples will result in
weaker privacy guarantees on the data patterns. Therefore, a tailored
design is required to provide a theoretically sound method by which the
data owner can appropriately set the number of dummy tuples to bal-

ance efficiency and privacy. Our main insight is to resort to the DP [14]

to make the leakage about the size of database differentially private,
which in turn leads to obfuscation of the number of database tuples
that each skyline tuple dominates.

Specifically, the data owner first draws a noise 𝜉 from the dis-

crete Laplace distribution 𝐿𝑎𝑝(𝜀, 𝛿∕2, 1), which is set as the number of
dummy tuples to be added in the database. Here, the sensitivity Δ is set
to 1 as the addition or removal of a single tuple alters the database size
by 1. Then the total number of tuples in the padded database is 𝑛 +𝜉, de-

noted as �̂�. However, the drawn noise 𝜉 could be negative, which means
that in such case the data owner needs to delete some true tuple from
its database. Obliviously, this will seriously degrade the effectiveness
of the subsequent secure skyline query process. To deal with this issue,
BopSkyline lets the data owner truncate 𝜉 to 0 (i.e., 𝜉 = 𝑚𝑎𝑥(𝜉, 0)), in-

spired by [17]. In Section 6.1, we will formally prove that the leakage
about the size of database is still differentially private although 𝜉 may
be truncated to 0.

5.3. Secure skyline query processing

5.3.1. Overview

After the encrypted padded database is deployed at the cloud, the
client can send an encrypted skyline query tuple �𝐪�𝐴 to the cloud for
processing. Note that before encryption the true query tuple should also
be augmented with an extra dimension with value 0. Algorithm 2 gives
the overall workflow of secure skyline query processing in BopSky-

line, which comprises the following core components: secure database
shuffling (denoted as 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾), secure database mapping (denoted
as 𝗌𝖾𝖼𝖬𝖺𝗉), secure skyline fetching (denoted as 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁), and secure
skyline and dominated tuples elimination (denoted as 𝗌𝖾𝖼𝖤𝗅𝗂).

At a high level, secure skyline query processing in BopSkyline pro-

ceeds as follows. Firstly, 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾 is invoked to allow 𝐶𝑆{1,2} to
obliviously shuffle the encrypted padded database �𝐏�𝐴, producing
an encrypted shuffled database ��̃�(0)�𝐴. Then, 𝗌𝖾𝖼𝖬𝖺𝗉 is invoked to
allow 𝐶𝑆{1,2} to obliviously map ��̃�(0)�𝐴 to the encrypted mapped
database �𝐁(0)�𝐴 with respect to the encrypted query �𝐪�𝐴. After that,
𝐶𝑆{1,2} leverage 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁 and 𝗌𝖾𝖼𝖤𝗅𝗂 to obliviously find the skyline
tuples through multiple rounds until the encrypted mapped database
6

becomes empty.
Computers & Security 140 (2024) 103803

Algorithm 2 Secure Skyline Query Processing in BopSkyline.

Input: The encrypted padded database �𝐏�𝐴 and the encrypted skyline query
�𝐪�𝐴 .

Output: The encrypted skyline query result set �𝐪�
𝐴.

1: Initialization: �𝐪�
𝐴 = ∅, �𝐬�𝐴 = �𝟎�𝐴 .

2: ��̃�(0)�𝐴 = 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾(�𝐏�𝐴).
3: �𝐁(0)�𝐴 = 𝗌𝖾𝖼𝖬𝖺𝗉(��̃�(0)�𝐴, �𝐪�𝐴).
4: �𝐬(0)[𝑖]�𝐴 =

∑𝑚+1
𝑗=1 �𝐛(0)𝑖 [𝑗]�𝐴, 𝑖 ∈ [1, ̂𝑛]; # �̂� is the number of tuples in �𝐁(0)�𝐴 ;

𝑚 + 1 is the number of dimensions of tuples.

5: 𝑘 = 0.

6: while �𝐁(𝑘)�𝐴 ≠ ∅ do

7: 𝗂𝗇𝖽 = 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁(�𝐬(𝑘)�𝐴).
8: 𝐶𝑆{1,2} retrieve ��̃�⋆�𝐴 with the index 𝗂𝗇𝖽 from ��̃�(𝑘)�𝐴.

9: �𝐪�
𝐴.𝑎𝑝𝑝𝑒𝑛𝑑(��̃�⋆�𝐴).

10: (��̃�(𝑘+1)�𝐴, �𝐁(𝑘+1)�𝐴, �𝐬(𝑘+1)�𝐴) ←
𝗌𝖾𝖼𝖤𝗅𝗂(��̃�(𝑘)�𝐴, �𝐁(𝑘)�𝐴, �𝐬(𝑘)�𝐴, 𝗂𝗇𝖽).

11: 𝑘 ++.

12: end while

13: return The encrypted skyline query result set �𝐪�
𝐴.

Specifically, in the 𝑘-th round (𝑘 ≥ 0), 𝐶𝑆{1,2} leverage 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁 to
securely fetch the index 𝗂𝗇𝖽 of the skyline tuple which has the mini-

mum attribute sum in the current sum vector �𝐬(𝑘)�𝐴. 𝐶𝑆{1,2} can then
retrieve the encrypted skyline tuple ��̃�⋆�𝐴 from the current shuffled
database ��̃�(𝑘)�𝐴 via the index 𝗂𝗇𝖽, followed by adding it to the en-

crypted result set �𝐪�
𝐴. Afterwards, with 𝗌𝖾𝖼𝖤𝗅𝗂, 𝐶𝑆{1,2} eliminate

the skyline tuple and tuples dominated by it from ��̃�(𝑘)�𝐴, producing
��̃�(𝑘+1)�𝐴. Meanwhile, 𝐶𝑆{1,2} eliminate from �𝐁(𝑘)�𝐴 and �𝐬(𝑘)�𝐴 the
encrypted tuples/elements corresponding to the skyline and dominated
tuples, producing �𝐁(𝑘+1)�𝐴 and �𝐬(𝑘+1)�𝐴. Finally, 𝐶𝑆{1,2} return the
encrypted skyline query result set �𝐪�

𝐴 to the client for decryption.
Note that 𝐪 may contain some dummy tuples, but the client can eas-

ily filter out them by checking the extra dimension. Recall that the value
in the extra dimension of true skyline tuples is 0 but that of dummy sky-

line tuples is random positive number. In what follows, we present the
detailed construction of each secure component.

5.3.2. Secure database shuffling

We first introduce how 𝐶𝑆{1,2} obliviously shuffle the encrypted
database �𝐏�𝐴 via the secure component 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾. Recall that the pur-

pose of 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾 is to securely shuffle the tuples in �𝐏�𝐴 (treated as
a matrix in which each row corresponds to a tuple) to allow 𝐶𝑆{1,2}
to later safely reveal the skyline and dominated tuples in the permuted
space in each round of skyline finding, while being oblivious to true
data patterns and access pattern. We identify that the state-of-the-art
secure shuffling protocol in [15] is well suited for our purpose, as it op-

erates on secret-shared data under a two-party setting. We adapt this
protocol in BopSkyline to achieve secure database shuffling as follows.
Suppose that 𝐶𝑆1 holds ⟨𝐏⟩𝐴1 , 𝜋1, 𝐀1 and Δ, and 𝐶𝑆2 holds ⟨𝐏⟩𝐴2 , 𝜋2,
𝐀2 and 𝐂, where 𝐀1, 𝐀2, 𝐂 are random matrices with the same size as
𝐏; 𝜋1 and 𝜋2 are random permutations over {1, 2, ⋯ , �̂�} (�̂� is the num-

ber of tuples in 𝐏); Δ is a matrix satisfying Δ = 𝜋1(𝜋2(𝐀1) + 𝐀2) − 𝐂,
where the permutations are applied rowwise. These input-independent
auxiliary values can be prepared and distributed by a third party of-

fline (e.g., the data owner). Then 𝐶𝑆{1,2} can obliviously shuffle the
encrypted database �𝐏�𝐴 to produce the encrypted shuffled database
��̃�(0)�𝐴 as follows: (1) 𝐶𝑆1 sends 𝐙1 = ⟨𝐏⟩𝐴1 −𝐀1 to 𝐶𝑆2; (2) 𝐶𝑆2 sets
⟨�̃�(0)⟩𝐴2 = 𝐂 and sends 𝐙2 = 𝜋2(𝐙1 + ⟨𝐏⟩𝐴2) − 𝐀2 to 𝐶𝑆1; and (3) 𝐶𝑆1

sets ⟨�̃�(0)⟩𝐴1 = 𝜋1(𝐙2) +Δ. Finally, 𝐶𝑆1 and 𝐶𝑆2 hold the secret-shared
shuffled database ��̃��𝐴 = �𝜋1(𝜋2(𝐏))�𝐴, while neither of them knows the
complete permutation 𝜋1(𝜋2(⋅)). The correctness holds since:

⟨�̃�(0)⟩𝐴1 + ⟨�̃�(0)⟩𝐴2 = 𝜋1(𝐙2) + Δ+𝐂
= 𝜋1(𝐙2) + 𝜋1(𝜋2(𝐀1) +𝐀2)

W. Wang, Y. Zheng, S. Wang et al.

Algorithm 3 Secure Database Mapping (following SecSkyline [44]).

Input: The encrypted shuffled database ��̃�(0)�𝐴 and the encrypted skyline
query �𝐪�𝐴.

Output: The encrypted mapped database �𝐁(0)�𝐴.

1: for 𝑖 = 1 to �̂� do

2: for 𝑗 = 1 to 𝑚 + 1 do

3: �𝜌�𝐵 = 𝖲𝖾𝖼𝖢𝗆𝗉(��̃�(0)
𝑖
[𝑗]�𝐴, �𝐪[𝑗]�𝐴).

4: �𝜌′�𝐵 = �¬𝜌�𝐵 .

5: �𝐛(0)𝑖 [𝑗]�𝐴 = 𝖲𝖾𝖼𝖬𝗎𝗅𝖡𝖠(�𝜌�𝐵, �𝐪[𝑗]�𝐴 − ��̃�(0)𝑖 [𝑗]�𝐴)
+𝖲𝖾𝖼𝖬𝗎𝗅𝖡𝖠(�𝜌′�𝐵, ��̃�(0)𝑖 [𝑗]�𝐴 − �𝐪[𝑗]�𝐴).

6: end for

7: end for

8: return The encrypted mapped database �𝐁(0)�𝐴 .

= 𝜋1(𝜋2(𝐙1 + ⟨𝐏⟩𝐴2) + 𝜋2(𝐀1))

= 𝜋1(𝜋2(⟨𝐏⟩𝐴1 + ⟨𝐏⟩𝐴2))
= 𝜋1(𝜋2(𝐏)).

5.3.3. Secure database mapping

We now introduce how 𝐶𝑆{1,2} securely map the encrypted shuffled
database ��̃�(0)�𝐴 to the encrypted mapped database �𝐁(0)�𝐴 with respect
to the encrypted query �𝐪�𝐴 via the secure component 𝗌𝖾𝖼𝖬𝖺𝗉, which
follows [44]. According to Algorithm 1, what needs to be securely com-

puted are 𝐛(0)
𝑖
[𝑗] = |�̃�(0)

𝑖
[𝑗] −𝐪[𝑗]|, 𝑖 ∈ [1, �̂�], 𝑗 ∈ [1, 𝑚 +1], where 𝑚 +1 is

the length of 𝐛(0)
𝑖

, ̃𝐩(0)
𝑖

∈ �̃�(0), and 𝐛(0)
𝑖

∈ 𝐁(0). Therefore, the main opera-

tion 𝐶𝑆{1,2} need to securely perform is the encrypted absolute value of
the difference between ̃𝐩(0)

𝑖
[𝑗] and 𝐪[𝑗], which is introduced as follows.

Firstly, given two values 𝑎 and 𝑏, we have |𝑎 − 𝑏| = (𝑎 < 𝑏) ⋅ (𝑏 −
𝑎) + ¬(𝑎 < 𝑏) ⋅ (𝑎 − 𝑏), where ¬ represents the NOT operation; and
(𝑎 < 𝑏) = 1 ∈ ℤ2 if 𝑎 < 𝑏 and otherwise (𝑎 < 𝑏) = 0 ∈ ℤ2. With such
transformation, the only operation that is not naturally supported in
the secret sharing domain is the comparison operation. We note that
SecSkyline uses a secure comparison protocol in the secret sharing
domain, denoted by 𝖲𝖾𝖼𝖢𝗆𝗉. Given two secret sharings �𝑥�𝐴 and
�𝑦�𝐴, the encrypted result of (𝑥 < 𝑦) can be securely computed by
𝖲𝖾𝖼𝖢𝗆𝗉(�𝑥�𝐴, �𝑦�𝐴). Namely, if 𝑥 < 𝑦, 𝖲𝖾𝖼𝖢𝗆𝗉(�𝑥�𝐴, �𝑦�𝐴) = �1�𝐵 , and
otherwise 𝖲𝖾𝖼𝖢𝗆𝗉(�𝑥�𝐴, �𝑦�𝐴) = �0�𝐵 . As the secret-shared comparison
result is produced in the binary secret sharing domain, another proto-

col, denoted by 𝖲𝖾𝖼𝖬𝗎𝗅𝖡𝖠, is used for secure multiplication between
�𝑥�𝐵 and �𝑦�𝐴. We refer the readers to [44] for more details regard-

ing 𝖲𝖾𝖼𝖢𝗆𝗉 and 𝖲𝖾𝖼𝖬𝗎𝗅𝖡𝖠. With the use of these two protocols, the
encrypted absolute value of the difference �̃�(0)

𝑖
[𝑗] − 𝐪[𝑗] can be com-

puted as per the above transformation. For completeness, we present
the component of secure database mapping in Algorithm 3.

5.3.4. Secure skyline fetching

We now introduce how 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁 works to allow 𝐶𝑆{1,2} to securely
fetch the plaintext index 𝗂𝗇𝖽 (in the permuted space) of the skyline tuple
in the 𝑘-th round. Specifically, 𝐶𝑆{1,2} need to fetch the index 𝗂𝗇𝖽 of the
skyline tuple who has the minimum attribute sum 𝑠𝑀𝑖𝑛 in the current
sum vector �𝐬(𝑘)�𝐴. This can be achieved leveraging the aforementioned
secure comparison gadget 𝖲𝖾𝖼𝖢𝗆𝗉 to securely compare the elements
in �𝐬(𝑘)�𝐴. Note that for the secure comparison of two elements, the
comparison result can be safely opened so that 𝐶𝑆{1,2} can know the
index of the smaller element (yet without knowing its content). In this
way, 𝐶𝑆{1,2} can finally obtain the index 𝗂𝗇𝖽 of the minimum element
in �𝐬(𝑘)�𝐴, and thus the index of the skyline tuple (in the permuted
space). We emphasize that since the database has been shuffled by a
random permutation unknown to 𝐶𝑆{1,2}, the index 𝗂𝗇𝖽 obtained by
𝐶𝑆{1,2} is in the permuted space (i.e., an disguised one) and so leaks
no information about the actual position of the corresponding skyline
tuple in the original database.

Algorithm 4 gives the detailed construction of secure skyline fetch-
7

ing. It is noted that for practical implementation, the divide-and-
Computers & Security 140 (2024) 103803

Algorithm 4 Secure Skyline Fetching.

Input: The encrypted sum vector �𝐬(𝑘)�𝐴 in the 𝑘-th round.

Output: The (disguised) index 𝗂𝗇𝖽 of the skyline tuple in the 𝑘-th round.

1: Initialization: 𝗂𝗇𝖽 = 1.

2: Let 𝛼 denote the length of 𝐬(𝑘) .
3: for 𝑖 = 2 to 𝛼 do

4: �𝜌�𝐵 = 𝖲𝖾𝖼𝖢𝗆𝗉(�𝐬(𝑘)[𝑖]�𝐴, �𝐬(𝑘)[𝗂𝗇𝖽]�𝐴).
5: 𝐶𝑆{1,2} open �𝜌�𝐵 and obtain 𝜌.

6: if 𝜌 = 1 then

7: 𝗂𝗇𝖽 = 𝑖.

8: end if

9: end for

10: return The (disguised) index 𝗂𝗇𝖽 of the skyline tuple in the permuted space.

conquer approach can be leveraged for performance improvement.
For instance, the secure calculation of the minimum in an encrypted
4-dimensional vector �𝐮�𝐴 can be accomplished by: 𝖬𝗂𝗇(𝖬𝗂𝗇(�𝐮[1]�𝐴,
�𝐮[2]�𝐴), 𝖬𝗂𝗇(�𝐮[3]�𝐴, �𝐮[4]�𝐴)). As a result, the computation of

𝖬𝗂𝗇(�𝐮[1]�𝐴, �𝐮[2]�𝐴) and 𝖬𝗂𝗇(�𝐮[3]�𝐴, �𝐮[4]�𝐴) can be performed in
parallel and the communication can be batched, saving the rounds of
interactions.

5.3.5. Secure skyline and dominated tuples elimination

Given the encrypted (shuffled) database ��̃�(𝑘)�𝐴, mapped database
�𝐁(𝑘)�𝐴, attribute sum vector �𝐬(𝑘)�𝐴, and index 𝗂𝗇𝖽 of the skyline tu-

ple (in the permuted space), 𝐶𝑆{1,2} need to obliviously eliminate the
skyline tuple �𝐛⋆�𝐴 and tuples dominated by it from �𝐁(𝑘)�𝐴 with-

out learning the dominance relationships among the original database
tuples. Meanwhile, the tuples and values in ��̃�(𝑘)�𝐴 and �𝐬(𝑘)�𝐴 that cor-

respond to the eliminated tuples in �𝐁(𝑘)�𝐴 are required to be eliminated
as well. We present 𝗌𝖾𝖼𝖤𝗅𝗂 to achieve this, as shown in Algorithm 5.

The main idea is to securely compute an elimination flag vector �𝐞�𝐵
which indicates the positions of the tuples/values to be eliminated. The
computation of this elimination flag vector is performed in the secret
sharing domain, and at the end it can be safely opened to reveal the
positions of tuples/values to be eliminated, as the positions are also in
the permuted space. Specifically, �𝐞�𝐵 = �0�𝐵 at the beginning. If the 𝑖-
th tuple is to be eliminated after secure evaluation, then �𝐞[𝑖]�𝐵 = �1�𝐵 .
Note that 𝐶𝑆{1,2} directly set �𝐞[𝗂𝗇𝖽]�𝐵 = �1�𝐵 , as 𝗂𝗇𝖽 is the position
of the currently identified skyline tuple. Next we should consider how
to allow 𝐶𝑆{1,2} to securely set the flag corresponding to each tuple
dominated by �𝐛⋆�𝐴 to 1.

Recall that according to Definition 1, 𝐛⋆ is said to dominate 𝐛𝑖 if and
only if ∀𝑗 ∈ [1, 𝑚 + 1], 𝐛⋆[𝑗] ≤ 𝐛𝑖[𝑗], and ∃𝑗 ∈ [1, 𝑚 + 1], 𝐛⋆[𝑗] < 𝐛𝑖[𝑗].
We first evaluate the first condition (i.e., 𝐛⋆[𝑗] ≤ 𝐛𝑖[𝑗], 𝑗 ∈ [1, 𝑚 + 1]),
and then evaluate whether 𝐛⋆ ≠ 𝐛𝑖. With the 𝖲𝖾𝖼𝖢𝗆𝗉 function, 𝐶𝑆{1,2}
can obliviously evaluate whether 𝐛⋆[𝑗] ≤ 𝐛𝑖[𝑗], 𝑗 ∈ [1, 𝑚 + 1] by

�𝛿𝑗�
𝐵 = ¬𝖲𝖾𝖼𝖢𝗆𝗉(�𝐛𝑖[𝑗]�𝐴, �𝐛⋆[𝑗]�𝐴), (2)

where ¬ represents the NOT operation and 𝛿𝑗 = 1 indicates 𝐛⋆[𝑗] ≤
𝐛𝑖[𝑗]. Then 𝐶𝑆{1,2} aggregate the comparison results to �𝛿𝑖�𝐵 by

�𝛿𝑖�
𝐵 = �𝛿1�

𝐵 ⊗⋯⊗ �𝛿𝑚+1�
𝐵, (3)

where 𝛿𝑖 = 1 indicates that 𝐛𝑖 satisfies the first condition. More specif-

ically, 𝛿𝑖 = 1 means that ∀𝑗 ∈ [1, 𝑚 + 1], 𝛿𝑗 = 1, i.e., 𝐛⋆[𝑗] ≤ 𝐛𝑖[𝑗], 𝑗 ∈
[1, 𝑚 + 1]. Then 𝐶𝑆{1,2} need to evaluate whether 𝐛⋆ ≠ 𝐛𝑖, which can
be achieved by

�𝜎𝑖�
𝐵 = 𝖲𝖾𝖼𝖢𝗆𝗉(�𝑠𝑀𝑖𝑛�𝐴, �𝐬[𝑖]�𝐴), (4)

where 𝜎𝑖 = 1 indicates that the attribute sums of 𝐛⋆ and 𝐛𝑖 are different,
i.e., 𝐛⋆ ≠ 𝐛𝑖. After that, 𝐶𝑆{1,2} set the corresponding elimination flag
𝐞[𝑖] by
�𝐞[𝑖]�𝐵 = �𝛿𝑖�
𝐵 ⊗ �𝜎𝑖�

𝐵, (5)

W. Wang, Y. Zheng, S. Wang et al.

where 𝐞[𝑖] = 1 only if both 𝛿𝑖 and 𝜎𝑖 are equal to 1, i.e., 𝐛⋆[𝑗] ≤ 𝐛𝑖[𝑗], 𝑗 ∈
[1, 𝑚 + 1] and 𝐛⋆ ≠ 𝐛𝑖. That is, when 𝐞[𝑖] = 1, 𝐛⋆ is smaller than 𝐛𝑖 at
least in one dimension and not larger in other dimensions. Therefore,
𝐞[𝑖] = 1 indicates that 𝐛𝑖 is dominated by the current skyline tuple 𝐛⋆

and needs to be eliminated.

Finally, 𝐶𝑆{1,2} can safely open the elimination flag vector �𝐞�𝐵 and
eliminate the corresponding tuples or elements from �𝐁(𝑘)�𝐴, ��̃�(𝑘)�𝐴,
and �𝐬(𝑘)�𝐴. Note that since 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾 permutes the original database
by a random permutation unknown to 𝐶𝑆{1,2}, they cannot learn which
tuples in the original database are the dominated tuples. In addition, the
existence of dummy tuples prevents 𝐶𝑆{1,2} from knowing the exact
number of the tuples dominated by the current skyline tuple.

Algorithm 5 Secure Skyline and Dominated Tuples Elimination.

Input: The encrypted padded database ��̃�(𝑘)�𝐴, mapped database �𝐁(𝑘)�𝐴, at-

tribute sum vector �𝐬(𝑘)�𝐴 and (disguised) index 𝗂𝗇𝖽 of the current skyline
tuple.

Output: The updated encrypted padded database ��̃�(𝑘+1)�𝐴, mapped database
�𝐁(𝑘+1)�𝐴, and attribute sum vector �𝐬(𝑘+1)�𝐴.

1: Initialize �𝐞�𝐵 = �𝟎�𝐵 .

2: 𝐶𝑆{1,2} obtain �𝐛⋆�𝐴 and �𝑠𝑀𝑖𝑛�𝐴 with the index 𝗂𝗇𝖽 from �𝐁(𝑘)�𝐴 and
�𝐬(𝑘)�𝐴, respectively.

3: Let 𝛽 denote the number of tuples in 𝐁(𝑘) .

4: for 𝑖 = 1 to 𝛽 do

5: if 𝑖 = 𝗂𝗇𝖽 then

6: �𝐞[𝑖]�𝐵 = �1�𝐵 .

7: else

8: for 𝑗 = 1 to 𝑚 + 1 do

9: �𝛿𝑗�
𝐵 = ¬𝖲𝖾𝖼𝖢𝗆𝗉(�𝐛(𝑘)𝑖 [𝑗]�𝐴, �𝐛⋆�𝐴).

10: end for

11: �𝛿𝑖�
𝐵 = �𝛿1�

𝐵 ⊗⋯ ⊗ �𝛿𝑚+1�
𝐵 .

12: �𝜎𝑖�
𝐵 = 𝖲𝖾𝖼𝖢𝗆𝗉(�𝑠𝑀𝑖𝑛�𝐴, �𝐬(𝑘)[𝑖]�𝐴).

13: �𝐞[𝑖]�𝐵 = �𝛿𝑖�
𝐵 ⊗ �𝜎𝑖�

𝐵 .

14: end if

15: end for

16: 𝐶𝑆{1,2} open �𝐞�𝐵 and eliminate the corresponding tuples or elements from
�𝐁(𝑘)�𝐴, ��̃�(𝑘)�𝐴, and �𝐬(𝑘)�𝐴.

17: return The updated encrypted padded database ��̃�(𝑘+1)�𝐴, mapped
database �𝐁(𝑘+1)�𝐴, and attribute sum vector �𝐬(𝑘+1)�𝐴 .

Remark. As mentioned above, for protecting the data patterns and
access pattern, in each round of secure skyline fetching, the state-of-the-

art work SecSkyline [44] does not let 𝐶𝑆{1,2} actually delete the skyline
tuple and its dominated tuples, and thus 𝐶𝑆{1,2} have to always iter-

ate over all tuples in the encrypted (mapped) database in each round,
leading to high performance complexity. In contrast, by delicately inte-

grating the idea of dummy tuples and secure shuffle, BopSkyline allows
𝐶𝑆{1,2} to actually delete the skyline and dominated tuples found (in
the permuted space) in each round while being oblivious to the true
data patterns and access pattern. By this way, the performance complex-

ity can gradually decrease over the rounds. In addition, as demonstrated
by the experimental results in Section 7, the performance gap between
BopSkyline and SecSkyline grows sharply as the size and dimension of
database increase.

6. Security analysis

In this section, we provide formal analysis for the security guaran-

tees BopSkyline offers in outsourced skyline query service. Recall that
BopSkyline blends some dummy tuples based on DP into the original
database before database outsourcing. Therefore, we will first present
the proof that BopSkyline can make the leakage about the size of the
outsourced database differentially private (which in turns leads to ob-

fuscation of the number of tuples dominated by each skyline tuple in
data patterns in the query phase), and then prove data confidentiality
8

against the cloud servers.
Computers & Security 140 (2024) 103803

6.1. Differential privacy-related analysis

Theorem 1. BopSkyline can achieve (𝜀, 𝛿)-DP for the database size accord-

ing to Definition 3.

Proof. Given the sizes 𝑛𝑖, 𝑛𝑗 of databases 𝐏𝑖 and 𝐏𝑗 where |𝑛𝑖−𝑛𝑗 | = 1.
If both the noises drawn for 𝐏𝑖 and 𝐏𝑗 from 𝐿𝑎𝑝(𝜀, 𝛿∕2, 1) are non-

negative, the probability of them outputting the same noisy size �̂� is
bounded by

𝑃𝑟[�̂�− 𝑛𝑖]
𝑃𝑟[�̂�− 𝑛𝑗]

= 𝑒
−𝜀⋅|�̂�−𝑛𝑖−𝜇|

1

𝑒
−𝜀⋅|�̂�−𝑛𝑗−𝜇|

1

= 𝑒𝜀⋅(|�̂�−𝑛𝑗−𝜇|−|�̂�−𝑛𝑖−𝜇|)

≤ 𝑒𝜀⋅|𝑛𝑗−𝑛𝑖| = 𝑒𝜀.

In addition, the probability of drawing a negative noise from 𝐿𝑎𝑝(𝜀,
𝛿∕2, 1) is 𝑒

−𝜇⋅𝜀

𝑒𝜀+1 [17]. Given Eq. (1) and Δ ≥ 0, we have 𝑒
−𝜇⋅𝜀

𝑒𝜀+1 = 1 − (1 −
𝛿∕2) = 𝛿∕2, which means that the probability of both the noises drawn
for 𝐏𝑖 and 𝐏𝑗 are non-negative is (1 − 𝛿∕2)(1 − 𝛿∕2) = 1 + 𝛿2∕4 − 𝛿, and
thus the overall failing probability is 1 − (1 + 𝛿2∕4 − 𝛿) = 𝛿 − 𝛿2∕4 < 𝛿.
Therefore, with 1 − 𝛿, the probability to output the same noisy size �̂� is
bounded by 𝑒𝜀, which satisfies (𝜀, 𝛿)-DP as per Definition 3. □

6.2. Data confidentiality-related analysis

Our analysis for the data confidentiality protection follows the stan-

dard simulation-based paradigm [24]. For secure skyline query process-

ing, the formal definition of the ideal functionality  is described as
follows:

• Input. The data owner provides the database 𝐃 to  and a client
provides a query 𝐪 to  .

• Computation. Upon receiving the database 𝐃 and the skyline
query 𝐪,  retrieves the skyline tuples 𝐪 with respect to q from
𝐃.

• Output.  returns the skyline tuples 𝐪 to the client.

Let
∏

denote the protocol design in BopSkyline for secure skyline query
processing realizing the ideal functionality  against the semi-honest
adversary model. The security of

∏
can be formally defined as:

Definition 5. Let 𝖵𝗂𝖾𝗐
∏
𝐶𝑆𝑖

denote each 𝐶𝑆𝑖 ’s view during the execution
of

∏
.
∏

is secure under the non-colluding and semi-honest adversary
model, if for each corrupted 𝐶𝑆𝑖 there exists a probabilistic polyno-

mial time simulator which can generate a simulated view 𝖲𝗂𝗆𝐶𝑆𝑖
such

that 𝖲𝗂𝗆𝐶𝑆𝑖
≈𝖵𝗂𝖾𝗐

∏
𝐶𝑆𝑖

, i.e., the simulated view and the real view are
indistinguishable.

Theorem 2. In the non-colluding and semi-honest adversary model, Bop-

Skyline is secure based on Definition 5.

Proof. Note that in the secure skyline query phase, BopSkyline is com-

posed of four components: 1) secure database shuffling (denoted as
𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾); 2) secure database mapping (denoted as 𝗌𝖾𝖼𝖬𝖺𝗉); 3) secure
skyline fetching (denoted as 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁); 4) secure skyline and dominated
tuples elimination (denoted as 𝗌𝖾𝖼𝖤𝗅𝗂). Note that the inputs and outputs
of these components are secret shares, and they are processed sequen-

tially according to the pipeline. Therefore, if the simulator for each
component exists, the simulator for the whole protocol exists, indicating
that BopSkyline is secure. Let 𝖲𝗂𝗆𝚇

𝐶𝑆𝑖
denote the simulator simulating

the view of 𝐶𝑆𝑖 in component 𝚇.

• 𝖲𝗂𝗆𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾
𝐶𝑆𝑖

. In this phase, 𝐶𝑆𝑖 only receives the secret shares dur-
ing the execution of secure shuffle. The simulator 𝖲𝗂𝗆𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾
𝐶𝑆𝑖

can

W. Wang, Y. Zheng, S. Wang et al.

be trivially constructed by invoking the simulator of secure shuffle
[15]. Therefore, the simulator 𝖲𝗂𝗆𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾

𝐶𝑆𝑖
exists.

• 𝖲𝗂𝗆𝗌𝖾𝖼𝖬𝖺𝗉
𝐶𝑆𝑖

. It is noted that 𝗌𝖾𝖼𝖬𝖺𝗉 follows the secure database map-

ping component in SecSkyline [44]. We refer the readers to [44]

for more details regarding the proof of the existence of simulator
𝖲𝗂𝗆𝗌𝖾𝖼𝖬𝖺𝗉

𝐶𝑆𝑖
.

• 𝖲𝗂𝗆𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁
𝐶𝑆𝑖

. It is noted that 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁 (i.e., Algorithm 4) consists of
𝖲𝖾𝖼𝖢𝗆𝗉 and 𝖲𝖾𝖼𝖬𝗎𝗅𝖡𝖠 protocols except the basic secret-shared op-

erations. Meanwhile, these operations are invoked in turn and their
inputs and outputs are secret shares. Therefore, following the proof
of SecSkyline [44], the simulators for the two protocols exist. In
addition, for the opened value 𝜌 (i.e., line 5 in Algorithm 4), the
simulator can adjust the honest server’s secret share such that the
opened value is indeed what it receives from the ideal functionality
[30]. Therefore, the simulator 𝖲𝗂𝗆𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁

𝐶𝑆𝑖
exists.

• 𝖲𝗂𝗆𝗌𝖾𝖼𝖤𝗅𝗂
𝐶𝑖

. 𝗌𝖾𝖼𝖤𝗅𝗂 consists of 𝖲𝖾𝖼𝖢𝗆𝗉, secure bit flipping and basic
secret-shared operations, which are invoked in turn and their in-

puts and outputs are secret shares. Since secure bit flipping is local
operation and 𝐶𝑆𝑖 receives nothing during its execution, its simu-

lator exists. Therefore, given the security of 𝖲𝖾𝖼𝖢𝗆𝗉 [44] and basic
secret-shared operations [10], the simulator 𝖲𝗂𝗆𝗌𝖾𝖼𝖤𝗅𝗂

𝐶𝑖
exists.

The proof of Theorem 2 is completed. □

6.3. On protection for data patterns and search access patterns

We now explicitly analyze how BopSkyline protects the data pat-

terns and search access patterns as follows:

• Protecting the data patterns. The data patterns in BopSkyline in-

clude the dominance relationships among database tuples and the
number of database tuples that each skyline tuple dominates. It
is noted that only the secure skyline fetching 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁 and secure
skyline and dominated tuples elimination 𝗌𝖾𝖼𝖤𝗅𝗂 may leak the dom-

inance relationships. Since before the execution of 𝗌𝖾𝖼𝖥𝖾𝗍𝖼𝗁 and
𝗌𝖾𝖼𝖤𝗅𝗂, the secure database shuffling 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾 permutes the tu-

ples in the original database by a random permutation unknown
to 𝐶𝑆{1,2}, they cannot infer the true dominance relationships be-

tween the tuples in the original database even if BopSkyline allows
them to know which tuples in the permuted database are the sky-

line or dominated tuples. In addition, the dummy tuples blended
into the original database in secure database preparation phase
obfuscate the number of database tuples that each skyline tuple
dominates. Therefore, BopSkyline can protect the data patterns.

• Protecting the search pattern. The search pattern reveals whether
a skyline query is a repeated one. Given an encrypted skyline query
�𝐪�𝐴, 𝐶𝑆𝑖, 𝑖 ∈ {1, 2} only obtains the secret shares ⟨𝐪⟩𝐴

𝑖
from the

client. The security of secret sharing guarantees that the same se-

cret value will be encrypted into different shares indistinguishable
from uniformly random values [10] at different times of encryp-

tion. So 𝐶𝑆{1,2} cannot determine whether a received encrypted
skyline query is a repeated one.

• Protecting the access pattern. The access pattern reveals whether
a tuple in the encrypted database �𝐏�𝐴 is a skyline tuple, i.e.,
which tuples will appear in the result set �𝐪�

𝐴. In BopSky-

line, 𝐶𝑆{1,2} fetch the encrypted skyline tuples from the shuffled
database ��̃�(0)�𝐴, which is produced by permuting the tuples in
�𝐏�𝐴 by a random permutation unknown to 𝐶𝑆{1,2}. Since the
oblivious shuffle breaks the mappings between the tuples in ��̃�(0)�𝐴

and �𝐏�𝐴, even if 𝐶𝑆{1,2} learn which encrypted tuples in the shuf-

fled database ��̃�(0)�𝐴 are skyline tuples, they cannot infer which
encrypted tuples in the original database �𝐏�𝐴 are skyline tuples.
9

Therefore, BopSkyline can protect the access pattern.
Computers & Security 140 (2024) 103803

7. Experiments

7.1. Setup

We implement BopSkyline’s protocols using C++ and conduct ex-

periments on a 64-bit Windows 10 machine equipped with AMD Ryzen
7 5800H CPU cores and 16 GB RAM. In addition, we implement the
state-of-the-art work SecSkyline [44] with C++ and test it on the same
machine as a baseline. We run two threads to simulate two cloud serves
on the same machine. We set the network delay to 1 ms, which is iden-

tical to SecSkyline [44]. The privacy parameter 𝛿 is set to 1 × 10−6
Following prior works [28,12,44], we generate and use three different
kinds of synthetic datasets for evaluation: correlated (CORR), inde-

pendent (INDE), and anti-correlated (ANTI). More specifically, for the
CORR datasets, the tuples’ values across all dimensions exhibit positive
correlation; for the INDE datasets, all values are generated indepen-

dently; for the ANTI datasets, tuples typically contain large values in
one dimension while having small values in one or all of the other di-

mensions. All values in our experiments are in the ring ℤ264 . Unless
otherwise stated, the experiment results on a database are the average
over 100 skyline queries.

7.2. Evaluation on accuracy

We start with examining the accuracy of BopSkyline to showcase
its effectiveness. In particular, we generate 1000 skyline queries for
different datasets and compare the results of skyline tuples obtained
using BopSkyline to those obtained using the plaintext algorithm (i.e.,
Algorithm 1) with respect to these queries. Our observation is that the
skyline tuples produced by BopSkyline over different datasets match
exactly that produced by the plaintext Algorithm. In other words, the
accuracy is measured to be 100%. So while providing strong security
guarantees, BopSkyline does not sacrifice the accuracy.

7.3. Evaluation on performance

7.3.1. Evaluation on query latency

We now evaluate BopSkyline’s query latency, and compare the re-

sults with that of the state-of-the-art work SecSkyline [44] to demon-

strate the advantage of BopSkyline in query latency. The query latency
is defined as the time it takes 𝐶𝑆{1,2} to securely execute skyline search
over the encrypted outsourced database to produce encrypted skyline
tuples as the result, given an encrypted skyline query as input. We first
evaluate and compare BopSkyline and SecSkyline with 𝑚 = 2, 𝜀 = 1 (𝑚

is the number of dimensions and 𝜀 is the privacy budget of DP), for
varying 𝑛 ∈ {1 × 105, 2 × 105, 3 × 105, 4 × 105, 5 × 105, 6 × 105} (𝑛 is the
number of tuples). The results are provided in Fig. 3, Fig. 4 and Fig. 5. It
can be observed that BopSkyline is 2.9 × −4.6× faster than SecSkyline.
In particular, as 𝑛 increases from 1 × 105 to 6 × 105, the query latency
of BopSkyline only increases from 0.8s to 4.1s, but the query latency of
SecSkyline increases from 2.4s to 18.2s. We then evaluate BopSkyline
and SecSkyline with 𝑛 = 1 × 105, 𝜀 = 1, for varying 𝑚 ∈ {2, 3, 4, 5, 6}.
The results are presented in Fig. 6, Fig. 7, and Fig. 8. We can ob-

serve that BopSkyline is 2.2×-4.7× faster than SecSkyline. Moreover,
we can observe that the gap between the query latency of BopSkyline
and SecSkyline increases sharply as 𝑚 and 𝑛 increase. The results above
demonstrate that BopSkyline achieves significant improvement in query
latency compared with the SecSkyline.

7.3.2. Evaluation on communication performance

We now evaluate the online communication cost of BopSkyline
and compare the results with SecSkyline [44]. The online communi-

cation cost is defined as the size of data that 𝐶𝑆{1,2} communicate
with each other in performing secure skyline query processing for an
encrypted skyline query. We follow the identical parameter setting

as in Section 7.3.1 and present a summary of the experiment results

Computers & Security 140 (2024) 103803W. Wang, Y. Zheng, S. Wang et al.

Table 3

Communication cost (in GB) on Different Datasets, for Varying Number 𝑛 of Tuples (with 𝑚 = 2, 𝜀 = 1).

Number of tuples 𝑛 CORR INDE ANTI

SecSkyline BopSkyline Saving SecSkyline BopSkyline Saving SecSkyline BopSkyline Saving

1 × 105 1.05 0.09 91.43% 0.72 0.09 87.50% 1.40 0.12 91.43%

2 × 105 2.16 0.19 91.20% 1.52 0.19 87.50% 2.53 0.25 90.12%

3 × 105 3.39 0.28 91.74% 1.94 0.28 85.57% 5.19 0.36 93.06%

4 × 105 4.09 0.37 90.95% 2.30 0.37 83.91% 5.55 0.48 91.35%

5 × 105 5.62 0.47 91.64% 3.26 0.46 85.89% 6.69 0.59 91.18%

6 × 105 6.43 0.56 91.29% 3.74 0.56 85.03% 11.49 0.76 93.39%

Table 4

Communication cost (in GB) on Different Datasets, for Varying Number 𝑚 of Dimensions (with 𝑛 = 1 × 105, 𝜀 = 1).

Dimension 𝑚 CORR INDE ANTI

SecSkyline BopSkyline Saving SecSkyline BopSkyline Saving SecSkyline BopSkyline Saving

2 1.05 0.09 91.43% 0.72 0.09 87.50% 1.40 0.12 91.43%

3 7.78 0.16 97.94% 6.42 0.13 97.98% 14.58 0.21 98.56%

4 42.13 0.46 98.91% 34.63 0.24 99.31% 43.30 0.61 98.59%

5 260.76 2.25 99.14% 128.42 0.79 99.38% 143.70 2.11 98.53%

6 661.70 17.94 97.29% 387.16 3.40 99.12% 318.18 9.12 97.13%
Fig. 3. Query latency on CORR, for varying number of tuples 𝑛 (with the num-

ber of dimensions 𝑚 = 2 and the privacy budget of DP 𝜀 = 1).

Fig. 4. Query latency on INDE, for varying number of tuples 𝑛 (with the number
of dimensions 𝑚 = 2 and the privacy budget of DP 𝜀 = 1).

in Table 3 and Table 4. It can be observed that BopSkyline achieves
83.91% −99.38% savings in communication cost against SecSkyline. The
results demonstrate that BopSkyline achieves substantial improvement
in the online communication performance over SecSkyline.

7.3.3. Query latency evaluation under varying privacy budget

We now report the query latency of BopSkyline with 𝑛 = 1 ×105, 𝑚 =
10

2, for varying the privacy budget 𝜀 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. The results
Fig. 5. Query latency on ANTI, for varying number of tuples 𝑛 (with the number
of dimensions 𝑚 = 2 and the privacy budget of DP 𝜀 = 1).

Fig. 6. Query latency on CORR, for varying the number of dimensions 𝑚 (with
the number of tuples 𝑛 = 1 × 105 and the privacy budget of DP 𝜀 = 1).

are shown in Fig. 9. It can be observed that the query latency increases
gracefully as the privacy budget 𝜀 decreases. Table 5 summarizes the
mean 𝜇 for the Laplace distribution at different privacy budgets 𝜀, cor-

responding to the average number of dummy tuples blended into the
original database. It can be observed that even at a limited privacy bud-

get, the mean remains small, e.g., 65 with 𝜀 = 0.2. This results in a
graceful increase in query latency due to the presence of dummy tu-
ples.

W. Wang, Y. Zheng, S. Wang et al.

Fig. 7. Query latency on INDE, for varying the number of dimensions 𝑚 (with
the number of tuples 𝑛 = 1 × 105 and the privacy budget of DP 𝜀 = 1).

Fig. 8. Query latency on ANTI, for varying the number of dimensions 𝑚 (with
the number of tuples 𝑛 = 1 × 105 and the privacy budget of DP 𝜀 = 1).

Fig. 9. Query Latency with 𝑛 = 1 × 105,𝑚 = 2, for varying privacy budget 𝜀.

Table 5

The Mean 𝜇 for the Laplace Distribu-

tion at Different Privacy Budgets 𝜀.

𝜀 0.2 0.4 0.6 0.8 1.0

𝜇 65 32 21 16 13

8. Conclusion and future work

In this paper, we present a new system framework BopSkyline for
privacy-preserving skyline query processing in the cloud. BopSkyline is
built from a delicate synergy of lightweight cryptography and differen-

tial privacy techniques to allow the cloud to obliviously process skyline
queries, providing protections for not only data content confidentiality
11

but also data patterns and search access patterns. We conduct evalua-
Computers & Security 140 (2024) 103803

tions over several datasets and the results demonstrate that compared
with the state-of-the-art prior work SecSkyline, BopSkyline is up to 4.7×
better in query latency and saves up to 99.38% communication cost.

Like the stat-of-the-art prior work [44], as well as earlier stud-

ies [27,28], the current design of BopSkyline does not consider the
malicious adversary model. It is noted that the protocols providing
semi-honest security are often considered as a stepping stone for the de-

velopment of protocols capable of withstanding malicious adversaries.
To harden our current protocol design with malicious security, one fea-

sible technical direction is to leverage information-theoretic MAC [7].
Here we introduce the basic idea at a high level. The data owner ad-

ditionally generates secret-shared MAC for each private value when
outsourcing the encrypted database. Subsequently, when 𝐶𝑆{1,2} per-

form secure skyline queries on the encrypted database, they not only
undertake the specified secure operations on the private values but also
extend these operations to the corresponding MACs. After the client re-

ceives the secret shares of the result, as well as the secret shares of the
corresponding MACs, it can verify the integrity of the result based on
their relationships. We leave a more detailed study as future work.

CRediT authorship contribution statement

Weibo Wang: Conceptualization, Formal analysis, Methodology,
Software, Writing – original draft. Yifeng Zheng: Conceptualization,
Funding acquisition, Methodology, Supervision, Writing – review &
editing. Songlei Wang: Conceptualization, Methodology, Writing – re-

view & editing. Zhongyun Hua: Conceptualization, Validation, Writing
– review & editing. Lei Xu: Validation, Writing – review & editing. Yan-

song Gao: Visualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This work was supported in part by the Guangdong Basic and
Applied Basic Research Foundation under Grants 2021A1515110027,
2023A1515010714, and 2021A1515011406, by the Shenzhen Science
and Technology Program under Grants RCBS20210609103056041,
JCYJ20220531095416037, and JCYJ20230807094411024, by the Na-

tional Natural Science Foundation of China under Grant 62202228,
by the Natural Science Foundation of Jiangsu Province under Grant
BK20210330, and by the Fundamental Research Funds for the Central
Universities under Grant 30923011023.

References

[1] N. Agrawal, A.S. Shamsabadi, M.J. Kusner, A. Gascón, QUOTIENT: two-party secure
neural network training and prediction, in: Proc. of ACM CCS, 2019.

[2] W. Balke, U. Güntzer, J.X. Zheng, Efficient distributed skylining for web information
systems, in: Proc. of EDBT, 2004.

[3] BleepingComputer, Flexbooker discloses data breach, over 3.7 million ac-

counts impacted [Online], https://www .bleepingcomputer .com /news /security /
flexbooker -discloses -data -breach -over -37 -million -accounts -impacted/. (Accessed 6
March 2023).

[4] S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in: Proc. of IEEE ICDE,
2001.

[5] S. Bothe, A. Cuzzocrea, P. Karras, A. Vlachou, Skyline query processing over en-

crypted data: an attribute-order-preserving-free approach, in: Proc. of International
Workshop on Privacy and Security of Big Data, 2014.

[6] W. Chen, R.A. Popa, Metal: a metadata-hiding file-sharing system, in: Proc. of NDSS,

2020.

http://refhub.elsevier.com/S0167-4048(24)00104-4/bib513D51D23A7A7A7B068388FC99AE182As1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib513D51D23A7A7A7B068388FC99AE182As1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF70C335D4357C65DD894ACE0850C4B42s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF70C335D4357C65DD894ACE0850C4B42s1
https://www.bleepingcomputer.com/news/security/flexbooker-discloses-data-breach-over-37-million-accounts-impacted/
https://www.bleepingcomputer.com/news/security/flexbooker-discloses-data-breach-over-37-million-accounts-impacted/
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9178A661A656CCE3CB7AF331521A51D6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9178A661A656CCE3CB7AF331521A51D6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib061E0C16F09B6BD985E5FB4B9615D39Es1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib061E0C16F09B6BD985E5FB4B9615D39Es1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib061E0C16F09B6BD985E5FB4B9615D39Es1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib8130EDA692420D9EE4A3F7C58750C3FCs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib8130EDA692420D9EE4A3F7C58750C3FCs1

W. Wang, Y. Zheng, S. Wang et al.

[7] R. Cramer, I. Damgård, D. Escudero, P. Scholl, C. Xing, SPDZ2k : efficient MPC mod
2k for dishonest majority, in: Proc. of CRYPTO, 2018.

[8] N. Cui, X. Yang, B. Wang, J. Li, G. Wang, Svknn: efficient secure and verifiable
k-nearest neighbor query on the cloud platform, in: Proc. of IEEE ICDE, 2020.

[9] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, Y. Theodoridis, Constrained sub-

space skyline computation, in: Proc. of ACM CIKM, 2006.

[10] D. Demmler, T. Schneider, M. Zohner, ABY - a framework for efficient mixed-

protocol secure two-party computation, in: Proc. of NDSS, 2015.

[11] K. Deng, X. Zhou, H.T. Shen, Multi-source skyline query processing in road net-

works, in: Proc. of IEEE ICDE, 2007.

[12] X. Ding, Z. Wang, P. Zhou, K.-K.R. Choo, H. Jin, Efficient and privacy-preserving
multi-party skyline queries over encrypted data, IEEE Trans. Inf. Forensics Secur. 16
(2021) 4589–4604.

[13] M. Du, S. Wu, Q. Wang, D. Chen, P. Jiang, A. Mohaisen, Graphshield: dynamic large
graphs for secure queries with forward privacy, IEEE Trans. Knowl. Data Eng. 34 (7)
(2020) 3295–3308.

[14] C. Dwork, Differential privacy, in: Proc. of ICALP, 2006.

[15] S. Eskandarian, D. Boneh, Clarion: anonymous communication from multiparty
shuffling protocols, in: Proc. of NDSS, 2022.

[16] M. Hähnel, W. Cui, M. Peinado, High-resolution side channels for untrusted operat-

ing systems, in: Proc. of USENIX ATC, 2017.

[17] X. He, A. Machanavajjhala, C.J. Flynn, D. Srivastava, Composing differential privacy
and secure computation: a case study on scaling private record linkage, in: Proc. of
ACM CCS, 2017.

[18] Z. Huang, C.S. Jensen, H. Lu, B.C. Ooi, Skyline queries against mobile lightweight
devices in MANETs, in: Proc. of IEEE ICDE, 2006.

[19] P. Jiang, Q. Wang, M. Huang, C. Wang, Q. Li, C. Shen, K. Ren, Building in-the-cloud
network functions: security and privacy challenges, Proc. IEEE 109 (12) (2021)
1888–1919.

[20] M.E. Khalefa, M.F. Mokbel, J.J. Levandoski, Skyline query processing for incomplete
data, in: Proc. of IEEE ICDE, 2008.

[21] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: an online algorithm for
skyline queries, in: Proc. of VLDB, 2002.

[22] D. Lee, D. Jung, I.T. Fang, C.-C. Tsai, R.A. Popa, An off-chip attack on hardware
enclaves via the memory bus, in: Proc. of USENIX Security, 2020.

[23] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, M. Peinado, Inferring fine-grained con-

trol flow inside sgx enclaves with branch shadowing, in: Proc. of USENIX Security,
2017.

[24] Y. Lindell, How to simulate it - a tutorial on the simulation proof technique, in:
Tutorials on the Foundations of Cryptography, 2017, pp. 277–346.

[25] J. Liu, L. Xiong, J. Pei, J. Luo, H. Zhang, Finding Pareto optimal groups: group-based
skyline, Proc. VLDB Endow. 8 (13) (2015) 2086–2097.

[26] J. Liu, H. Zhang, L. Xiong, H. Li, J. Luo, Finding probabilistic k-skyline sets on
uncertain data, in: Proc. of ACM CIKM, 2015.

[27] J. Liu, J. Yang, L. Xiong, J. Pei, Secure skyline queries on cloud platform, in: Proc.
of IEEE ICDE, 2017.

[28] J. Liu, J. Yang, L. Xiong, J. Pei, Secure and efficient skyline queries on encrypted
data, IEEE Trans. Knowl. Data Eng. 31 (7) (2019) 1397–1411.

[29] X. Meng, H. Zhu, G. Kollios, Top-k query processing on encrypted databases with
strong security guarantees, in: Proc. of IEEE ICDE, 2018.

[30] P. Mohassel, Y. Zhang, SecureML: a system for scalable privacy-preserving machine
learning, in: Proc. of IEEE S&P, 2017.

[31] D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive skyline computation in database
systems, ACM Trans. Database Syst. 30 (1) (2005) 41–82.

[32] J. Pei, W. Jin, M. Ester, Y. Tao, Catching the best views of skyline: a semantic
approach based on decisive subspaces, in: Proc. of VLDB, 2005.

[33] J. Pei, B. Jiang, X. Lin, Y. Yuan, Probabilistic skylines on uncertain data, in: Proc. of
VLDB, 2007.

[34] Z. Qin, J. Weng, Y. Cui, K. Ren, Privacy-preserving image processing in the cloud,
IEEE Cloud Comput. 5 (2) (2018) 48–57.

[35] M.S. Riazi, C. Weinert, O. Tkachenko, E.M. Songhori, T. Schneider, F. Koushanfar,
Chameleon: a hybrid secure computation framework for machine learning applica-

tions, in: Proc. of ACM AsiaCCS, 2018.

[36] Y. Tao, D. Papadias, Maintaining sliding window skylines on data streams, IEEE
Trans. Knowl. Data Eng. 18 (2) (2006) 377–391.

[37] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, R. Strackx, Telling your secrets
without page faults: stealthy page table-based attacks on enclaved execution, in:
Proc. of USENIX Security, 2017.

[38] J. Wang, M. Du, S.S.M. Chow, Stargazing in the dark: secure skyline queries with
SGX, in: Proc. of DASFAA, 2020.

[39] Q. Wang, J. Wang, S. Hu, Q. Zou, K. Ren, Sechog: privacy-preserving outsourcing
computation of histogram of oriented gradients in the cloud, in: Proc. of ACM Asi-

aCCS, 2016.
12
Computers & Security 140 (2024) 103803

[40] Z. Wang, X. Ding, H. Jin, P. Zhou, Efficient secure and verifiable location-based
skyline queries over encrypted data, Proc. VLDB Endow. 15 (9) (2022) 1822–1834.

[41] L. Xu, J. Jiang, B. Choi, J. Xu, S.S. Bhowmick, Privacy preserving strong simulation
queries on large graphs, in: Proc. of IEEE ICDE, 2021.

[42] W. Yu, Z. Qin, J. Liu, L. Xiong, X. Chen, H. Zhang, Fast algorithms for Pareto optimal
group-based skyline, in: Proc. of ACM CIKM, 2017.

[43] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, J. Shao, Towards efficient and privacy-

preserving user-defined skyline query over single cloud, in: IEEE Transactions on
Dependable and Secure Computing, 2022.

[44] Y. Zheng, W. Wang, S. Wang, X. Jia, H. Huang, C. Wang, Secskyline: fast privacy-

preserving skyline queries over encrypted cloud databases, IEEE Trans. Knowl. Data
Eng. 35 (9) (2023) 8955–8967.

Weibo Wang received the BE degree in software engineer-
ing from Zhejiang University of Technology, China, in 2021. He
is currently working toward the ME degree in the School of Com-
puter Science and Technology, Harbin Institute of Technology,
Shenzhen, China. His research interests include cloud computing
security and secure muti-party computation.

Yifeng Zheng is an Assistant Professor with the School of
Computer Science and Technology, Harbin Institute of Technol-
ogy, Shenzhen, China. He worked as a postdoc with the Common-
wealth Scientific and Industrial Research Organization (CSIRO),
Australia, and City University of Hong Kong. His current research
interests are focused on security and privacy related to cloud
computing, IoT, machine learning, and multimedia.

Songlei Wang received the BE degree in internet of things
from China University of Petroleum (East China), Qingdao,
China, in 2018, the ME degree in computer technology from
Harbin Institute of Technology, Shenzhen, China, in 2021. He is
currently working toward the PhD degree in the School of Com-
puter Science and Technology, Harbin Institute of Technology,
Shenzhen, China. His research interests include cloud computing
security and secure machine learning.

Zhongyun Hua received the B.S. degree from Chongqing
University, Chongqing, China, in 2011, and the M.S. and Ph.D.
degrees from University of Macau, Macau, China, in 2013 and
2016, respectively, all in software engineering. He is currently
an Associate Professor with the School of Computer Science and
Technology, Harbin Institute of Technology, Shenzhen, Shen-
zhen, China. His research interests include chaotic system and
information security.

Lei Xu is currently an Associate Professor at the school of
Mathematics and Statistics, Nanjing University of Science and
Technology. He received his Ph.D. degree in Nanjing University
of Science and Technology, 2019. He was also ever a visiting
Ph.D. student at Faculty of Information Technology, Monash Uni-
versity during the period from April 2017 to April 2018. His main
research interests are focused on applied cryptography and infor-
mation security, including encrypted search, differential privacy
and quantum-resistant cryptography.

Yansong Gao is a tenured Research Scientist at Data61,
CSIRO. Prior to that, he was an Associate Professor at Nanjing
University of Science and Technology. He received his M.Sc de-
gree from the University of Electronic Science and Technology of
China in 2013 and a Ph.D. degree from the University of Ade-
laide, Australia, in 2017. His current research interests are AI
security and privacy, hardware security, and system security.

http://refhub.elsevier.com/S0167-4048(24)00104-4/bib7EA007D599FA9999097986210439FFFAs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib7EA007D599FA9999097986210439FFFAs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib824BB0522FB806436BFD5B020532F30Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib824BB0522FB806436BFD5B020532F30Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib56FBEA0F67E2C9FCBB40C2EE6A569AA5s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib56FBEA0F67E2C9FCBB40C2EE6A569AA5s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibB52FE8462B6208D736487D95C3F94761s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibB52FE8462B6208D736487D95C3F94761s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF6A236EBE5D436C94F46986E81AA0744s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF6A236EBE5D436C94F46986E81AA0744s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF1A20EEBD0C42BA13294EB908BE37B3Es1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF1A20EEBD0C42BA13294EB908BE37B3Es1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF1A20EEBD0C42BA13294EB908BE37B3Es1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib77FDCF27C2AB2D8E87448FE8CB5BD41Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib77FDCF27C2AB2D8E87448FE8CB5BD41Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib77FDCF27C2AB2D8E87448FE8CB5BD41Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibC7B08716EC398D9AACACA437F1DB9940s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib51C9471FA72F6E1689298471E6346E6Ds1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib51C9471FA72F6E1689298471E6346E6Ds1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib385E9B27A481803B0A89D5C7D06644B9s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib385E9B27A481803B0A89D5C7D06644B9s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib3ECEF06C563D48FA181F14FBCF4D4E02s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib3ECEF06C563D48FA181F14FBCF4D4E02s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib3ECEF06C563D48FA181F14FBCF4D4E02s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib4EC1F4E9E1DBA1ABF8C11B9D71A365D6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib4EC1F4E9E1DBA1ABF8C11B9D71A365D6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2B96F6797481BBFE2674EAD431272528s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2B96F6797481BBFE2674EAD431272528s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2B96F6797481BBFE2674EAD431272528s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibE80D140921F27D01AE14D51B7E8FBF7Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibE80D140921F27D01AE14D51B7E8FBF7Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9342BB1262EDD8D180E0DA6044BDDB4Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9342BB1262EDD8D180E0DA6044BDDB4Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib69F8844909151D803759F3B2A7FF17A5s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib69F8844909151D803759F3B2A7FF17A5s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibA86DF4224E9C38E3314F43FF75F9D5F6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibA86DF4224E9C38E3314F43FF75F9D5F6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibA86DF4224E9C38E3314F43FF75F9D5F6s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2A99F4B4C0F4BA982A5A62D303E51CD3s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2A99F4B4C0F4BA982A5A62D303E51CD3s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9506A156897E1E317871786E327ABB51s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9506A156897E1E317871786E327ABB51s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibFD7517F24252AB44A3BBB3564856C6B9s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibFD7517F24252AB44A3BBB3564856C6B9s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibE9DEF2FA03B4D10431A12E01AE632BD0s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibE9DEF2FA03B4D10431A12E01AE632BD0s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibB16FA33AE366D1ECC445C4A4B5D1DB54s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibB16FA33AE366D1ECC445C4A4B5D1DB54s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9F7D8FBBDF7F9B88E145CCBDCC05FEAEs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib9F7D8FBBDF7F9B88E145CCBDCC05FEAEs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib21F2B3A27CF14D6A8BCEB5D3D49B29ADs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib21F2B3A27CF14D6A8BCEB5D3D49B29ADs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib7776C9D12D91B885A78F9ECA5F62286Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib7776C9D12D91B885A78F9ECA5F62286Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibEEA56E056B9552DB5C401BE26D9535A2s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibEEA56E056B9552DB5C401BE26D9535A2s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib0D89B93015AF3C55163DD7C04708CBAAs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib0D89B93015AF3C55163DD7C04708CBAAs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF4EC45D1C5B7D9D46A4B1508EB082C2Ds1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF4EC45D1C5B7D9D46A4B1508EB082C2Ds1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2048AA7ED4A2923F40E77B8917AB844Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2048AA7ED4A2923F40E77B8917AB844Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2048AA7ED4A2923F40E77B8917AB844Cs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2827374ADF6559FA43A16C1530815FB0s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib2827374ADF6559FA43A16C1530815FB0s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib3B79DA1AFC1D9E59AA7E343520CA92F4s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib3B79DA1AFC1D9E59AA7E343520CA92F4s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib3B79DA1AFC1D9E59AA7E343520CA92F4s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib02C4C293A6D3B92A1964B268B20C52D0s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib02C4C293A6D3B92A1964B268B20C52D0s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF052DA1CC586F97D636FF152A5EA3726s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF052DA1CC586F97D636FF152A5EA3726s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibF052DA1CC586F97D636FF152A5EA3726s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib90CFEED9D3B51C0EA73D942593E5B26As1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib90CFEED9D3B51C0EA73D942593E5B26As1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibDEFF213AD37D4AF5B4414ED49D793296s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bibDEFF213AD37D4AF5B4414ED49D793296s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib29C6F781C773C4C85E2036CF951DFD7Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib29C6F781C773C4C85E2036CF951DFD7Bs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib4D7945C8E7906412F89F52A5EB426856s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib4D7945C8E7906412F89F52A5EB426856s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib4D7945C8E7906412F89F52A5EB426856s1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib1983BA0285831192675E78A01CB2C0DBs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib1983BA0285831192675E78A01CB2C0DBs1
http://refhub.elsevier.com/S0167-4048(24)00104-4/bib1983BA0285831192675E78A01CB2C0DBs1

	BopSkyline: Boosting privacy-preserving skyline query service in the cloud
	1 Introduction
	2 Related work
	2.1 Skyline query without privacy protection
	2.2 Secure skyline query processing

	3 Preliminaries
	3.1 Skyline query
	3.2 Additive secret sharing
	3.3 Differential privacy

	4 Problem statement
	4.1 System architecture
	4.2 Trust assumptions and security goals

	5 The design of BopSkyline
	5.1 Overview
	5.2 Secure database preparation
	5.3 Secure skyline query processing
	5.3.1 Overview
	5.3.2 Secure database shuffling
	5.3.3 Secure database mapping
	5.3.4 Secure skyline fetching
	5.3.5 Secure skyline and dominated tuples elimination

	6 Security analysis
	6.1 Differential privacy-related analysis
	6.2 Data confidentiality-related analysis
	6.3 On protection for data patterns and search access patterns

	7 Experiments
	7.1 Setup
	7.2 Evaluation on accuracy
	7.3 Evaluation on performance
	7.3.1 Evaluation on query latency
	7.3.2 Evaluation on communication performance
	7.3.3 Query latency evaluation under varying privacy budget

	8 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

