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ABSTRACT

The fast development of deepfake generation technology has
caused serious security threats to human society. Many deep-
fake detection methods have been proposed recently, but most
of them can only show high detection performance for the
deepfakes generated by the similar techniques with the train-
ing dataset. To improve the ability of detecting unseen types
of deepfakes, some deepfake detection methods have con-
structed self-generated datasets to train their models. How-
ever, the artifacts on these self-generated datasets are usually
caused by some specific face-blending algorithms and lack
of generality. In this paper, we propose cluster decision net-
work (CDNet) to improve the deepfake detection generaliz-
ability. We design a selective attention module that decides
the attention areas by manually cropping the facial areas (e.g.,
eyes, nose, and lips), which greatly reduce the model size
and ensure a small model size. Inspired by the contrastive
learning, we also propose a cluster classifier to equally uti-
lize the feature representation. Extensive experiments show
that our method outperforms existing state-of-the-art methods
in deepfake detection generalizability and has the minimum
model size.

Index Terms— Deepfake detection, Generalizability,
Contrastive learning.

1. INTRODUCTION

With the fast development of deepfake generation technolo-
gies, the generated deepfakes are harder and harder to be rec-
ognized by human eyes [1, 2]. This may cause a huge security
threat to human society in different aspects. Researchers have
developed many deepfake detection methods to deal with this
threat [3, 4, 5]. These methods can achieve a high detection
performance for the deepfakes generated by the same or sim-
ilar techniques with the training dataset but show poor perfor-
mance on new types of deepfakes.

Recently, some methods have been proposed to improve
the generalizability of deepfake detection, and they can be
roughly divided into three kinds. The first kind introduces
self-generated deepfake datasets to guide the model to learn
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the artifact features that widely exist in most deepfakes [6, 7].
These detection methods show good generalizability in pre-
vious detection tasks. However, their self-generated data are
composed of face-blending artifacts that can be easily fixed
by new deepfake generation methods, making these detection
methods perform poorly on detecting the deepfakes generated
by some advanced generation methods. The second kind uses
domain adaptation to transfer the model to a new deepfake
dataset to achieve higher generalizability [8]. These methods
can achieve high performance on the target domain, however,
may lose the knowledge of the source domain. The third kind
designs additional architecture or strategy to guide the model
focus on the artifact-relevant features [4]. These methods en-
sure that the models can pay attention to the areas of the arti-
facts but have complex architectures and training strategies.

In this paper, we design and evaluate CDNet, a new deep-
fake detection model for improving the detection generaliza-
tion. CDNet consists of the selective attention module (SAM)
and the cluster decision module (CDM). We design SAM to
ensure that our model focus on the artifacts of some selective
facial features, which exist in most deepfakes and are hard to
be eliminated [9]. Specifically, SAM uses a special attention
mechanism to directly take the cropped facial sub-images as
input. Inspired by the contrastive learning, we design CDM
to enlarge the difference between the real and fake samples.
The designed cluster classifier uses a novel decision-making
approach to decide the sample class according to its distance
to the centers of the two kinds of samples (real or fake). Since
all the features are treated equally in the distance calculation,
our module can avoid over-reliance on certain features. Ex-
tensive experiments are conducted to validate the superior-
ity of our model in deepfake detection generalizability. We
summarize the contributions of this paper as follows: 1) We
propose a new deepfake detection generalizing method called
CDNet and it contains SAM and CDM. Compared with exist-
ing methods, our model can pay attention to the artifacts that
exist in general deepfakes, and has a simple model; 2) We de-
sign a new cluster classifier based on the contrastive learning.
It can improve the deepfake detection generalizability by en-
larging the sample discrimination and treating all the features
equally; 3) We conduct experiments to test out CDNet and the
results show that it can obtain state-of-the-art generalization
performance and has a small model size.
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2. RELATED WORK

2.1. Generalizable Deepfake Detection Methods

Recently, many deepfake detection methods have been de-
veloped to improve the detection generalizability for unseen
types of deepfakes, and these methods can be roughly divided
into three kinds.
Self-generated data-based methods. The methods in [6, 7]
train their models using the samples with face-blending ar-
tifacts generated by different strategies. These methods can
reduce the model dependence on some specific datasets while
ensuring the model to pay attention to the deepfake artifacts
that appeared in the training sets. However, the face-blending
operation is not indispensable in deepfake generation. These
detection methods inevitably show poor performance in de-
tecting some kinds of deepfakes.
Domain adaptation-based methods. In [8], Kim et al. use
knowledge distillation on the representation of the previous
model as a training restriction, which prevents the perfor-
mance degradation on the previous task. In [10], Tariq et al.
train the model using the target domain data and use data
from the source domain to repair the damaged knowledge.
These domain adaptation-based methods can improve the de-
tection generalizability effectively. However, they have to re-
train their model with data from previous task.
General artifact attention-based methods In [11], Zhao
et al. generate multiple attention maps that autonomously
concentrate the model on the areas of general anomalies,
rather than the discriminative areas only. In [12], Wang et al.
first adopt a feature map to cover parts of the face that the
classifier relies on, and drive the model to learn more general
features from the rest of face areas. These methods can help
the model concentrate on the areas where the general deep-
fake artifacts exist. However, they usually have very compli-
cated model architectures or training strategies.

2.2. Contrastive Learning

The contrastive learning is an effective tool in differentiating
the samples from different kinds in the feature map [13]. It
has been verified that the contrastive learning is highly ef-
fective in assisting classification. These methods with con-
trastive learning [14, 13] adopt fully connected layers as their
final classifier. As a result, the detection result tends to rely on
some discriminative features and has a limited performance
for generalizability.

3. CDNET

3.1. Overview

Fig. 1 shows the structure of our CDNet, which consists of a
selective attention module (SAM) and a cluster decision mod-
ule (CDM). As can be seen, SAM uses the local information

(i.e., left eye, right eye, nose, and mouth) as the main discrim-
ination basis and the whole image as a complement. Both the
spatial and frequency features are extracted and then fused
for classification. In CDM, we utilize two different classifiers
and switch them in different training stages. Specifically, we
design a distinctive cluster classifier to classify an image ac-
cording to the feature distance between this image with the
centers of the real and fake images.

3.2. Selective Attention Module

According to previous studies [9], the artifacts existing in the
facial features are hard to be eliminated. Based on this prop-
erty, we design SAM that uses the face features as the main
basis for detecting deepfakes. This manual selection can en-
sure that our model pays more attention to the features re-
lated to the artifacts. At the same time, the model can keep
lightweight, and the face-blending artifacts can be omitted.

Given an input face image, we first use BlazeFace [15]
to crop four face feature images. Considering the differ-
ent significance between the whole face image and its partial
face feature images, we design two kinds of modified Xcep-
tion [3] blocks to extract the spatial features. The first one is
for the face feature images. In contrast, the second one for
the face images holds fewer channels and parameters, and it
serves only for global information extraction. The face fea-
ture blocks transform each face feature image into a 1 × 256
vector, while the face image blocks also transform the face
image into a 1× 256 vector. To enhance the feature represen-
tation ability, we also extract the frequency features using the
discrete cosine transform (DCT) which was adopted by re-
cent works[16, 17]. For each image, the average amplitudes
of each frequency are obtained to form a 1 × 128 frequency
vector. Finally, all frequency and spatial feature vectors are
concatenated and then projected by a fully connected layer
into a feature vector F with size 1× 200 for classification.

3.3. Cluster Decision Module

Most previous deepfake detection methods [18] use a fully
connected layer as the binary classifier to detect deepfakes.
To achieve the least loss, this classifier tends to greatly rely
on the discriminative features (e.g., the inconsistency of light
contrast, specific face blending artifacts, and identity of faces)
However, these features may be irrelevant to the deepfake ar-
tifacts, making the model show a poor performance in gener-
alizability. To address this disadvantage, we propose a new
cluster classifier in CDM. As can be seen in the right part
of Fig. 1, we set a classifier switch to switch two different
classifiers for the final classification. The traditional binary
classifier is to learn how to capture the features, while the
proposed cluster classifier is to improve the detection gen-
eralizability. Specifically, we first use the traditional binary
classifier to train our model until it performs the best in the
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Fig. 1: Overview framework of our CDNet. Four face feature images are cropped from each face image.

validation dataset. The intermediate model generates two fea-
tures centers as follows:

CF = Avg(
∑

F∈Fake

F ), CR = Avg(
∑

F∈Real

F ), (1)

where CF ∈ R1×200 and CR ∈ R1×200 are the feature cen-
ters of the fake and real images, Fake and Real means that the
image with feature F is a fake image and real image, respec-
tively.

After obtaining the sample centers of the whole training
dataset, CDNet switches to the cluster classifier to continue
training. Inspired by the contrastive learning [13], our model
aims to enlarge the distance of the feature centers of the real
image and fake images as much as possible. This operation
can improve the detection generalizability by separating the
features of the unseen real and fake samples. We design the
loss function as follows:

LF =
∑

F∈Fake

max(||CF − F ||22 − β||CF − CR||22, 0),

LR =
∑

F∈Real

max(||CR− F ||22 − β||CF − CR||22, 0),
(2)

L =
LF + LR

N × ||CF − CR||22
, (3)

where β is the sample scaling factor to avoid over-
concentration in feature distribution, and N is the training
batch size. By minimizing the loss L, our CDNet can en-
large the distance of the feature centers of the real images and
the fake images, and gather the samples with the same labels.
During this training process, we update the feature centers us-
ing the features of the current batch and a center moving rate
α. The updating process is calculated as follows:

CF t = (1− α)CF t−1 + αAvg(
∑

F∈Fake

F)

CRt = (1− α)CRt−1 + αAvg(
∑

F∈Real

F)
(4)

The cluster classifier classifies the input image as:

CC(F ) =

{
Fake, if ||CF − F ||22 < ||CR− F ||22;
Real, else.

(5)

In this decision strategy, the cluster classifier treats all features
equally, which avoids over-reliance on certain discriminative
features.

4. EXPERIMENTS

4.1. Datasets

Training and testing datasets. We evaluate the perfor-
mance of our CDNet on the most widely used Faceforen-
cis++ (FF++) dataset [1] and Celeb-DF dataset [2]. The
FF++ dataset contains 1000 original videos and 4000 deep-
fake videos generated by four deepfake generation methods.
Following the settings of the recent studies [19, 7], we choose
the C23 compression level, and use 720 and 140 original
videos as the training set and testing set, respectively. The
Celeb-DF dataset contains 408 original videos and 795 deep-
fake videos, and it is used for testing the detection generaliz-
ability of our CDNet.
Preprocessing. We construct our training set and testing set
using the following steps. (a) Uniformly extract 32 frames
from each video. (b) Use BlazeFace [15] to capture the face
from each frame and then crop four face feature images (i.e.,
left eye, right eye, nose, and mouth). (c) Resize each face
image as 299× 299 and each face feature image as 64× 64.
Training settings. We use the Adam optimizer with a learn-
ing rate of 0.0001. For the parameters of the cluster classifier,
we experimentally set α = 0.0001 and β = 0.4. We set
the training batch size as 32. We train our model using the
traditional binary classifier for 20 epochs in the first stage of
training. We choose the model with the best validation ac-
curacy in FF++ dataset, replace its classifier with the cluster
classifier, and train it for 20 epochs in the second stage of
training. We implement our model using PyTorch and run all
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Table 1: Performance comparison with some state-of-the-art
deepfake detection methods. All the models are trained on the
FF++ dataset and tested on the FF++ dataset and the Celeb-
DF dataset, respectively.

Methods FF++ Celeb-DF Avg Params(M)
Xception [3] 0.997 0.653 0.825 22.9
EfficientNet B4 [20] 0.997 0.643 0.82 19.3
Two-branch [14] 0.932 0.734 0.833 -
SPSL [21] 0.969 0.724 0.847 22.9
MADD [11] 0.998 0.674 0.836 417.6
F3-Net[5] 0.998 0.697 0.848 42.5
Ours 0.979 0.770 0.875 5.6

the experiments on a computer with an Intel i9-10900X CPU
and an RTX3090 GPU.

4.2. Performance Comparison

We compare our CDNet with six state-of-the-art methods, in-
cluding Xception [3] , EfficientNet B4 [20], Two-branch [14],
SPSL [21], MADD [11], and F3-Net [5]. These methods are
trained without introducing self-generated data. The area un-
der the ROC curve (AUC) was chosen as the metric. We im-
plement these models following their original papers. The
AUC results of all the competing models are referred to [7]
except F3-Net, and their model sizes are tested in our imple-
mentation. Table 1 lists the comparison results.
Intra-dataset performance. We first compare the AUC of
different deepfake detection methods within the FF++ dataset,
which means that the training set and testing set are all from
the FF++ dataset. As seen from the first column of Table 1,
most methods have AUC scores larger than 95% except for
the Two-branch. This indicates that these methods can ef-
fectively capture the discriminative features of the deepfakes
generated using the same or similar technologies.
Cross-dataset generalizability. We then compare the AUC
of these deepfake detection methods across different datasets
to test their generalizability. This means that the training set
is from the FF++ dataset, while the testing set is from the
Celeb-DF dataset. As can be seen from the second column
of Table 1, our CDNet can obtain the best AUC score on the
Celeb-DF dataset. This demonstrates that our CDNet has the
best deepfake detection generalizability.
Model size. Previous models usually construct complex
structures or strategies to improve generalizability. Com-
pared with these models, our model is much smaller (only

Table 2: Ablation study of the selective attention module
(SAM) and cluster decision module (CDM).

SAM CDM FF++ Celeb-DF Avg
0.997 0.653 0.825

✓ 0.972 0.674 0.823
✓ 0.992 0.757 0.874

✓ ✓ 0.979 0.770 0.875

5.6 M), which can be seen from the fifth column of Table 1.
This advantage makes our model friendly to be deployed on
some terminal devices with limited computation and storage
resources.

4.3. Ablation Study

4.3.1. Effectiveness of SAM and CDM

We conduct experiments to study the effect of our selective
attention module (SAM) module and cluster decision module
(CDM). We choose Xception as the backbone when disabling
SAM, and use a fully connected layer as classifier when dis-
abling CDM. Table 2 shows the results of our ablation study.
SAM. By comparing the first and second rows in Table 2,
one can observe that the performance on the FF++ dataset de-
creases and that on the Celeb-DF dataset increases when ap-
plying our SAM. This is because SAM discards some dataset-
relevant information to improve the cross-dataset generaliz-
ability. However, these discarded information contains some
discriminative features that are helpful for intra-data classi-
fication. As a result, SAM slightly reduces the intra-dataset
performance but improves the cross-dataset generalizability.
CDM. By comparing the first and third rows in Table 2,
one can observe that performance on the FF++ dataset drops
slightly while that on the Celeb-DF dataset increases more
than 0.1. This result demonstrates the superior performance
of our cluster classifier compared to the traditional classifier
using fully connected layers. The improvement is achieved
from the following two aspects. (a) The difference of dif-
ferent samples has been enlarged. (b) The features used for
decision are treated equally.

The fourth row shows the performance of our CDNet with
both SAM and CDM. By comparing it with the other settings,
one can observe that CDNet greatly improve the generaliz-
ability with a small cost on intra-dataset performance.

5. CONCLUSION

In this paper, we propose CDNet as a new deepfake detec-
tion model to improve the deepfake detection generalizability
without using self-generated data. CDNet manually selects
face features as the main feature source and designs a new
cluster classifier based on contrastive learning. The selective
attention design can ensure that our model can pay attention to
the areas of the artifacts precisely and thus learn the artifact-
relevant features. This design also leads to a very small model
size (only 5.6M), which makes it suitable to be deployed in
devices with limited resources. Our designed cluster clas-
sifier can enlarge the difference of the features between the
real and fake samples in the unseen datasets. It also offers
a novel decision making mechanism to address the disadvan-
tage of the traditional binary classifier. Extensive experiments
proved that our CDNet owns better generalizability than some
state-of-the-art deepfake detection methods.
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