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Chaotic systems are suitable for image encryption owing to their numerous intrinsic char-
acteristics. However, chaotic maps and algorithmic structures employed in many existing
chaos-based image encryption algorithms exhibit various shortcomings. To overcome
these, in this study, we first construct a two-dimensional logistic tent modular map (2D-
LTMM) and then develop a new colour image encryption algorithm (CIEA) using the 2D-
LTMM, which is referred to as the LTMM-CIEA. Compared with the existing chaotic maps
used for image encryption, the 2D-LTMM has a fairly wide and continuous chaotic range
and more uniformly distributed trajectories. The LTMM-CIEA employs cross-plane permu-
tation and non-sequential diffusion to obtain the diffusion and confusion properties. The
cross-plane permutation concurrently shuffles the row and column positions of pixels
within the three colour planes, and the non-sequential diffusion method processes the pix-
els in a secret and random order. The main contributions of this study are the construction
of the 2D-LTMM to overcome the shortcomings of existing chaotic maps and the develop-
ment of the LTMM-CIEA to concurrently encrypt the three colour planes of images.
Simulation experiments and security evaluations show that the 2D-LTMM outperforms
recently developed chaotic maps, and the LTMM-CIEA outperforms several state-of-the-
art image encryption algorithms in terms of security.

© 2020 Published by Elsevier Inc.

1. Introduction

As a result of the rapid development of information technology, considerable amount of digital information is generated
and spreads over all types of networks. Digital images have a straightforward visual effect and are consequently one of the
most widely used digital data formats. Furthermore, a digital image has significant potential and additional information [39].
For example, a personal photograph can convey not only the physical appearance of someone but also other details such as
their health and age. Therefore, protection of classified digital images from unauthorised access in systems such as cloud
computing is of the utmost importance [34,37]. In some cases, the entire contents should be protected. However, in certain
artificial intelligence scenarios, only some of the image features comprise useful information that requires protection
[38,40,45]. Encryption is a popular and efficient technique for ensuring the privacy of digital images [10,21].
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An effective image encryption strategy is the treatment of a digital image as a bit stream and then encrypt this bit
stream using traditional data encryption schemes, such as the triple data encryption standard, advanced encryption stan-
dard, and international data encryption algorithm. However, compared with a bit stream, a digital image has distinct
intrinsic properties, including data redundancies and large pixel correlations. By treating a digital image as a bit stream
to be encrypted via existing data encryption algorithms, we neglect to consider these properties. Therefore, these strategies
suffer from numerous shortcomings, such as low encryption efficiencies [31]. Thus, development of new image encryption
algorithms that adequately consider the properties of digital images can significantly enhance the efficiency of image
protection.

Severalimage encryption algorithms have been designed using various techniques from diverse fields [32], such as chaos the-
ory [7,48,47,8], frequency domain transformation [41], compressive sensing [46], and DNA coding [42]. Among these tech-
niques, chaos theory is the most widely used because chaotic systems have many important intrinsic properties, including
aperiodicity, pseudo-random behaviour, and initial-state sensitivity; these properties are fairly similar to the concepts involved
in image encryption [17,22]. Arecent survey [5] has shown that more than 32% of existing image encryption algorithms were
based on chaos theory. For example, Zhang proposed a new lifting transform-based image encryption algorithm using chaos
[44]. This algorithm differs from traditional permutation-diffusion structures and achieves a high level of security. However,
chaos-based image encryption algorithms have some disadvantages [5]. For instance, the chaotic systems employed may have
many notable characteristics such as discrete and narrow chaotic ranges and incomplete output distributions [10,22]. In addi-
tion, the structures of many encryption algorithms suffer from performance and efficiency shortcomings. For example, most
image encryption algorithms process image pixels in fixed orders, which may facilitate cryptanalysis [24,21]; as a result, these
algorithms offer an inefficient encryption process and weak security levels for the encrypted results [47,26].

Many chaos-based image encryption algorithms have disadvantages in terms of the chaotic systems employed and their
encryption structures. To address these limitations, we first develop a two-dimensional logistic tent modular map (2D-
LTMM). Performance evaluations show that the 2D-LTMM has a wide and continuous chaotic range and exhibits robust chaotic
behaviour. In addition, the trajectories of the 2D-LTMM can be uniformly distributed over the entire phase plane, thereby indi-
cating the sizeable randomness of its outputs. Using the 2D-LTMM, we develop a colour image encryption algorithm (CIEA),
which we refer to as LTMM-CIEA. The LTMM-CIEA adequately considers the properties of colour images and employs n rounds
of cross-plane permutation and non-sequential diffusion. The cross-plane permutation concurrently shuffles the row and col-
umn positions of pixels within the red, green, and blue colour planes via a single operation, and the non-sequential diffusion
method processes the pixels in all three colour planes in a secret and random order. Simulation experiments and security eval-
uations demonstrate the high efficiency and security of the LTMM-CIEA. Comparative analysis indicates that the LTMM-CIEA can
outperform several state-of-the-art encryption algorithms. The main contributions of this study are as follows.

(1) Existing chaotic maps have discontinuous chaotic ranges, periodic windows, and non-uniformly distributed trajecto-
ries, thereby limiting the performance of chaos-based applications. To overcome these shortcomings of existing chaotic
maps, we propose a new 2D chaotic map called the 2D-LTMM.

(2) Compared with existing chaotic maps, the 2D-LTMM exhibits a continuous and considerably wider chaotic range, as
well as robust chaotic behaviours and uniformly distributed trajectories, thereby making it suitable for image encryption.
(3) Many existing CIEAs have weaknesses in their encryption structures. Thus, using the 2D-LTMM, we propose LTMM-
CIEA, a new CIEA to overcome the shortcomings of existing image encryption algorithms.

(4) Compared with the existing CIEAs, the LTMM-CIEA employs cross-plane permutation and non-sequential diffusion.
The cross-plane permutation concurrently shuffles the row and column positions of pixels within the three colour planes,
and the non-sequential diffusion method processes pixels in these planes in a secret and random order.

(5) Simulation experiments and security evaluations demonstrate that the LTMM-CIEA offers a high security level and
outperforms the state-of-the-art image encryption algorithms.

The remainder of this paper is organised as follows. Section 2 presents a review of the relevant research on chaotic sys-
tems and image encryption algorithms. Section 3 details the proposed 2D-LTMM and an analysis of its chaotic complexity.
Section 4 introduces our CIEA, referred to as the LTMM-CIEA. Section 5 details the LTMM-CIEA simulations and comparisons
of its efficiency with those of several other algorithms. Section 6 presents security evaluations of the LTMM-CIEA and com-
parisons with several other image encryption algorithms. Section 7 provides the conclusions.

2. Related work

This section presents a review of existing chaotic systems and image encryption algorithms and further discusses their
properties.

2.1. Chaotic maps

A one-dimensional (1D) chaotic map typically has a simple structure and a small number of variables, thereby making its
behaviour readily predictable under certain conditions [14,20]. Furthermore, chaos degradation can easily occur in 1D chao-
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tic maps simulated on platforms with finite precision [15]. When chaos degradation occurs, a chaotic map will lose its chao-
tic properties and the encryption algorithm it forms a component of will be rendered ineffective [28]. Examples of 1D chaotic
maps include the logistic, sine, and tent maps [10]. By contrast, multi-dimensional (MD) chaotic maps typically have com-
plex structures and chaotic behaviours, making it difficult to predict their behaviours or induce chaos degradation. MD chao-
tic maps with complex structures incur high implementation costs, making them inefficient for use in applications. Examples
of MD chaotic maps include the three-dimensional piecewise-logistic map [30] and four-dimensional logistic map [33].
Therefore, considering the performance and implementation costs of chaos systems, 2D chaotic maps represent good choices
for image encryption.

Many 2D chaotic maps have recently been developed for image encryption, including the 2D sine logistic modulation map
(2D-SLMM) [10], 2D logistic-adjusted-sine map (2D-LASM) [9], 2D logistic-sine-coupling map (2D-LSCM) [7], and 2D
logistic-modulated-sine-coupling-logistic (2D-LSMCL) map [48]. The bifurcation diagrams and trajectories of these 2D chao-
tic maps are plotted in Fig. 1. Note: the bifurcation diagrams are plotted for the variable x; under the change of one param-
eter, whereas the trajectories (x;,y;) are plotted by setting the parameters at fixed values. By selecting fixed parameters, we
allow the corresponding chaotic maps to exhibit complex chaotic behaviours. As illustrated in the bifurcation diagrams and
trajectories, the 2D chaotic maps have discontinuous chaotic ranges with many periodic windows. In addition, small pertur-
bations to their parameters may make the systems lose their chaotic behaviours. Moreover, the bifurcation diagrams and
trajectories exhibit certain patterns, in which their outputs are non-uniformly distributed on the entire phase plane; this
indicates that their outputs lack high randomness. Thus, these 2D chaotic maps may have some performance limitations
when used for image encryption.

2.2. Image encryption algorithms

Many image encryption algorithms have been designed using different techniques. We list some representative examples.
Liu and Kadir [18] developed an asymmetric colour image scheme based on chaos theory. First, their algorithm circularly
shifts the pixels in the red, green, and blue colour planes through the rows and columns, using pseudo-random arrays; then,
it performs XOR operations to diffuse all the pixels. Chen et al. [3] presented a colour image encryption scheme that used the
fractional Fourier transform. Their algorithm employed a single-plane optical asymmetric strategy to encrypt colour images.
Many similar image encryption algorithms have been designed; however, these algorithms have several disadvantages. In
particular, the security efficiency levels of the chaos-based image encryption algorithms strongly depend on the chaotic
maps employed; however, most of these chaotic maps do not realise stable and complex chaotic behaviours. In addition,
the structures of the optical technique-based image encryption algorithms are highly complex, and thus incur high imple-
mentation costs. Owing to these disadvantages, the existing algorithms exhibit performance limitations in many scenarios,
such as cloud computing [35,29] and Internet-of-Things systems [36,23]. Table 1 lists some representative image encryption
algorithms and their properties.

Colour images contain more redundant information and more straightforward visual effects than greyscale ones; as such,
many specialised encryption algorithms have been developed for colour images [27,13]. According to Shannon’s theory, an
encryption algorithm should have the properties of confusion and diffusion. Most CIEAs first separate the red, green, and blue
colour planes before individually encrypting them, finally recombining the three encrypted results as a colour image [21,24].
A schematic illustration of this encryption strategy is presented in Fig. 2, indicating that this strategy has some notable dis-
advantages. For example, a change in one colour plane cannot spread rapidly to all the pixels, thereby resulting in low secu-
rity levels. By contrast, other CIEAs first combine the three colour planes into a greyscale image (which is three times the size
of the original colour image) and then encrypt this greyscale image to produce the encrypted information [16,26]. This
encryption strategy can result in low-efficiency encryption. Thus, to encrypt a colour image, most existing encryption strate-
gies treat the image as greyscale; they do not consider and utilise the specific characteristics of colour images. Thus, it is cru-
cial to develop CIEAs that utilise these characteristics. Fig. 3 schematically illustrates an example of a colour image
encryption strategy that considers the characteristics of colour images; here, a pixel can be randomly permuted to any posi-
tion of the three colour planes, and pixel changes can be spread over the entire image.

3. 2D-LTMM

In this section, we propose the 2D-LTMM, evaluate its chaotic performance, and compare this performance with those of
some recently developed 2D chaotic maps.

3.1. Definition of 2D-LTMM

We develop the 2D-LTMM using two classical 1D chaotic maps: logistic and tent maps. The mathematical definitions of
logistic and tent maps are

Xipr = 4rxi(1 — x;), (1)

and
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(a) (b) (c) (d)

Fig. 1. Bifurcation diagrams and trajectories of several 2D chaotic systems: (a) 2D-SLMM under b = 3 and a € (0, 1), and its trajectory under (a,b) = (1,3);
(b) 2D-LASM under a € (0, 1), and its trajectory under a = 0.9; (c) 2D-LSCM under a € (0, 1), and its trajectory under a = 0.98; (d) 2D-LSMCL under b = 3
and a € (0,1), and its trajectory under (a,b) = (0.75,3).

Table 1
Representative image encryption algorithms and their properties.
Encryption algorithm Encryption strategy Limitations

Ref. [26] Chaos theory High complexity, simple behaviour
Ref. [11] Chaos theory Small key space, low efficiency
Ref. [49] Chaos theory Small key space
Ref. [6] Optical High complexity
Ref. [19] DNA coding High complexity, low efficiency
Ref. [46] Compressive sensing, Mellin transform High complexity
Ref. [25] Chaos theory, cellular automata Small number of reversal rules
Ref. [41] Frequency domain transform Low quality or data loss
Ref. [1] Hash function Potential redundancy or data loss
Ref. [4] Bit plane Potential redundancy or data loss

(a) (b)

Fig. 2. Schematic illustration of most existing CIEAs: (a) confusion process and (b) diffusion process.

2rx; for x; < 0.5;
- , @

2r(1 —x;) forx; > 0.5,

respectively; here, r is a control parameter for the two chaotic maps, and r € [0, 1].

The 2D-LTMM is derived from the logistic and tent maps. First, we combine the outputs of the logistic and tent maps;
then, we fold the results obtained from the two chaotic maps into a fixed range using a modular operation, before finally
extending the dimensions of the new chaotic map from 1D to 2D to obtain the 2D-LTMM. The mathematical expression
of the 2D-LTMM is as follows:
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A=
K |

Fig. 3. Schematic illustration of an example encryption strategy that considers the properties of colour images: (a) confusion process and (b) diffusion
process.

(@) (b)

s (4ax;(1 — x;) + 2by;) mod 1 fory; < 0.5;
me {(4ax,—(1 —X)+2b(1-y,)) mod 1 fory; > 0.5;
(4ay;(1 —y;) + 2bx;) mod 1 for x; < 0.5;

B { (4ay;(1 —y;) +2b(1 —x;)) mod 1 for x; > 0.5.

(3)

The parameters a and b in the 2D-LTMM are inherited from the logistic and tent maps, respectively. The modular oper-
ation in the 2D-LTMM is a globally bounded operation; it can always fold the value into a fixed range; thus, users can set a
and b as any large values. In this study, we investigated the performance of the 2D-LTMM in terms of its parameters
a,b €[1,100].

3.2. Performance Evaluation

The proposed 2D-LTMM can exhibit complex chaotic behaviours. Here, we evaluate its chaotic performance in terms of its
bifurcation diagram and trajectory, Lyapunov exponent (LE), and sample entropy (SE).

3.2.1. Bifurcation diagram and trajectory

The bifurcation diagram shows the visited or asymptotically approached values for a dynamical system with different
control parameters, and it illustrates how a non-linear system exhibits chaotic dynamics. The trajectory of a 2D chaotic
map illustrates the outputs of this chaotic map in its 2D phase plane. Fig. 4 shows the bifurcation diagrams and trajectory
obtained for the 2D-LTMM. The initial states were set as (xo,¥,) = (0.2,0.8), and the two control parameters used for plotting
the trajectory were set as (a,b) = (50, 50). The two bifurcation diagrams demonstrate that the variables x and y can visit or
asymptotically approach the entire data range, and that the trajectories are uniformly distributed over the whole phase
plane, indicating that the chaotic behaviours of the 2D-LTMM are robust over the entire parameter ranges. As shown in
Fig. 1, 2D-SLMM, 2D-LASM, 2D-LSCM, and 2D-LSMCL have discontinuous chaotic ranges, and their trajectories cannot occupy
the entire phase plane at random. Thus, compared with other 2D chaotic maps, the 2D-LTMM can achieve higher chaotic
complexity.

322. LE

The LE is a numerical indicator developed to evaluate the complexity of a dynamical system. For two trajectories of a non-
linear system starting from similar initial states, the LE tests their average exponential divergence rate. The LE of a differen-
tiable non-linear system x;,; = f(x;) can be calculated as

.1
A= ’!Lrgﬁ; In [f7(x;)]. (4)

A positive LE indicates that similar trajectories of a non-linear system diverge exponentially at each iteration and evolve
into two entirely different trajectories over time. Thus, a positive LE is an indicator of chaotic behaviour if the phase plane of
the system is also compacted; here, a larger LE denotes better chaotic performance. For an n-dimensional chaotic map, its
trajectories diverge into n dimensions; thus, it has n LEs, of which the largest LE (LLE) is an indicator of chaos. When the tra-
jectory of an n-dimensional chaotic map exponentially diverges in several directions, it can exhibit more than one positive
LE; in such cases, the system is hyperchaotic, which is a considerably more complicated type of behaviour than chaotic
behaviour.

A 2D chaotic map has two LEs. Fig. 5 shows the two LEs for our proposed 2D-LTMM and compares them with those of four
different 2D chaotic maps. As shown in Figs. 5(a) and (b), the 2D-LTMM can obtain two positive LEs for the entire range of
control parameters a, b < [1,100], thereby indicating that it exhibits hyperchaotic behaviour in these parameter ranges. The
2D-SLMM, 2D-LTMM, and 2D-LSMCL have two control parameters, whereas the 2D-LASM and 2D-LSCM have only one. To
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(a) (b) ()

Fig. 4. Bifurcation diagrams obtained for 2D-LTMM in terms of (a) variable x and (b) variable y, and (c) its trajectory with parameters (a,b) = (50, 50).
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Fig. 5. LEs for different 2D chaotic maps: (a)-(b) the two LEs for 2D-LTMM,; (c) a comparison of the LLEs for 2D-LTMM (a/100), 2D-LASM, 2D-SLMM, 2D-
LSCM, and 2D-LSMCL.

provide a more visual comparison, we set one parameter in the 2D-SLMM, 2D-LTMM, and 2D-LSMCL as a fixed value and
compared the LLEs for all the 2D chaotic maps along one parameter; that is, we set parameter b in the 2D-SLMM, 2D-
LTMM, and 2D-LSMCL as 3, 50, and 3, respectively. As shown in the comparison of the results in Fig. 5(c), only the proposed
2D-LTMM obtains positive LLEs throughout the parameter range; the other four 2D chaotic maps exhibit many periodic win-
dows within the chaotic ranges, thereby indicating that their chaotic ranges are discontinuous. In addition, compared with
the other four maps, the 2D-LTMM yields much larger LLEs; this implies that the similar trajectories of the 2D-LTMM diverge
rapidly and exhibit more complicated chaotic behaviours.

3.2.3. SE
As a type of approximate entropy, the SE is used to measure the complexity of a time series. The SE for time series
{y‘l7y2} o Vne o } is defined as

SE(m.r.N) =~ logs. (5)

where m is a given dimension of the time series, r represents a given distance, and A and B represent the numbers of vectors
that satisfy d[Yp.1(i), Ym1(j)] <1 and d[Yn(i), Ym(j)] < 1, respectively. The vector Yu(i) = {¥;,¥i11,---.Yiym_1} and distance
d[Ym(i),Yn(j)] represent the Chebyshev distance between Y, (i) and Y, (j). A larger SE indicates the lower regularity of the
time series. When the SE is used to measure the regularity of a time series produced by a chaotic map, a larger SE indicates
more complex behaviours.

Fig. 6 shows the SEs of the 2D-LTMM and the four competing 2D chaotic maps. To ensure consistency, the control param-
eters for all 2D chaotic maps in this experiment were set the same as those in the LE experiment. As shown in Fig. 6(a), the
2D-LTMM yields positive SEs within the entire parameter range. Fig. 6(b) shows that the 2D-LTMM yields considerably larger
positive SEs than the four other 2D chaotic maps, indicating that the 2D-LTMM can generate a highly complex time series.
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Fig. 6. (a) SEs for 2D-LTMM,; (b) a comparison of SEs for 2D-LTMM (a/100), 2D-LASM, 2D-SLMM, 2D-LSCM, and 2D-LSMCL.

4. 2D-LTMM-Based CIEA

The 2D-LTMM has a large and continuous chaotic range and demonstrates complex chaotic performance; moreover, its
outputs can randomly visit the entire phase plane. With these distinct properties, the 2D-LTMM exhibits a strong image-
encryption performance. Using the 2D-LTMM, we construct a new CIEA, referred to as the LTMM-CIEA. The structure of
the LTMM-CIEA is illustrated in Fig. 7. The LTMM-CIEA has three components: peripheral-pixel blurring, cross-plane permu-
tation, and non-sequential diffusion. The peripheral-pixel blurring process adds random noise to the two least-significant
bits of the peripheral pixels in the red colour plane. The cross-plane permutation method concurrently and randomly shuf-
fles all the pixel positions in the red, green, and blue colour planes. Non-sequential diffusion processes all pixels in the three
colour planes, following a random and secret order. The orders of permutation and diffusion are determined by the chaotic
sequences, which are generated from the 2D-LTMM using a secret key. To enhance the encryption result, a total of n rounds
of cross-plane permutation and non-sequential diffusion are performed for the image. To balance the trade-off between effi-
ciency and security, we set n as two in this study. Users can also set n as a larger integer, to achieve a higher level of security.

4.1. Key schedule
An encryption algorithm must have a large key space to prevent brute-force attacks. The secret key used in our encryption

structure has a length of 256 bits, which is sufficiently large to satisfy the security requirements under current computa-
tional abilities. The secret key comprises eight components: K = {x1,y;,a1,b1,X2,¥,,a2,b2}. (x;,y;) (i = 1,2) denote the initial

Secret key——| Initial states 2D-LTMM ‘
I
!

Plain color image
‘ Peripheral-pixel blurring |

Fig. 7. Structure of LTMM-CIEA.
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values of the 2D-LTMM in the two encryption rounds, whereas (a;, b;) (i = 1,2) denote the two control parameters. Each of
the eight components has a length of 32 bits. x; and y; are float numbers from the range [0, 1), converted from 32-bit streams.
Both a; and b; contain two parts: the first 7 bits are integers in the range [0, 128), whereas the remaining 25 bits are float
numbers in the range [0, 1). When used for the 2D-LTMM, ¢; and b; are added to 1, to ensure that the 2D-LTMM has a con-
sistently strong chaotic performance.

4.2. Peripheral-pixel blurring

To strengthen its ability to defend against various types of security attacks, our encryption structure blurs the peripheral
pixels, to insert noise into the plain-colour image before encryption. In particular, noise is added to the two least-significant
bits of the peripheral pixels in the red colour plane. This operation only changes a small amount of information in the colour
image; as such, it does not affect the visual effect because the peripheral pixels in a natural image typically contain less infor-
mation than the central ones. In addition, the lower bits of a pixel contain less information than the higher bits.

Fig. 8 illustrates the visual effects of different bit planes for an 8-bit greyscale image. Clearly, the two lowest bit planes
contain no visual information for the image and are noise-like, whereas the two highest bit planes contain much more infor-
mation and can represent the patterns in the image. This is because a ‘1’ in the 8-th bit represents 28! = 128 for an 8-bit
greyscale image, whereas it represents 2'~' = 1 in the 1-st bit. Thus, the information percentage for the i-th bit plane of
an 8-bit greyscale image can be calculated as

2i-1
e

Table 2 lists the information percentages calculated for each bit plane in an 8-bit greyscale image. In our algorithm, the
peripheral-pixel blurring operation only adds noise to the two least-significant bits of the peripheral pixels in the red colour
plane. Thus, the colour image loses the most information when all these blurred bits are changed. If we assume that the 8-bit

colour image to be encrypted measures M x N x 3, then the maximum percentage of information changed can be calculated
as

(i) (6)

(I(1) +1(2)) x (2M + 2N — 4)
max = MxNx3 ’ (7)

For example, if a colour image measures 512 x 512 x 3 pixels, then the maximum percentage of information changed is
Imax = 0.00304%. Because the blurring operation adds randomly generated noise to the image, it can change approximately
half of the original data. Thus, the percentage of information changed is far less than I,,x. Natural images have a high data
redundancy, and blurring occurs in the peripheral pixels in one colour plane; thus, this operation does not affect the visual
quality of the image.

The inserted noise is random and differs for each encryption; hence each encryption produces a unique cipher image.
Even if the same secret key is used to encrypt the same image twice, the two encrypted results will differ completely, thereby
ensuring robust and secure encryption for defending against various attacks (e.g., the chosen-plaintext attack).

4.3. Cross-Plane Permutation

A colour image contains three colour planes: red, green, and blue. Most colour image shuffling algorithms shuffle the pixel
positions only within one independent colour plane; they do not consider the relationships between the three colour planes.
Some algorithms shuffle the pixel positions row by row or column by column in each colour plane, as shown in Fig. 2(a); this
may lead to a low encryption performance and efficiency. To overcome these deficiencies, our encryption structure employs
cross-plane permutation, to comprehensively shuffle the pixel positions in the three colour planes via a single operation, as
shown in Fig. 3(a). A pixel can be randomly shuffled to any position in the three colour planes. Assuming that a colour image
P measures M x N x 3 pixels and a chaotic sequence L of length M x N x 3 +3(M + N) is generated by the 2D-LTMM, the
detailed procedure of the cross-plane permutation can be described as follows:

e Step 1: Rearrange the chaotic sequence L as one three-dimensional (3D) chaotic matrix A and two 2D chaotic matrices B
and C. A,B, and C measure M x N x 3,3 x M, and 3 x N, respectively.

e Step 2: Sort A by the third dimension and obtain a 3D index matrix L

e Step 3: Sort B and C by row and obtain two 2D index matrices T and Q. Initialise a 3D index matrix J measuring M x N x 3,
by shifting Q using each row of T. In particular, J(;, :, k) is obtained by shifting Q (k) using the values in the k-th row of T,
where k € {1,2,3}.

e Step 4: Use the index matrix I to shuffle the pixels in the three colour planes of the colour image P, to obtain the result as
Pr.

e Step 5: Use the index matrix J to shuffle all pixels in P/, to obtain the permutation result as S.
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(a) (b) (c) (d)

Fig. 8. Information contained in different bit planes of an 8-bit greyscale image: (a) original image; (b) first bit plane; (c) second bit plane; (d) seventh bit
plane; (e) eighth bit plane.

Algorithm 1 shows the pseudo-code for the entire cross-plane permutation process. For simplicity, we provide a numeral
example to explain its detailed operation for an image measuring 4 x 4 x 3 pixels. Fig. 9 shows the procedure for generating
the two index matrices, I and J. Chaotic matrices A, B, and C are generated using the 2D-LTMM. Index matrix I is obtained by
sorting the third dimension of A, and index matrix J is generated by first sorting B and C by row (to obtain two 2D index
matrices) and then shifting one 2D index matrix using the other.

Algorithm 1: Cross-plane permutation procedure for LTMM-CIEA

Output: Colour image P € NM*N>3 and chaotic sequence L € RM*N3+3(M+N)

1: Divide L into one 3D chaotic matrix A € RM*N*3 and two 2D chaotic matrices B € R**M and C € R**V;
2: Sort A in the third dimension and obtain the index matrix I;

3: Sort B and C by row and obtain the index matrices T and Q, respectively;

4:for k=1 to 3 do

5: fori=1toM do

6 forj=1to N do

7: Pr(i,j, k) = P(i,j, 1(i,j, k));

8: m = ((j — T(k); — 1) mod N) + 1;

9: J(@,m, k) = Q(k);;

10: end for
11: end for
12: end for

13:for k=1 to 3 do
14: forj=1toNdo
15: fori=1toMdo

16: r=1i, c=J(i,j,k);

17: m=(r-J(1,j,k) —1) mod M)+ 1, n=J(m,j,k);
18: S(m,n, k) = Pr(r,c,k);

19: end for

20: end for

21: end for

Output: The permutation result S.

The cross-plane permutation is performed using two index matrices I and J; Fig. 10 shows the permutation process. The
complete permutation process comprises two steps: the first step shuffles the pixels within the three colour planes, using I to
obtain Pr; then, the second step permutes the pixels in each colour plane, using J. The detailed processes of these two steps
are shown in Figs. 10(a) and (b), respectively. As shown in Fig. 10(a), for the three colour planes k = {1, 2, 3}, the pixels in the
I(;,:, k)-th colour plane are permuted to the k-th colour plane; that is, P/(:,:, k) = P(:,:,1(:,:, k)). The peripheral pixels in the
red plane of P are underlined because their two least-significant bits have been blurred. As shown in Fig. 10(b), 2D index
matrix J(:,:, 1) is used to shuffle the pixels of the first colour plane. The shuffling procedure can be described as follows:

o For the 1-st column of J(:,:, 1) (i.e., {1, 2,4, 3}"), select the pixels in the first colour plane with positions (1,
and (4, 3) (i.e., pixels B1,R6,B12, and G15 marked as stars, respectively); shift them upwards by J(1,1,1)
we find that S(1,1,1) = R6,S(2,2,1) = B12,5(3,4,1) = G15, and S(4,3,1) = B1.

o For the 2-nd column of J(:,:, 1) (i.e., {3,1,2,4}"), select the pixels in the first colour plane with positions (1, 3), (
and (4,4) (i.e., pixels G3,B5,B10, and B16 marked as triangles, respectively); shift them upwards by J(1,2,1
Thus, S(1,3,1) = B16,S(2,1,1) = G3,S(3,2,1) = B5, and S(4,4,1) = B10.

1),(2,2),(3,4),
=1 cell. Thus,

2,1),3,2),
) =3 cells.
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Table 2
Information percentage in different bit planes of an 8-bit greyscale image.
Bit plane Information percentage (%)

1 0.39
2 0.78
3 1.57
4 3.14
5 6.27
6 12.55
7 25.10
8 50.20

3 2 1
! 2 3 1 & 3
3 1 2 1
! 1 : & 3 : 3 2
1 2 3
3 - & 1 q ! 2 - 3
1 3 2 1
2 3 3 2 1
2 3 1
3 1 2
1(9 ) ) I(:, ) ) I(, 9 )
0.78 | 0.28 | 0.17 | 0.11 4 3 2 1 0.43 | 0.99 | 0.65 | 0.87 1 3 4 2
0.93 | 0.21 | 0.96 | 0.02 % 4 |2 1 3 0.96 | 0.81 | 0.82 | 0.31 g 4 2 |3 1
0.57 | 0.08 | 0.77 | 0.65 2 1 4 3 0.55 | 0.77 | 0.02 | 0.81 3 1 2 4
B T C Q
4 cells 4 cells 2 cells
% 1 3 % 4 - % 3 . 1 ” 4 n 2 y
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S 2 SEEe D S 4 Bkl Rkl Rk
2 cells 4 1 cell 3 4 cells 2 1. 1 B .
~Hh 2 B AN 4 4 42 2 3 3
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o 13[4 ]2] el 4|2]3]1] eaf3][1]2]4] 3G, 5 1) 3G, 5 2) 3G, 5 3)

(b)

Fig. 9. Numerical example of the process used to generate index matrices: (a) I and (b) J.

e For the 3-rd column of J(:,:, 1) (i.e,, {4, 3, 172}T), select the pixels in the first colour plane with positions (1,4), (2,3),(3,1),
and (4,2) (i.e., pixels G4,R7,R9, and G14 marked as circles, respectively); shift them upwards by J(1,3,1) = 4 cells. Thus,
S(1,4,1) = G4,5(2,3,1) =R7,5(3,1,1) = R9, and S(4,2,1) = G14.

o For the 4-th column of J(:,:, 1) (i.e., {2,4,3,1}"), select the pixels in the first colour plane with positions (1,2), (2, 4) (3,3),
and (4,1) (i.e., pixels R2,G8,G11, and R13 marked as squares, respectively); shift them upwards by J(1,4,1) = cells
Thus, $(1,2,1) = G11,5(2,4,1) = R13,5(3,3,1) = R2, and S(4,1,1) = G8.

Similarly, shuffle the second and third colour planes of Pr using the index matrices J(:,:,2) and J(;, :, 3), respectively. After
the pixels of all colour planes have been shuffled, we obtain the cross-plane permutation result as S.

Many existing permutation algorithms change only the pixel positions within one colour plane. Let the size of the colour
image to be encrypted be M x N x 3 pixels. In existing algorithms, the probability of a permuted position for each pixel is
M x N. However, for the proposed permutation algorithm, this probability is M x N x 3, three times that of the existing algo-
rithms. Thus, the cross-plane permutation process achieves high efficiency and performance. The decryption of cross-plane
permutation is the reverse process of the forward operation.
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Fig. 10. Numerical example of cross-plane permutation for colour image P using index matrices I and J: (a) colour plane shuffling using I and (b) pixel
position shuffling using J.

4.4. Non-sequential diffusion

An encryption algorithm must have a diffusion property. Most image encryption algorithms achieve diffusion by changing
the current pixel using the previous pixel(s) according to some fixed order, as shown in Fig. 2(b). However, processing image
pixels in a fixed order can result in a low encryption performance and provide attackers with large amounts of useful infor-
mation with which to conduct cryptanalysis. To overcome this problem, our encryption structure employs non-sequential
diffusion, using a random and secret visit mechanism to process pixels. Fig. 11 schematically illustrates this non-
sequential diffusion process. The processing order is not fixed because it is determined by a chaotic sequence generated
using the 2D-LTMM. Thus, a pixel may be affected by any pixel from the three colour planes. First, the chaotic matrix A is
generated using the same approach employed in the cross-plane permutation process. The non-sequential diffusion process
operates as

(Sij,k+SM,N,3+Aij,k) mod F ifi=1,j=1,k=1,
(Suji + Cones +Ayy) mod Fif i=1j=1,k=1,
(Si,i,k + Cuj1k +A,'),'7k) mod F ifi=1,j#1,
(si,j,k +C,»,1J~,k +A,‘j,k) mod F if i# 1,

Cijx = 8)

where mod denotes the arithmetic modular operation, and F represents the number of pixel values in each colour image P
(e.g., F = 256, where a pixel in P is represented by 8 bits).
Decryption is the reverse process of encryption; thus, the inverse operation for non-sequential diffusion is described as
(cij,k_SM,N,3_Aij,k) mod F ifiil,ji],ki],
(Cij,k — CM,N,k—l —A,‘J‘,k) mod F if i= 1,] = 1,’( #* 1,
(ci‘,‘,k — CMJ—l,k — A,‘J,k) mod F if i= 1,j #1,
(Cijyk — Ci—l,}',k — A,'JJC) mod F if i#1.

9

Siji =

The non-sequential diffusion can spread changes from one pixel to all the pixels after it. For a colour image measuring
M x N x 3 pixels, if the L-th (L <M x N x 3) pixel is changed, the number of changed pixel after one round of non-
sequential diffusion is

_ MxNx3-1L

R= Mx N x3 (10)
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Fig. 11. Schematic illustration of the non-sequential diffusion process.

Thus, at least two rounds of diffusion are required to achieve good diffusion. Therefore, we set the number of encryption
rounds n in Fig. 7 as two. Because the peripheral-pixel blurring adds different amounts of noise to the plain image during
each encryption, the proposed LTMM-CIEA achieves good diffusion by combining the operation of peripheral-pixel blurring
with non-sequential diffusion.

4.5. Discussion

As described, noise is inserted into the peripheral pixels, and the cross-plane permutation and non-sequential diffusion
concurrently process pixels in the three colour planes of the colour image; thus, the proposed LTMM-CIEA exhibits an extre-
mely good chaotic performance and offers the following advantages:

(1) The LTMM-CIEA can realise good confusion and diffusion properties; this is because the encryption structure strictly
follows the principles of confusion and diffusion, and the cross-plane permutation and non-sequential diffusion processes
can concurrently confuse and diffuse the three colour planes, respectively.

(2) The LTMM-CIEA is highly capable of resisting many popular and efficient security attacks, including chosen-plaintext,
statistic, and differential attacks. This is because the encryption algorithm adds different amounts of noise to the plain
images during each encryption operation, and this noise can be spread throughout the cipher image. Thus, even if we
use the same secure key to encrypt an image multiple times, the cipher images differ completely from each other, thereby
rendering numerous security attacks ineffective.

(3) The encryption/decryption speed of the LTMM-CIEA is rapid because the chaotic maps and encryption structures it
employs have simple implementations and low computational costs.

(4) The LTMM-CIEA has a high capacity to mitigate data losses and noise. If the cipher image is blurred with noise, or
some data is lost, the original image can still be reconstructed with high visual quality.

These advantages are verified by the simulation results and security analyses presented in Sections 5 and 6.

5. Simulation results and efficiency analysis

In this section, we evaluate the encryption efficiency of the LTMM-CIEA via simulation experiments. The experiments
were performed using MATLAB software; most of the images employed were obtained from the USC-SIPI' and CVG-UGR?
image databases.

5.1. Simulation Results

To adapt to various application scenarios, an image encryption algorithm must be able to encrypt different types of
images into unrecognisable cipher images, such that the original image can be completely recovered only by using the cor-
rect secret key. It must be impossible to obtain any useful information regarding the original image without the correct
secret key. Fig. 12 simulates the encryption and decryption processes in the LTMM-CIEA, using different colour images as
test images. These test images were all natural images containing numerous patterns, as shown by their pixel histograms.
Significant amount of information can be deduced about the images by analysing their histograms. However, the LTMM-

! http://sipi.usc.edu/database/
2 http://decsai.ugr.es/cvg/dbimagenes/

1074


http://sipi.usc.edu/database/
http://decsai.ugr.es/cvg/dbimagenes/

Z. Hua, Z. Zhu, S. Yi et al. Information Sciences 546 (2021) 1063-1083

CIEA can encrypt them into unrecognisable images with uniform-distribution pixel histograms such that no information can
be retrieved. The LTMM-CIEA can reconstruct the complete original images with the same visual effects by using the correct
key. Fig. 13 presents three-dimensional histograms for the original and corresponding encrypted images. This simplistically
demonstrates that all pixels in the red, green, and blue colour planes are distributed uniformly in the encrypted images,
thereby indicating that the LTMM-CIEA can encrypt a natural image as a cipher image with high performance.

5.2. Efficiency analysis

An image encryption algorithm must be highly efficient to satisfy the rapid increase in image data capacities. Our pro-
posed LTMM-CIEA exhibits rapid encryption speeds for the following three reasons: (1) the 2D-LTMM has high chaotic per-
formance and low implementation costs; (2) cross-plane permutation can completely shuffle all pixels in the three colour
planes via a single operation, and non-sequential diffusion can process all pixels using a random and secret visit mechanism;
and (3) two rounds of permutation and diffusion achieve high security.

To demonstrate the efficiency of our proposed LTMM-CIEA, we compare its performance with several state-of-the-art
encryption algorithms. All the experiments were simulated on a computer operating the following environment: Intel(R)

0 ITTTT TN YT | Povee
0 100 200

0 100 200

(@) ®) © @ ©

Fig. 12. Simulation results obtained using the LTMM-CIEA for colour images: (a) plain images; (b) histograms for (a); (c) encrypted results for (a); (d)
histograms for (c); (e) decrypted results for (c).

(a) (b) (c) (d)

Fig. 13. Three-dimensional visualisation of the plain image and its cipher image obtained using LTMM-CIEA: (a) plain image and cipher image; (b) red
colour plane; (c) green colour plane; (d) blue colour plane.
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Table 3
Average encryption times, (s), for different image encryption algorithms on colour images of different sizes.
Colour image size LTMM-CIEA Ref. [10] Ref. [7] Ref. [2] Ref. [47]
128 x 128 x 3 0.0309 0.0577 0.1034 0.5221 0.4919
256 x 256 x 3 0.1253 0.2483 0.4274 2.2636 2.2786
512 x 512 x 3 0.5101 1.1386 2.1782 8.4003 8.4127
1024 x 1024 x 3 2.3802 4.8970 10.3231 34.3617 34.5904

B LTMM-CIEA

—~15 [ Ref [10]
@ I Ref[7]
_§ I Ref.[2]
S I Ref[47]
glo

8

g 5

Q

(=}

53]

128x128%3 256%256x%3 512%512%3 1024x1024x3
Image size

Fig. 14. Encryption speeds for different image encryption algorithms on colour images of different sizes.

Core(TM) i5-8265U central processing unit running at 1.60 GHz, 8 GB random-access memory, and a Windows 10 operating
system. Table 3 lists the encryption times for various image encryption algorithms using colour images of different sizes. The
results were obtained by calculating the average encryption time of 100 experiments. Our proposed LTMM-CIEA requires the
shortest encryption time. Fig. 14 also shows the encryption speeds for the encryption algorithms using colour images of dif-
ferent sizes. The encryption speed of our proposed LTMM-CIEA is the fastest and can exceed 10 Mb/s for an image measuring
1024 x 1024 x 3 pixels. These results indicate that the proposed LTMM-CIEA significantly outperforms the other encryption
algorithms.

6. Security analysis

The security level of the encrypted images is the most important performance indicator for an encryption algorithm. Thus,
we evaluate the security of the LTMM-CIEA in terms of the key sensitivity, capacity for defending against different security
attacks, and information entropy.

6.1. Key sensitivity

An encryption algorithm must be extremely sensitive to its secret key; otherwise, the actual key space will be smaller
than the theoretical one. A high key sensitivity indicates that a small change in the secret key during the encryption/decryp-
tion processes will yield two completely different encrypted/decrypted results. To measure the sensitivity of the secret keys,
we randomly produce a secret key K; and then obtain two more secret keys K, and K3, by changing one bit in K;. K1, K>, and
K3 are expressed as

K7 = 4D820EA9F9F780BC11A3CF6E04F01638AB60217F34C1398CD5F16123A0BA0DF1,
K, = 4D821EA9F9F780BC11A3CF6E04F01638AB60217F34C1398CD5F16123A0BA0DF1,
K3 = 4D820EA9F9F780BC11A3CF6E04F01638AB60217F34C1399CD5F16123A0BA0DF1.

Fig. 15 illustrates the secret key sensitivity analysis results obtained during the encryption process of the LTMM-CIEA. The
top row shows the plain colour image, two cipher images encrypted using K; and K5, and the difference between these two
cipher images; the bottom row shows the histograms for the images in the top row. Fig. 15(d) shows that the two cipher
images are completely different. Fig. 16 presents the experimental results for the key sensitivity during the decryption pro-
cess. Only the correct key can accurately recover the original image. Two secret keys that differ by only one bit obtain
unrecognisable decryption results; thus, the two decrypted results differ completely, as shown in Fig. 16(e). Therefore,
the secret key in LTMM-CIEA is highly sensitive.
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Fig. 15. Key sensitivity analysis in the encryption process: (a) plain colour image P; (b) cipher image C; = Enc(P, K;); (c) cipher image C, = Enc(P,K>); (d)
difference between C; and C,,|C; — C;|.
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Fig. 16. Key sensitivity analysis during the decryption process: (a) cipher image C;; (b) decrypted result D; = Dec(Cy,K;); (c) decrypted result
D, = Dec(Cy,K>); (d) decrypted result D; = Dec(Cy,K3); (e) difference between D, and D, |D, — Ds|.

6.2. Chosen-plaintext attack

The chosen-plaintext attack is an efficient and commonly used cryptanalysis technique. Our proposed LTMM-CIEA can
defend against the chosen-plaintext attack owing to its following two properties. (1) The blurring of peripheral-pixel adds
randomly generated noise to each encryption. This noise is different in every encryption operation and can affect all pixels in
the encrypted results. (2) The diffusion property of the encryption algorithm allows it to disseminate any difference in the
plain image to all pixels in the cipher image.

Fig. 17 illustrates the ability of the LTMM-CIEA to resist the chosen-plaintext attack. Two encrypted results are obtained
by encrypting one image twice with the same secret key, and the difference between the two encrypted results is calculated.
Fig. 17(d) shows that the two encrypted results differ completely; this is because randomly generated noise is added to the
two least-significant bits of the peripheral pixels in the red colour plane, and this noise affects all the pixels in the encrypted
results. This indicates that the encrypted result depends not only on the plain image and secret key but also the added noise.
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Fig. 17. Capacity of the LTMM-CIEA to resist the chosen-plaintext attack: (a) plain colour image P; (b) first encrypted image C;; = Enc(P,K;); (c) second
encrypted image Cy; = Enc(P,K;); (d) difference between Cy; and Ci2,|Ciq — Ci2|.

Thus, an attacker cannot determine the internal relationships between the plaintext and ciphertext by choosing some plain-
text to encrypt. Therefore, the LTMM-CIEA is highly capable of resisting the chosen-plaintext attack.

6.3. Capacity to mitigate data losses and noise

When images are stored on physical devices or transmitted through any type of transmission channel, they can lose some
data or be blurred by noise. Thus, a reliable image encryption algorithm should be able to recover most of the image infor-
mation when the cipher images suffer such data losses or blurring. Therefore, we tested the capacity of our proposed LTMM-
CIEA to mitigate data losses and noise. In particular, five processed cipher images were generated using the following five
techniques: (1) data cutting with a size of 100 x 100 in the red colour plane; (2) data cutting with a size of 200 x 200 in
the red colour plane; (3) data cutting with a size of 200 x 200 in all three colour planes; (4) adding 5% salt & pepper noise;
and (5) adding 10% salt & pepper noise. Finally, we decrypted the five processed cipher images using the correct secret key.

Fig. 18 shows the simulation results. Either a considerable amount of data is lost from the cipher image or excessive noise
is added to it; however, the LTMM-CIEA can still reconstruct the original image with a clear visual effect, because its encryp-
tion and decryption processes are asymmetrical. During encryption, a slight change will be spread over all pixels to produce
completely dissimilar encrypted results, thereby ensuring that the cipher images are highly secure. However, during decryp-
tion, a slight change can only affect a few pixels, ensuring that the LTMM-CIEA can effectively mitigate data losses and noise.

6.4. Capacity to resist differential attacks

Differential attacks are another effective and commonly used cryptanalysis technique. However, our proposed LTMM-
CIEA can effectively resist differential attacks owing to the following properties. (1) The peripheral-pixel blurring adds noise

Fig. 18. Capacity of LTMM-CIEA to mitigate data losses and noise. The first row shows the cipher images with different types of data losses and noise; the
second row presents the corresponding decrypted images: (a) 100 x 100 data losses in the red colour plane; (b) 200 x 200 data losses in the red colour
plane; (c) 200 x 200 data losses in all three colour planes; (d) 5% salt & pepper noise; (e) 10% salt & pepper noise.
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Fig. 19. Capacity of LTMM-CIEA to resist differential attacks: (a) plain colour image P;; (b) plain colour image P, with a one-bit difference compared with P,
at position (100,100, 1); (c) encrypted image C; = Enc(Py,K;); (d) encrypted image C, = Enc(P,,K;); (e) difference between C; and Cy, |C; — Cy|.

to the peripheral pixels in the red colour plane, and this noise is spread over all pixels after two rounds of encryption. (2) The
diffusion property allows a small difference in the plain image to be spread over all the pixels. Fig. 19 depicts the capacity of
the LTMM-CIEA to resist differential attacks. First, a plain image P, is generated from P; by changing one bit at position
(100,100, 1). Then, we encrypt P; and P, using the same secret key and calculate the difference between the two encrypted
results. As shown in Fig. 19(d), these two results are completely different.

The capacity to resist differential attacks is quantitatively tested using the number of pixels change rate (NPCR) and the
unified averaged changed intensity (UACI) [43]. Assuming that C; and C, are two cipher images encrypted from two plain
images with a one-bit difference, their NPCR and UACI values are calculated as

NPCR(C;,C,) =

M N .
Wg’l) x 100%, (11)

=1 j=1

and

M N
UACI(C;, C,) :Z M

i=1 j=1

100%, (12)

respectively; here, [M, N] represents the size of one colour plane in the image, H is the total number of pixels in one colour
plane, Q is the maximum pixel value, and W indicates the difference between C; and C,. If C; (i,j) = C,(i,j), W(i,j) = O; other-
wise, W(i,j) = 1.

Wau et al. proposed strict criteria for the NPCR and UACI tests [43]. For an ideal encryption algorithm, the NPCR values
should exceed a certain threshold and the UACI values should be within an appropriate interval. The threshold score N,
for the NPCR test is obtained as

B!
N :% VQ/H (13)

where « is the significance level. An encryption algorithm passes the NPCR test if its NPCR score exceeds A/,. The interval of
(U, u;r) for the UACI test can be calculated as

{ui;- =y~ @*j(a/zm "
U, =ty + 0 (2/2)oy,

Q+2
My = 3013 (15)

Y 18(Q +1)%QH

An encryption algorithm passes the UACI test if the UACI score obtained is within the range (U, ,u}").

Following the settings given in [43], the significance level o is set as 0.5 in our experiments; the criteria for different sizes
of images are as follows: for an image size of 128 x 128, N, = 99.5292% and (U/; ,U;") = (33.1012%, 33.8259%); for an
image size of 256 x256,N; =99.5693% and (U ,U;") = (33.2824%,33.6447%); for an image size of
512 x 512, M, = 99.5893% and (U}, U;") = (33.3730%, 33.5541%); and for an image size of 1024 x 1024, N, = 99.5994%
and (U ,U;") = (33.4183%,33.5088%). Twelve colour images with different sizes were selected as the test images. The test
results in Table 4 show that all test images pass the stringent tests, thereby indicating that our proposed LTMM-CIEA can
effectively resist differential attacks.
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Table 4
NPCR and UACI scores using LTMM-CIEA on colour images of different sizes. The significance level is « = 0.5.
Image size File name NPCR (%) UACI (%) Test results
Red Green Blue Average Red Green Blue Average
128 x 128 x 3 Carafe 99.6033 99.5789 99.6033 99.5952 33.3278 33.3176 33.5501 33.3985 pass
Paper 99.5972 99.5850 99.6094 99.5972 33.4494 33.2025 33.4449 33.3656 pass
Reno 99.6155 99.6033 99.6216 99.6135 33.6433 33.5536 33.3895 33.5288 pass
256 x 256 x 3 4.1.01 99.6078 99.6353 99.6017 99.6149 33.3850 33.5726 33.4345 33.4640 pass
4.1.02 99.6140 99.6170 99.6063 99.6124 33.4441 33.5206 33.4097 33.4581 pass
4.1.03 99.6124 99.6078 99.6078 99.6093 33.3506 33.4780 33.4458 33.4248 pass
512 x 512 x 3 4.2.05 99.6147 99.6120 99.6059 99.6109 33.4448 33.4412 33.4531 33.4464 pass
4.2.06 99.6143 99.6029 99.6105 99.6092 33.4913 33.3867 33.3973 33.4251 pass
4.2.07 99.6086 99.6044 99.6132 99.6087 33.4998 33.4788 33.4892 33.4893 pass
1024 x 1024 x 3 2.2.20 99.6066 99.6172 99.6181 99.6140 33.4378 33.4828 33.4358 33.4521 pass
2221 99.6076 99.6029 99.6190 99.6098 33.4733 33.4460 33.4798 33.4664 pass
2222 99.6011 99.6012 99.6143 99.6055 33.4282 33.4741 33.4982 33.4668 pass
Table 5
Comparison of different image encryption algorithms in terms of their NPCR and UACI scores. The test image used was Lena.
Encryption algorithm NPCR (%) UACI (%)
Red Green Blue Average Red Green Blue Average
LTMM-CIEA 99.6479 99.6597 99.6288 99.6455 33.4390 33.4799 33.4833 33.4674
Ref. [28] 99.6296 99.6174 99.6473 99.6314 33.6027 33.4997 33.5516 33.5513
Ref. [13] 99.6188 99.6376 99.6003 99.6189 33.4285 33.4549 33.4275 33.4399
Ref. [12] 99.5643 99.6258 99.6285 99.6062 35.4560 33.2199 33.0184 33.8981
Ref. [16] 99.6323 99.6277 99.5712 99.6104 33.4913 33.3786 33.4692 33.4464
Ref. [42] 99.6052 99.6060 99.6113 99.6075 33.4280 33.4966 33.3779 33.4342
Ref. [7] 99.6151 99.6304 99.5903 99.6119 33.4371 33.5273 33.4781 33.4808
Ref. [10] 99.6040 99.6017 99.5972 99.6010 33.5465 33.5035 33.4625 33.5042
Ref. [47] 99.6929 99.7032 99.5049 99.6337 33.3596 33.5811 33.3844 33.4417

Table 5 presents a comparison of different image encryption algorithms in terms of their NPCR and UACI scores. The Lena
image (measuring 512 x 512 x 3 pixels) was used as the test image. For all encryption algorithms that pass the NPCR and
UACI tests, a larger NPCR score and a UACI score closer to the centre of the UACI criterion interval (i.e., 33.4636%) indicate
a stronger resistance to differential attacks [43]. The proposed LTMM-CIEA obtains the largest average NPCR score for the
three colour planes. In addition, the average UACI obtained by the LTMM-CIEA is closest to the centre of the criterion interval
(i.e., 33.4636%).

6.5. Information entropy

Information entropy is used to measure the distribution of a signal. In this study, we use the information entropy to test
the randomness and distribution of the pixels in an image. For an image, I, the information entropy of its pixels is calculated
as

H() = —iPr(xf)logzPr(xf), (17)

i=1

where F indicates the number of pixel values, x; denotes the i-th possible value, and Pr(x;) represents the probability of x;. A
higher information entropy value indicates that the image pixels are distributed more uniformly. When each possible pixel
value has the same probability, the image achieves the theoretical maximum information entropy; expressed otherwise, the
theoretical maximum information entropy is achieved when Pr(x;) = 1/F and H(I) ., = log,F. For an 8-bit image, this is
H(D),,,, = 10g,2° =8.

In this experiment, we use the same 12 test images employed in the NPCR and UACI experiments. Table 6 lists the infor-
mation entropies for the test images and these same images after encryption via the LTMM-CIEA. All the original images
achieve relatively low entropies because they contain patterns and non-uniform pixel distributions. However, all the infor-
mation entropies for the encrypted images are reasonably close to 8. Thus, the pixel values for these encrypted images are
distributed highly uniformly, and no information can be obtained from their pixel distributions.

We also compare the information entropies for images encrypted using different image encryption algorithms; Table 7
presents the results obtained. The images encrypted by the proposed LTMM-CIEA have higher average information entropy
values compared with those encrypted using other image encryption algorithms, thereby demonstrating the superior per-
formance of the LTMM-CIEA.
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Table 6
Information entropies for different-sized original images and those images after encryption using the LTMM-CIEA.
Image size File name Original images Encrypted images
Red Green Blue Red Green Blue
128 x 128 x 3 Carafe 3.8892 4.0716 4.2305 7.9894 7.9883 7.9887
Paper 2.8532 2.9931 2.8678 7.9876 7.9887 7.9890
Reno 4.3386 4.3803 4.4938 7.9869 7.9899 7.9883
256 x 256 x 3 4.1.01 6.4200 6.4457 6.3807 7.9974 7.9969 7.9983
4.1.02 6.2499 5.9642 5.9309 7.9972 7.9976 7.9979
4.1.03 5.7150 53738 5.7117 7.9968 7.9975 7.9973
512 x 512 x 3 4.2.05 6.7178 6.7990 6.2138 7.9993 7.9993 7.9993
4.2.06 73124 7.6429 7.2136 7.9994 7.9993 7.9994
4.2.07 7.3388 7.4963 7.0583 7.9993 7.9993 7.9994
1024 x 1024 x 3 2.2.20 6.8206 6.6007 5.6627 7.9998 7.9998 7.9998
2221 7.3256 6.6329 5.2769 7.9998 7.9998 7.9998
2222 7.1293 6.1215 4.6020 7.9998 7.9998 7.9998
Table 7
Information entropies for cipher images encrypted using different image encryption algorithms. The test image used was Lena.
Encryption algorithm Encrypted image Average of Encrypted images
Red Green Blue
LTMM-CIEA 7.9994 7.9993 7.9994 7.99937
Ref. [28] 7.9994 7.9993 7.9993 7.99933
Ref. [13] 7.9912 7.9914 7.9915 7.99137
Ref. [12] 7.9278 7.9744 7.9705 7.95757
Ref. [16] 7.9992 7.9993 7.9994 7.99930
Ref. [42] 7.9895 7.9894 7.9894 7.98943
Ref. [7] 7.9993 7.9993 7.9993 7.99930
Ref. [10] 7.9993 7.9992 7.9993 7.99927
Ref. [47] 7.9992 7.9994 7.9993 7.99930

7. Conclusions

Chaotic systems are widely used for image encryption. In this study, we reviewed the existing chaos-based image encryp-
tion algorithms and found that they have shortcomings in terms of the chaotic systems and encryption structures. To over-
come these, we proposed a 2D chaotic map called the 2D-LTMM. The 2D-LTMM is based on the classical logistic and tent
maps. Performance evaluations and discussions showed that the 2D-LTMM has a fairly wide and continuous chaotic range
and uniformly distributed trajectories. Thus, the 2D-LTMM can achieve better image encryption than the existing chaotic
maps. Using the introduced 2D-LTMM, we further designed a CIEA, referred to as the LTMM-CIEA. The LTMM-CIEA includes
three processes: peripheral-pixel blurring, cross-plane permutation, and non-sequential diffusion. The peripheral-pixel blur-
ring adds noise to the peripheral pixels in the red colour plane. The cross-plane permutation concurrently permutes all pixels
in the three colour planes to different positions. Non-sequential diffusion processes these pixels according to a random and
secret order, thereby significantly enhancing the security level of the encrypted results. Simulation experiments demon-
strated that the LTMM-CIEA can encrypt different colour images into unrecognisable ones, and its encryption speed was fas-
ter than those of several state-of-the-art image encryption algorithms. Security evaluations demonstrated that the LTMM-
CIEA can effectively resist various security attacks, and it outperformed several other image encryption algorithms. In future
research, because our proposed LTMM-CIEA exhibits high efficiency with a strong security level, we will investigate its appli-
cation to other media data, including super-resolution images and video.
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