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Abstract. Multi-view subspace clustering has become a hot unsuper-
vised learning task, since it could fuse complementary multi-view infor-
mation from multiple data effectively. However, most existing methods
either fail to incorporate the clustering process into the feature learning
process, or cannot integrate multi-view relationships well into the data
reconstruction process, which thus damages the final clustering perfor-
mance. To overcome the above shortcomings, we propose the deep con-
trastive multi-view subspace clustering method (DCMSC), which is the
first attempt to integrate the contrastive learning into deep multi-view
subspace clustering. Specifically, DCMSC includes multiple autoencoders
for self-expression learning to learn self-representation matrices for mul-
tiple views which would be fused into one unified self-representation
matrix to effectively utilize the consistency and complementarity of mul-
tiple views. Meanwhile, to further exploit multi-view relations, DCMSC
also introduces contrastive learning into multi-autoencoder network and
Hilbert Schmidt Independence Criterion (HSIC) to better exploit com-
plementarity. Extensive experiments on several real-world multi-view
datasets demonstrate the effectiveness of our proposed method by com-
paring with state-of-the-art multi-view clustering methods.

Keywords: Multi-view Subspace clustering · Contrastive learning ·
Hilbert Schmidt Independence Criterion

1 Introduction

Multi-view clustering, finding a consensus segmentation of data across multiple
views, has become a hot unsupervised learning topic. Unlike single-view cluster-
ing, it faces multiple different descriptions or sources of the same data. How to
fully exploit the consistency and complementarity of different views is the most
significant challenge for multi-view clustering. Currently, multi-view clustering
has made great progress and has played an important role in many practical
applications. Most traditional methods first learned one common representation
and then performed some single-view clustering methods. However, they would
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ignore the high-dimensionality of data, and their performance is greatly reduced
when the dimensions of each view are extremely unbalanced.

Subspace clustering refers to find the underlying subspace structures of the
data under the popular assumption that high-dimensional data could be well
described in several low-dimensional subspaces. Recently, self-representation-
based subspace clustering models have achieved great success. It assumes that
each data point can be represented as a linear combination of other data points.
Given a single-view data matrix consisting of n column vectors where each column
represents a sample, self-representation properties can be formalized as follows:

min
C

L(X,C) + R(C) s.t. X = XC, (1)

where X = [x1, x2, · · · , xn]. L(X,C) represents the self-representation loss and
R(C) is the regularization term.

Recently, multi-view subspace clustering methods have made great success
by extending the single-view subspace clustering methods. In general, there are
two main ways to exploit multi-view information. The first way is to learn a
common representation first, and then self-representation is conducted on the
learned common representation. For instance, the direct way is to concatenate
all multi-view features to form a combined feature. The second approach is to
first conduct self-representation on each view separately, and then fuse them. In
recent years, to solve the problem of insufficient representation ability and pos-
sible non-linearity of original data, deep learning-based methods have been pro-
posed. For example, a unified network architecture composed of multiple autoen-
coders are designed to integrate the process of feature learning and multi-view
relationship exploration into data clustering in [1,3]. Among them, [3] propose
a multi-view deep subspace clustering networks (MvDSCN) in which the multi-
view self-representation relation is learned by the end-to-end manner. Although
they have achieved good results, there are still the following limitations: (1) Data
representation learning and clustering processes are independently handled, and
multi-view relationship cannot play a role in the feature extraction process. (2)
Multi-view data reconstruction process is performed independently within each
view, which ignores comprehensive information from multiple data. (3) They are
unable to effectively handle the imbalance of multi-view dimensions.

To overcome the above shortcomings, we propose the Deep Contrastive Multi-
view Subspace Clustering (DCMSC) method which mainly includes a base net-
work to conduct self-representation learning and an additional module includ-
ing Schmidt Independence Criterion (HSIC) regularizer and contrastive penalty.
Specifically, the base network includes V independent autoencoders, each of which
is used to extract the latent features of each original view, and the fully connected
layer between the encoder and the decoder is used to obtain the self-representation
matrix; HSIC part and contrastive learning part could effectively take advan-
tage of multi-view relationships and mine the consistency and complementarity
of multi-view data. Among them, the HSIC restriction module is used to pun-
ish the dependencies between the representations of each view and promote the
diversity of subspace representations; the consistency of each sample point in each
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view is achieved through the contrastive learning module. Finally, the combined
result of the self-representation matrix obtained by all view-specific autoencoders
is used to build the similarity matrix. The final clustering result is obtained by the
spectral clustering algorithm. In summary, our contributions include:

1. For the first time, we integrate the general idea of contrastive learning into
the multi-view subspace clustering problem and propose the deep contrastive
multi-view subspace clustering method.

2. In DCMSC, the base network is mainly used to learn the view-specific self-
representation matrix constrained by the additional network which could
make good use of the multi-view relationship, so that the fusion using the
learned V self-representation matrices has a more powerful representation
ability, thereby achieving better clustering performance.

3. The contrastive learning regards different views in multiple views as data-
enhanced versions and aims to explore the common semantics among multiple
views while the Hilbert Schmidt Independence Criterion is used to discover
the diversity of multi-view features. Extensive experiments on a wide range
of datasets demonstrate that DCMSC achieves state-of-the-art clustering
effectiveness.

2 Related Works

2.1 Subspace Clustering

Subspace clustering aims to reveal the inherent clustering structures of the data
composed of multiple subspaces. Given a set of n samples [x1, x2, · · · , xN ] ∈
R

d×N in which d denotes the dimension of data, the basic model of self-
representation subspace clustering methods can be described as follows:

min
C

‖C‖p + ‖X − XC‖2F , (2)

where ‖ · ‖p is an arbitrary matrix norm. After optimizing the above formula,
the obtained self-representation matrix C could describe the subspace clustering
relationship between data points, and then is input into the spectral cluster-
ing algorithm to obtain the final clustering result. For example, Sparse Sub-
space Clustering (SSC) [21] aims to enhance sparsity of self-representation by
imposing l1-norm regularization on the self-representation matrix. To discover
multi-subspace structures, Low-rank representation (LRR) [22] explored the
multi-block diagonal properties of self-representation matrix. Essentially, self-
representation based methods depend on assumption that each data point can
be reconstructed by a linear combination of other points. However, the actual
data may not meet this assumption. Many scholars have proposed using the ker-
nel trick [4] to solve this problem, but the kernel technique is heuristic. With the
powerful representation ability of neural networks, a large number of deep sub-
space clustering networks have been proposed to embed self-representation into
deep autoencoder through fully connected layers, which has achieved the state-
of-the-art performance. Deep adversarial subspace clustering leveraged the idea
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of generative adversarial and added a GAN-like model into self-representation
loss to evaluate clustering performance [23].

2.2 Multi-view Subspace Clustering

The multi-view clustering problem is faced with multiple representations of the
same data. Compared with single-view data, multi-view data contains consensus
information and complementary information from multiple views [5,6]. How to
effectively fuse the information of each view is the key to the multi-view clus-
tering task. For existing multi-view subspace clustering methods, there are cur-
rently three main categories. The first category is to perform self-representation
learning on each view individually, and then fuse the results of individual self-
representations. Divergent Multi-view Subspace Clustering (DiMSC) [5] pro-
posed to exploit the complementarity from multi-view data by reducing redun-
dancy. The second class firstly learns a common latent representation, and then
performs self-representation learning on this latent representation. Latent Multi-
view Subspace Clustering (LMSC) [6] explored complementary information from
different views while building latent representation. The third category com-
bines the above two ideas. Reciprocal Multi-layer Subspace Learning (RMSL)
[2] simultaneously constructed the view-specific subspace representations and
common representation to mutually restore the subspace structure of the data
through the Backward Encoding Networks (BEN) and the Hierarchical Self-
Representative Layers (HSRL). Multi-view Deep Subspace Clustering Network
(MvDSCN) [3] proposed a network that can simultaneously learn view-specific
self-representation and common self-representation, and leverages HSIC to cap-
ture nonlinear and higher-order inter-view relationships. However, due to their
complex network structures and objective design, it is difficult to well optimize
each objective function at the same time in the optimization process, and they
ignore the role of each view describing the data in exploring the data represen-
tation and clustering structure.

2.3 Contrastive Learning

[7,8] is a popular unsupervised learning paradigm in recent years, whose main
idea is to make the similarity between positive pair as close as possible while
negative pair as far as possible. This learning paradigm has achieved great
success on computer vision [9]. For example, [11] proposed a one-stage online
clustering method, which conducted contrastive learning both at instance-level
and cluster-level. [12,13] introduced contrastive learning into multi-view clus-
tering. For example, a contrastive multi-view encoding framework [13] has been
designed to capture the latent scene semantics. Multi-level Feature Learning for
Contrastive Multi-view Clustering (MFLVC) [10] proposes a flexible multi-view
contrastive learning framework, which can simultaneously achieve the coher-
ence goal of high-level features and semantic labels. However, to the best of
our knowledge, there is no related work that exploits the idea of regarding each
view as a data-augmented version in contrastive learning and applies the idea of
contrastive learning into the multi-view subspace clustering task.
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3 Proposed Method

Given dataset with V views {Xv ∈ R
dv×N}Vv=1, where Xv = [xv

1, x
v
2, · · · , xv

N ] and
dv and N is the number of data points and features in the vth view, respectively,
our goal is to find a common self-representation matrix C that can express the
relationship between data points among the multi-view data. In this section,
we describe the Deep Contrastive Multi-view Subspace Clustering (DCMSC) in
details.

Fig. 1. Illustration of the proposed Deep Contrastive Multi-view Subspace Clustering
(DCMSC) method. DCMSC builds V parallel autoencoders for latent feature extrac-
tion of view-specific data in which self-representation learning is conducted by a fully
connected layer between encoder and decoder. Specifically, vth original view Xv is
encoded as Zv and reconstructed to X̂v through decoder. Self-representation matrix
Cv is obtained by building a fully connected layer between the encoder and the decoder
without activation function. Contrastive learning module is introduced into our net-
work to exploit more common semantics information and HSIC constraint can effec-
tively exploit the complementary information from multiple-view data, in which vth

high level semantic representation Hv is obtained for constructing contrastive loss. The
final combination of all view-specific self-representation matrices further integrate the
complementary and consistent information from multiple views.

3.1 The Proposed DCMSC

The network architecture of the proposed DCMSC method is shown in the Fig. 1,
which consists of two modules, i.e., the base net which learns view-specific repre-
sentation {Cv}Vv=1 and the additional module including contrastive learning part
and HSIC part which further exploits the multi-view relationship. In details, the
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base net consists of V autoencoders, each of which conducts self-representation
learning for each view-specific data. The encoder can be regarded as a function
that simultaneously plays the role of dimensionality reduction and nonlinear
conversion and the decoder is used to reconstruct the input features. Then self-
representation is conducted by a fully connected layer without linear activation
function and bias, which is built between the encoder and the decoder. Combin-
ing reconstruction loss in autoencoder into basic self-representation model i.e.,
Eq. (2), the loss of vth autoencoder is summarized as follows:

min
Cv

‖Cv‖2F + ‖Zv − ZvCv‖2F + ‖Xv − X̂v‖2F , (3)

where Zv is the output of encoder for vth view Xv and X̂v is the reconstruction
of Xv.

Complementary and consistent information in multiple views can be
exploited by summing the self-representation matrices of each view at the end.
The study in [3,5] has proposed to introduce HSIC which measures the nonlinear
and high-order correlations into multi-view subspace clustering to exploit more
complementary information. Here, we adopt the empirical definition of HSIC
proposed in [3]:

Lhsic =
∑

ij

HSIC(Cm, Cn), (4)

where Cm and Cn denote mth and nth self-representation matrix respectively,
HSIC((Cm, Cn) = trace((Cm)TCmH(Cn)TCnH) and H is a N × N square
matrix with element 1 − 1

N .
It is worth noting that data reconstruction only in specific view cannot well

exploit multi-view relational information. To alleviate this problem, we propose
to introduce contrastive learning into our framework. Specifically, our contrastive
learning module consists of a fully connected layer shared by all views. As
shown in Fig. 1, let Hm denotes the output of the contrastive learning mod-
ule for the latent representation of the mth view Zm as mth high level seman-
tic representation. Each high-level feature hm

i has (V N − 1) feature pairs, i.e.,
{hm

i , hn
j }n=1,··· ,V

j=1,··· ,N , which consist of (V − 1) positive pairs {hm
i , hn

i }n�=m,··· ,N and
V (N − 1) negative pairs left. Contrastive learning aims to maximize the simi-
larities of positive pairs while minimize that of negative pairs. Specifically, the
contrastive loss between Hm and Hn is defined as [10]:

�
(mn)
fc = − 1

N

N∑

i=1

log
ed(hm

i ,hn
i )/τF

∑N
j=1

∑
v=m,n ed(hm

i ,hv
j )/τF − e1/τF

, (5)

where d(x, y) measures the similarity between sample x and sample y and τF
denotes the temperature parameter. Inspired by NT-Xent [7], we apply cosine
distance:

d(x, y) =
〈x, y〉

‖x‖‖y‖ . (6)
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The final contrastive loss is designed as accumulated losses among all views:

Lcon =
v∑

m=1

∑

n�=m

�
(mn)
fc . (7)

Mathematically, the loss function of DCMSC is formulated by combining the
above tentative loss function in Eqs. (3), (4), (7) as follows:

Lfinal = Lae + α1Lself + α2Lreg + α3Lhsic + α4Lcon

=
V∑

v=1

‖Xv − X̂v‖2F + α1

V∑

v=1

‖Zv − ZvCv‖2F + α2

V∑

v=1

‖Cv‖2F

+ α3

V∑

ij

HSIC(Zi, Zj) + α4

V∑

m=1

V∑

n�=m

�
(mn)
fc ,

(8)

where Lae =
V∑

v=1
‖Xv−X̂v‖2F , Lself =

V∑
v=1

‖Zv−ZvCv‖2F and Lreg =
V∑

v=1
‖Cv‖2F .

Parameters α1, α2, α3, and α4 are non-negative ones to balance different con-
tributions of different terms.

3.2 Optimization

The whole process of the proposed LDLRSC is summarized in Algorithm 1.
We first pre-train the network without self-representation layer for more effec-
tive training in fine-tune stage and prevention of possible all-zero solution [3].
After the fine-tune stage, the final self-representation matrix C is calculated
as C =

∑V
v=1 Cv. Generally, we can construct the affinity matrix simply by

(|C| + |C|T )/2 for spectral clustering. Here, we adopt the heuristic employed by
SSC [21], which has been proved beneficial for clustering.

4 Experiment

4.1 Experimental Settings

Datasets. We conduct experiments on 6 benchmark multi-view datasets to eval-
uate our proposed DCMSC, including 4 classical datasets: Yale, ORL, Still DB
and BBCSport and 2 bigger datasets: Caltech and BDGP. More details are listed
in Table 1.

Evaluation Metrics. We adopt 4 widely used metrics to evaluate the cluster-
ing performance: accuracy (ACC), normalized mutual information (NMI), purity
(PUR) and The F-measure. Note that higher values indicate better performance
for the above 4 metrics. Parameters will be optimized to achieve the best clus-
tering performance for all experiments. The average metric of 10 trials over each
dataset is reported.
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Algorithm 1. DCMSC
Input: Multi-view data [X1, X2, · · · , XV ];

Maximum iteration Tmax;
Trade-off parameters α1, α2, α3, α4;
The number of cluster K;

Output: Clustering result L;
1: Pre-train V autoencoders without self-representation layer;
2: Initialize the self-expression layer and contrastive learning net;
3: while t ≤ Tmax do
4: Calculate the loss (8) and its gradient;
5: Do forward propagation;
6: end while
7: Calculate the final self-representation matrix C =

∑V
v=1 Cv;

8: Run algorithm employed by [21] to obtain affinity matrix A;
9: Run spectral clustering to get the clustering results L.

Table 1. The details of the datasets.

Datasets #Samples #Views #Classes Dimension of features

Yale 165 3 11 4096 /3304/6750

ORL 400 3 10 4096/3304/6750

Still DB 476 3 6 200/200/200

BBCSport 544 2 5 3183/3203

BDGP 2,500 2 5 1750/79

Caltech-3V 1,400 3 7 40/254/1984

Caltech-5V 1,400 5 7 40/254/1984/512/928

Comparison Methods. The comparison methods include some traditional
state-of-the-art methods for both multi-view subspace clustering and deep multi-
view clustering: BestSV [24], LRR [22], RMSC [31], DSCN [25], DCSC [26], DC
[27], DMF [28], LMSC [6], MSCN [29], MvDSCN [3], RMSL [2], MVC-LFA [15],
COMIC [16], IMVTSC [18], CDIMC-net [30], EAMC [17], SiMVC [20], CoMVC
[20], MFLVC [10].

Implementation. We implement our DCMSC method on TensorFlow-2 in
Python and evaluate its performance on several baseline methods. Adam opti-
mizer is adopted for the gradient descent and the learning rate of the network is
set to 1e−3. We choose ReLU as the activation function in the network except
the self-expression layer.

4.2 Experimental Results

We compared DCMSC mainly with 8 subspace-based multi-view clustering algo-
rithms on 4 datasets. To evaluate the superiority and robustness of our method,
we also conduct experiments on 2 big datasets and compared its performance
with 6 state-of-the-art multi-view clustering algorithms. The results are given in
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Table 2 and Table 3. From Table 2, we can see that the proposed DCMSC signif-
icantly outperforms all methods on the first two datasets and performs compa-
rable performance on the last two datasets. Obviously, DCMSC boosts the clus-
tering performance by a large margin over other methods on Yale. The improve-
ment of the proposed DCMSC over the second-best method FMR are 10.1%,
10.2%, and 18.5% with respect to NMI, ACC, and F-measure, respectively. From
Table 3, there are following results: (1) our method obtain can also obtain com-
petitive clustering performance on big data; (2) DCMSC greatly improves the
clustering performance on Caltech-5V. In addition, we observe that although
RMSL behaves on some benchmark datasets of multi-view subspace clustering,
it does not obtain very competitive performances on BDGP and Caltech. In
contrast, our method still maintains decent performance on other datasets.

4.3 Visualization

To intuitively show the superiority of DCMSSC, we visualized the affinity matrix
A on BBCSport, ORL and Yale in Fig. 2, where Aij denotes the similarity
between sample xi and sample xj . Affinity A could be obtained from the final
self-representation matrix C by algorithm employed by [21]. Noting the data
points are sorted by classes on the above 3 datasets, the affinity matrix A should
have a block-diagonal structure ideally. From Fig. 2, we can see that the affinity
A learned by our proposed DCMSC well exhibits the block-diagonal property
compared with MvDSCN.

Fig. 2. Visualization of learned affinity matrix on BCCSport, ORL and Yale.

4.4 Ablation Studies

We conducted ablation studies on Lcon on Yale and Caltech-5V to illustrate the
effectiveness of our contrastive learning module. Table 4 shows that our method
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Table 2. Results of all methods on four small datasets. Bold indicates the best and
underline indicates the second-best.

Datasets Yale ORL Still DB BBCSport

Metrics NMI ACC F-measure NMI ACC F-measure NMI ACC F-measure NMI ACC F-measure

BestSV 0.654 0.616 0.475 0.903 0.777 0.711 0.104 0.297 0.221 0.715 0.836 0.768

LRR 0.709 0.697 0.547 0.895 0.773 0.731 0.109 0.306 0.240 0.690 0.832 0.774

RMSC 0.684 0.642 0.517 0.872 0.723 0.654 0.106 0.285 0.232 0.608 0.737 0.655

DSCN 0.738 0.727 0.542 0.883 0.801 0.711 0.216 0.323 0.293 0.652 0.821 0.683

DCSC 0.744 0.733 0.556 0.893 0.811 0.718 0.222 0.325 0.301 0.683 0.843 0.712

DC 0.756 0.766 0.579 0.865 0.788 0.701 0.199 0.315 0.280 0.556 0.724 0.492

LMSC 0.702 0.670 0.506 0.931 0.819 0.758 0.137 0.328 0.269 0.826 0.900 0.887

DMF 0.782 0.745 0.601 0.933 0.823 0.773 0.154 0.336 0.265 0.821 0.890 0.889

MSCN 0.769 0.772 0.582 0.928 0.833 0.787 0.168 0.312 0.261 0.813 0.888 0.854

MvDSCN 0.797 0.824 0.626 0.943 0.870 0.834 0.245 0.377 0.320 0.835 0.931 0.860

RMSL 0.831 0.879 0.828 0.950 0.881 0.842 0.135 0.336 0.293 0.917 0.976 0.954

DCMSC 0.944 0.955 0.907 0.970 0.931 0.911 0.156 0.388 0.284 0.864 0.953 0.907

Table 3. Results of all methods on BDGP, Caltech-3V and Caltech-5V. Bold indicates
the best and underline indicates the second-best.

Datasets BDGP Caltech-3V Caltech-5V

Evaluation metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR

RMSL [2] (2019) 0.849 0.630 0.849 0.596 0.551 0.608 0.354 0.340 0.391

MVC-LFA [15] (2019) 0.564 0.395 0.612 0.551 0.423 0.578 0.741 0.601 0.747

COMIC [16] (2019) 0.578 0.642 0.639 0.447 0.491 0.575 0.532 0.549 0.604

CDIMC-net [19] (2020) 0.884 0.799 0.885 0.528 0.483 0.565 0.727 0.692 0.742

EAMC [17] (2020) 0.681 0.480 0.697 0.389 0.214 0.398 0.318 0.173 0.342

IMVTSC-MVI [18] (2021) 0.981 0.950 0.982 0.558 0.445 0.576 0.760 0.691 0.785

SiMVC [20] (2021) 0.704 0.545 0.723 0.569 0.495 0.591 0.719 0.677 0.729

CoMVC [20] (2021) 0.802 0.670 0.803 0.541 0.504 0.584 0.700 0.687 0.746

MFLVC [10] (2022) 0.989 0.966 0.989 0.631 0.566 0.639 0.804 0.703 0.804

DCMSC 0.985 0.957 0.985 0.890 0.785 0.890 0.914 0.825 0.914

achieves good results even without Lcon, and the better effect could be obtained
with the Lcon, which shows contrastive learning works to improve the perfor-
mance for multi-view subspace task due to its ability to exploit more compre-
hensive relationship in multi-view data.

Table 4. Ablation studies for contrastive learning structures on Yale and Caltech-5V.

Datasets Yale Caltech-5V

Evaluation metrics ACC NMI PUR ACC NMI PUR

w/o Lcon 0.912 0.826 0.912 0.874 0.782 0.874

w/ Lcon 0.955 0.944 0.955 0.914 0.825 0.914
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5 Conclusion

In this paper, we proposed a novel method named Deep Contrastive Multi-
view Subspace Clustering (DCMSC) to exploit the multi-view relationship by
combining multiple self-representation matrix and introducing contrastive learn-
ing into the networks for exploring more consistent information. DCMSC con-
sists of the base network composed of V autoencoders by which V view-specific
self-representation matrices are learned. In addition, HSIC regularizer and con-
trastive learning module are included in our base network to exploit more com-
prehensive information. Experiments on both benchmark datasets and two big-
ger datasets verify the superiority and robustness of our method compared with
the state-of-the-arts methods.
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