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Abstract Since a substitution box (S-box) is the non-
linearity part of a symmetric key encryption scheme,
it directly determines the performance and security
level of the encryption scheme. Thus, generating S-
box with high performance and efficiency is attract-
ing. This paper proposes a novel method to construct
S-box using the complete Latin square and chaotic sys-
tem. First, a complete Latin square is generated using
the chaotic sequences produced by a chaotic system.
Then an S-box is constructed using the complete Latin
square. Performance analyses show that the S-box gen-
erated by our proposed method has a high performance
and can achieve strong ability to resist many security
attacks such as the linear attack, differential attack and
so on. To show the efficiency of the constructed S-box,
this paper further applies the S-box to image encryption
application. Security analyses show that the developed
image encryption algorithm is able to encrypt different
kinds of images into cipher images with uniformly dis-
tributed histograms. Performance evaluations demon-
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strate thatit has a high security level and can outperform
several state-of-the-art encryption algorithms.
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1 Introduction

With the fast development of information technol-
ogy, more and more multimedia data, including digital
image, audio and video, are generated and spread over
all kinds of networks. Particularly, the digital image
is one of the most widely used data formats. Because
a digital image can show much potential information,
serious information security incident may happen when
a secret image is accessed unauthorizedly. Therefore,
it is very important to protect the contents of digital
image. Recently, to securely communicate the digital
images, researchers have developed many technologies
such as data hiding [19], image encryption [1,14,44]
and watermarking [47].

Among all the image security technologies, the
image encryption is one of the most straightforward
and effective methods [15,52,54]. An image encryp-
tion algorithm transforms a meaningful image into an
unrecognizable cipher image. Only with the correct
key, one can completely recover the original image.
With a wrong key, one cannot obtain any useful infor-
mation. Among all the techniques for image encryp-
tion, the chaos theory is the most widely used and
effective one [29,42,55]. This is because chaos the-
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ory has many similar properties with the principles of
image encryption [13,48]. However, when a chaotic
system is implemented in a digital platform, chaos
degradation happens because of the limitation of preci-
sion. This results in that the image encryption schemes
only depending on chaotic systems have many security
issues [8,10]. One effective way to solve this issue is
to combine the chaotic systems with other techniques.
For example, Zhang et al. proposed an effective image
encryption algorithm using the combination of the 3-
cell chaotic map and biological operations [53]. The
simulation results verify the high security level of the
proposed algorithm. Besides, many image encryption
algorithms have been proposed using other techniques
such as the compressive sensing [36] and frequency
domain transformation [30].

Generally, a substitution box (S-box) is a square
matrix that takes a number of bits as input and trans-
forms them into the same number of output bits [33]. It
is one of the most important modules in an symmetric
key encryption algorithm and can randomly change the
pixel positions of an image. Thus the security level of an
encryption algorithm is highly determined by its used
S-box. Without a high-performance S-box, the encryp-
tion algorithm may be easily broken by many secu-
rity attacks [35]. Thus, one key point of developing
image encryption is to design S-box with high perfor-
mance. Until to now, researchers have developed many
methods to construct S-boxes. Because a chaotic sys-
tem can generate randomly distributed sequences, it is
widely used to develop S-boxes [40]. For example, an
S-box with high performance is constructed using a
two-dimensional chaotic map [21]. When chaotic sys-
tems are used to construct S-boxes, the properties of
the chaotic system highly determine the performance
of the constructed S-boxes. A chaotic system with poor
performance may lead to the low security level of the
constructed S-box. To avoid the negative effects of
chaotic systems in constructing S-boxes, many tech-
niques are combined with chaotic systems to design
S-boxes [20]. For example, the authors in [9] designed
S-boxes by combining the chaotic systems with genetic
algorithms. Security analysis showed that the S-boxes
constructed using the combined method have better
performance than that using the chaotic systems only.
However, existing S-boxes still have some weaknesses
in efficiency, applicability and so on. It is meaning-
ful to construct new S-boxes with better efficiency and
performance.
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To construct S-boxes with better efficiency and per-
formance, this paper proposes an S-box generation
method using the complete Latin square and chaotic
system. First, a chaotic system is employed to construct
a complete Latin square. Then, the S-box is generated
from the complete Latin square and chaotic sequence.
Performance evaluations show the high performance
and security level of the constructed S-box. More-
over, an image encryption algorithm is further proposed
using the S-boxes and the security analyses verify its
high security level. The main contributions and novelty
of this paper are summarized as follows.

(1) We propose an S-box generation method that can
efficiently generate S-boxes using the combination
of complete Latin square and chaotic system.

(2) The performance of the constructed S-box is ana-
lyzed and experimentally compared with many S-
boxes generated by other methods from the aspects
of nonlinearity, strict avalanche criterion, bit inde-
pendence criterion. The results show the high per-
formance and efficiency of the proposed S-box.

(3) To show the application of the constructed S-box,
we further develop an image encryption algorithm
that uses the S-box to perform nonlinear transfor-
mation to the image.

(4) Simulation results and security analysis show that
the developed image encryption algorithm has a
high security level to resist many security attacks.
Comparison results demonstrate that the algorithm
has better performance and a higher security level
than some state-of-the-art image encryption algo-
rithms.

The important notations used throughout the paper
are shown in Table 1.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the enhanced logistic chaotic map
and complete Latin square as background. Section 3
presents the S-box generation method and analyzes the
performance and efficiency of its generated S-box. Sec-
tion 4 develops an image encryption algorithm using
the constructed S-box. Sect. 5 evaluates the security
performance of the encryption algorithm. Section 6
concludes this paper.

2 Preliminaries

This section introduces an existing chaotic system, i.e.,
the enhanced logistic map, and the complete Latin
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Table 1 Descriptions of important notations

Notation Description

I An index vector generated by sorting
chaotic sequence

A A row complete Latin square

B A complete Latin square

C A two-dimensional coordinate matrix

L, A complete Latin square of size 16 x 16

L, The expansion matrix generated from L

S An S-box

U A plain image

D A Latin square of size 16 x 16

H, The row permutation matrix

H. The column permutation matrix

| The permuted image

T The confused image

W The diffusion matrix

C The diffused image

Cyp The 4 x 4 block in C

K The original secret key

K; The different key from K in the ith part

Dy The threshold of NPCR with the
significance level of «

(= The low bound of the UACI interval with
the significance level of «

o The high bound of the UACI interval with
the significance level of o

N(f) The nonlinearity of boolean function f

Sr() The Walsh—-Hadamard transform of

boolean function f

square as a background. They will be used to gener-
ate S-box in Sect. 3.

2.1 The enhanced logistic map

Because the chaos theory has many significant proper-
ties including the initial state sensitivity, ergodicity and
unpredictability, it is widely used to generate pseudo-
random numbers [3,25,50]. When a chaotic system is
used to generate pseudo-random numbers, the chaos
performance of the system highly determines the per-
formance of the pseudo-random numbers. Recently, an
enhanced logistic map is introduced by performing a
sine function to the original logistic map [11]. Since
the sine function has complicated nonlinear properties
and bounded orbits, the generated enhanced logistic

0 200 400 600 800 1000
(b)

Fig.1 Chaos performance of the enhanced logistic map. a Bifur-
cation diagram; b Lyapunov exponents

map can achieve complex chaos performance and has
a large parameter range. Mathematically, the enhanced
logistic map is defined as

Xiy1 = E(L(x;)) = sin(max;(1 — x;)), ey

where a is a control parameter and a € (0, +00).
According to the discussionin [11], whena > 2, all the
fixed points of the enhanced logistic map are unstable,
indicating that the enhanced logistic map has chaotic
behaviors.

The bifurcation diagram plots the visited or
approached points of a dynamical system with the
change of its control parameter. The Lyapunov expo-
nent (LE) measures the separation rate of two trajec-
tories of a dynamical system starting from extremely
close initial states [11]. A positive LE indicates that
the two close trajectories will exponentially diverge in
each unit time and eventually evolute to be two totally
different trajectories. Thus, a dynamical system with a
positive LE has chaotic behaviors if its phase plane is
also compacted. Figure 1 plots the bifurcation diagram
and LEs of the enhanced logistic map when the parame-
tera € [2, 1000). As can be seen, the enhanced logistic
map has a large chaotic range and its chaotic range are
continuous. Besides, the outputs of the enhanced logis-
tic map distribute very randomly on the whole phase
plane. These indicate that the enhanced logistic map has
complex dynamics properties and chaotic behaviors.

2.2 Complete Latin square
Here, we introduce the complete Latin square. First, the

concepts of the Latin square and complete Latin square
are introduced. Then, a pair of orthogonal matrices
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are generated by expanding the complete Latin square.
Finally, a matrix scrambling operation is used to shuffle
the elements of the orthogonal matrices.

2.2.1 Basic concepts

A Latin square is a square matrix that an element occurs
exactly once in each row and exactly once in each col-
umn. A complete Latin square is a special Latin square
that all ordered pairs of elements occurs once each
in row and column. When the elements in two Latin
squares are arranged in pairs, the two Latin squares are
orthogonal if all the element pairs are different from
each other. The Latin square, complete Latin square
and orthogonal Latin squares are be described as Defi-
nitions 1, 2 and 3 , respectively.

Definition 1 A quare matrix of size N x N is a N-
order Latin square if each element appears only once
in each row and in each column.

Definition 2 A Latin square is a complete Latin square
matrix if all ordered pairs of elements occurs once each
in row and column.

Definition 3 For two Latin squares A1 = (al.(lj))N xN

and A; = (al.(zl.))N *N they are orthogonal if all the
element pairs (al.(lj), ai(zj)) are different from each other.

There are many methods to construct a complete
Latin square. If the first row of a complete Latin square
is found, the complete Latin square then can be gen-
erated. Generally, there are two methods to generate
the first row of a complete Latin square of size N x N
(N =2m and m € Z) [45]. To introduce the methods,
the primitive root should be introduced as background.

Definition 4 An integer g is a primitive root of n if
there is an integer z such that k = g*mod n for every
number k that is relatively prime to 7.

Then the two generation methods of the first row of
a complete Latin square are shown as follows.

Method 1: The first row of a complete Latin square
of size N x N(N =2mand m € 7Z) is
generated as

0,1,2m—1,2,2m—-2,3,2m—-3, ..., m—1,m+1,m
(2
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Method 2: If N + 1 is a prime number, find the prim-
itive roots g of N + 1. For each primitive
root g, calculate a, = g*mod (N +1), z €
{1,2, ..., N}, and then sort a; in an ascend-
ing order. The orders of all the indices i are
the first row of the complete Latin square.

A numeral example is provided to explain the gen-
eration of the first row of the complete Latin square of
size 4 x4 using Method 2. First, N+1 = 4+1 = 5, and
we can find that 2 is the only primitive root of 5. Then
calculate a; = 21 mod 5 = 2, a = 22 mod 5 = 4,
a3 =23 mod5 = 3,as =2* mod 5= 1. After
sorting a; in an ascending order, we can get the first
row of the complete Latin square as {a4, a1, a3, az} =
{4,1,3,2}.

A complete Latin square of size N x N can be gen-
erated as follows.

Step 1: Generate the first row of the complete Latin
square using one of the two methods above;

Step 2: The elements in the current row are derived
from its previous row. For example, the ele-
ments in the i-th row can be calculated as
row(i)=(row(i-1)+1) mod N. After obtaining
the elements in all the rows, a row complete
Latin square can be obtained;

Step 3: Set the elements in the 1-st column as the ele-
ments in the 1-st row, and move each row begin
with its 1-st elements to the corresponding col-
umn. Then a complete Latin square is obtained.

A numeral example is provided to show the gener-
ation of the complete Latin square from the row com-
plete Latin square in Step 3. Suppose a row complete
Latin square is shown as the matrix A in Eq. (3), then a
complete Latin square B can be generated as follows.

W = O
S W N =
N - O W
—_ O W N
N W= O
W o N =
—_ N O W
S = W N

3)

(1) Set the first row and column in B as the first row
of A, namely 0, 1, 3, 2. (2) The second row of B has
a first element 1. By searching the first elements in all
the rows of A and the second row is found. Then the
second row and column of B are set as the second row
of A, namely 1, 2,0, 3. (3) The third row of B has a
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first element 3. By searching the first elements in all
the rows of A and the fourth row is found. Then the
third row and column of B are set as the fourth row
of A, namely 3, 0, 2, 1. (4) The fourth row of B has a
first element 2. By searching the first elements in all the
rows of A and the third row is found. Then the fourth
row and column of B are set as the third row of A,
namely 2, 3, 1, 0.

2.2.2 Orthogonal matrices

Using the complete Latin square, a pair of orthogonal
matrices can be generated. For a complete Latin square
B, a new square matrix B, with the same size can be
expanding from B as follows [51]. (1) Set the elements
ini-th i € {1,2,---, N — 1}) column of B, as the
elements in the (i + 1)-th column of B. (2) Set the
elements in the N-th column of B, as the elements in
the N-th column of B. Then the matrices B and B,
are two orthogonal matrices. For example, the matrix
B, shown in Eq. (4) is generated from the complete
Latin square B shown in Eq. (3). When the elements
in B and B, are used as x coordinate and y coordinate,
respectively, a two-dimensional coordinate matrix can
be generated as C in Eq. (4).

1 3 2 2
2.0 3 3
Bo=1o 2 1 1|’
310 0
0, 1) (1,3) (3,2) (2,2)
a2 20 03 63
C= (3,00 (0,2) (2,1) (1,1) @

2,3) 3,1) (1,00 (0,0

As can be seen that all the coordinates in C are dif-
ferent with each other. This indicates that the matrix
B and B; are two orthogonal matrices. An S-box has
the property that each element appears once, and this
property is similar with the orthogonal matrices. Thus,
using the orthogonal matrices generated from the com-
plete Latin square, one can construct an S-box with
high performance.

2.3 Matrix scrambling

To make the distributions of all the elements in a
matrix more uniform, we randomly scramble the ele-
ment positions of the matrix. The whole scrambling

nl2]1fe]sfrfa]afr2]n[4]]2]s]
Lii]2]3]4]| L [l 2]s]2] . B 23] «
2[3]4]1 2[3]4]1 2(3[4]1
3laf1]2] [3[a]1]2 3|af1]2
R [ 1 [2(3| |4 2]s
_ o
AEIE 3 Bl BEPE
1{2]s|e| [«[2[@M 3] [:[2]3]8
a[1]2]3 128l 4| [2]s][%]:
Sl (o (s [B | [s[E L2
(a) (b) (©

Fig. 2 The process of matrix scrambling. a Row scrambling; b
Column scrambling; ¢ Entity scrambling

can be divided into three components: row scrambling,
column scrambling and entity scrambling. First, three
index vectors are generated by sorting three random
sequences. The row scrambling is performed to shuffle
the row positions of each row while the column scram-
bling is to shuffle the column positions of each column.
The entity scrambling is to replace the entities of the
matrix using the elements of the index vector. To better
explain the process of matrix scrambling, we provide
a numeral example of size 4 x 4 and Fig. 2 shows the
matrix scrambling process. As can be seen, the i -th row
is permuted to I (i)-th row, and the i-th column is per-
muted to I (i)-th column. The entity scrambling is to
replace the entity i in the matrix with I3(i). After the
matrix scrambling, the correlation in adjacent elements
can be broken and this leads to the uniform distribution
of all elements.

3 Design of S-box

This section presents an S-box generation method using
the complete Latin square and enhanced logistic map.

3.1 S-box Generation

Figure 3 shows the block diagram of the S-box gen-
eration. First, chaotic sequences are generated by the
enhanced logistic map using the given initial state. A
part of chaotic sequences is used to generate the com-
plete Latin square. Using the complete Latin square,
two orthogonal matrices are produced. By scrambling
the orthogonal matrices using the chaotic sequences,
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Generation Generation

Fig. 3 Block diagram of S-box generation algorithm

an S-box can be generated. The detailed generation of
a 16 x 16 S-box can be described as follows.

Step 1: Three chaotic sequences of length 16 are gen-
erated. By sorting each chaotic sequences,
three index vectors I} , Ip and I3 can be
obtained. Because the number 17 has 8 prim-
itive roots, 8 different sequences can be used
as the first row of the complete Latin square
by Method 2 in Sect. 2.2.1. Counting with the
Method 1, there are 9 different choices to gen-
erate the first row of the complete Latin square.
Thus, set r1 = I3(16) mod 9 to decide which
one is selected.

Step 2: A complete Latin square L; of size 16 x 16
is generated using the processes introduced in
Sect. 2.2.1.

Step 3: An expansion matrix Ly is generated from
L; using the processes introduced in Sec-
tion 2.2.2, where L1 and L are two orthogonal
matrices.

Step 4: Randomly scramble matrices L. and L, under
the index vectors I; , I» and I3 using the method
introduced in Section 2.3. Specifically, per-
form the row scrambling, column scrambling
and entity scrambling on L; and L, under the
control of Iy, I, and I5.

Step 5: The S-box S is generated by combining the two
scrambled orthogonal matrices via

8@, j) =16 x (L1 G, j) — 1) +LaG, j), ®)

Table 2 shows a generated S-box of size 16 x 16.
Because the proposed generation process does not con-
tain complex matrix row, column or transform opera-
tions. Its time complexity is low and thus can achieve
a high generation efficiency.
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3.2 Performance analysis of S-box

An S-box is expected to have complex nonlinear prop-
erties. Here, we analyze the properties of the con-
structed S-box from different aspects.

3.2.1 Nonlinearity

Since an S-box is the nonlinearity part of the symmetric
key encryption algorithm, its nonlinearity can greatly
decide the security level of the encryption algorithm.
An S-box with a better nonlinearity is more robust to
resist different kinds of linear attacks. Thus, the non-
linearity is one of the most important properties of an
S-box. The nonlinearity of an S-box can be measured
by the Walsh spectrum [37], which is defined as

__ An—1 S
N(f)=2""(10-2 wefélgén)le(w)l), (6)

where )GF(2") denotes the Galois Field with 2" ele-
ments, and Sy(w) is the Walsh-Hadamard transform
of boolean function f that can be calculated as

Splw)y= Y —1/0owe ()
weGF(21)

A larger N (f) means the better nonlinearity of the
S-box and its ideal value for an S-box of size 16 x 16
is 112. The S-box generated by our proposed method
can achieve the values of 104, 108, 102, 102, 106, 108,
106, 106. The minimum value is the indicator of the
nonlinearity of the S-box, and the S-box generated by
our proposed algorithm can achieve a minimum value
of 102. This value is larger than most of the S-boxes
generated by other algorithms, as shown in Table 7.
Thus, our generated S-box owns a relatively good non-
linearity.

3.2.2 Strict avalanche criterion

The strict avalanche criterion (SAC) was introduced to
measure the avalanche effect that reflects the intuitive
idea nonlinearity [6]. It points out that when a function
satisfies the strict avalanche criterion, each of its output
bits should change with a probability of a half for the
change of an input bit. Without strict avalanche effect,
an encryption algorithm can be easily broken by build-
ing the relationship between the inputs and outputs.
Thus, the SAC should be tested for every bit.
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Table 2 An example of the generated S-box of size 16 x 16

53 75 33 114 1 230 176 255
130 17 80 172 256 47 10 147
31 231 88 211 120 132 107 169
193 12 164 32 52 119 185 136
174 223 195 87 35 160 229 74
228 58 189 249 205 21 158 210
7 99 213 232 69 202 34 29

248 117 98 43 18 221 76 190
41 141 62 150 222 178 199 108
125 198 159 142 239 241 83 48
106 153 246 61 86 11 143 225

224 244 9 186 137 168 54 91
92 192 26 4 154 67 253 197
70 94 135 207 103 60 216 116

179 40 235 101 171 89 113 6

155 162 124 65 188 110 20 55

131 90 212 109 28 152 201 183
85 237 105 126 180 203 214 56
182 49 146 208 37 14 252 71
219 102 45 79 250 82 238 149
13 242 59 140 104 22 177 121
44 71 175 8 134 112 115 81
254 156 129 84 123 191 64 166
151 196 96 233 161 51 138 15
68 24 3 251 95 122 165 240
170 5 184 50 215 73 27 100
128 163 23 181 206 36 72 220
97 127 78 19 157 236 39 194
226 46 118 167 57 209 111 139
25 187 245 145 227 173 2 42
63 144 204 218 66 247 148 30
200 217 234 38 16 133 93 243

The authors in [43] proposed an effective method
to test whether an S-box can satisfy the SAC or not.
First, an 8-bit vector X is input into the S-box, and the
corresponding 8-bit output vector Y is obtained by sub-
stitution. Then a set of vectors X, X», ..., Xg are gen-
erated, where X and X ; differ only on bit j. The output
vectors Y1, Y2, ..., Yg can be calculated by Y;=S(X ;),
where S(-) is the substitution operation with S-box.
A set of 8-bit binary avalanche vectors Vi, V, ..., Vg
can be calculated by V; = Y @ Y;. An 8 x 8 depen-
dence matrix is generated by adding the value of bit i
in V; to element a; ;. Repeat the steps above n times by
randomly generating the vector X and the finial depen-
dence matrix is generated by calculate the average ele-
ments.

The ideal value of the elements in dependent matrix
is 0.5. An S-box can achieve high performance in SAC
when every element of the matrix is close to the ideal
value. Table 3 shows the dependent matrix of the pro-
posed S-box. As can be seen, most of the elements are
close to the ideal value 0.5. This indicates that the pro-
posed S-box can obtain relatively ideal values.

3.2.3 Bit independence criterion

The bit independence criterion (BIC) is another desir-
able property for a cryptographic algorithm. For an S-
box: {0, 1}* — {0, 1}", it can satisfy the BIC when for

alli, j,ke1,2,...,nand j # k, the change of input
bit i can cause the independent change of output bits j
and k.

The authors in [43] introduced an effective method
to test the BIC. The method points out that for two
output bits f; and f; (i # j) of an S-box, if f; @ f;
has high nonlinearity and satisfies the SAC, the S-box
can show good performance in BIC. Thus the BIC-
SAC and BIC-nonlinearity should be calculated for
every bit. To calculate the BIC-SAC, for an input vec-
tor X, the output vector Y, Y1, Y2, ..., Yg are calcu-
lated using the method introduced in Section 3.2.2.
Then two xor matrix P and Q are generated, where
P; j is the xor result of the i-th and j-th bits of Y,
while Q; j is the xor result of the i-th and j-ths bit
of Yy, wherei, j,k =1,2,...,8.Foreachk, calculate
Vijk = Pij® Qi j,and add V; ; x to element a; ; of
the 8 x 8 dependence matrix A. Repeat these steps n
times to obtain the average values for each elements
of A, and the BIC-SAC values are obtained. The BIC-
nonlinearity values are calculated by Egs. (6) and (7).
The only difference is to change the f(x) in Eq. (7) to
fi ® fj, where f; and f; are the i-th and the j-th bits
of f(x). A BIC-SAC value close to 0.5 and a larger
BIC-nonlinearity value means the better performance.

Tables 4 and 5 show the BIC-SAC and BIC-
nonlinearity test results of the proposed S-box. As can
be seen, the minimum and maximum values of the BIC-
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Table 3 The dependence matrix of the proposed S-box

0.5156 0.5625 0.5781 0.5312 0.5625 0.5469 0.5000 0.5469
0.5156 0.5781 0.5781 0.5000 0.5469 0.5312 0.4688 0.5938
0.5312 0.5312 0.5312 0.5156 0.5312 0.4844 0.5312 0.5625
0.5625 0.5312 0.5312 0.5469 0.5625 0.5938 0.5312 0.5625
0.5000 0.5000 0.5469 0.5156 0.5781 0.5625 0.4844 0.5312
0.5312 0.4844 0.5938 0.5156 0.5156 0.5156 0.5781 0.4688
0.5000 0.5625 0.5312 0.5156 0.5156 0.5469 0.5000 0.5781
0.5625 0.5000 0.5000 0.5625 0.5781 0.5312 0.4844 0.5625
Table 4 BIC-SAC matrix of the proposed S-box

0 0.5039 0.5078 0.4961 0.4590 0.5215 0.5176 0.5234
0.5039 0 0.4805 0.5332 0.5020 0.4961 0.5156 0.5039
0.5078 0.4805 0 0.5078 0.5000 0.4961 0.4941 0.5215
0.4961 0.5332 0.5078 0 0.4902 0.4941 0.4688 0.5078
0.4590 0.5020 0.5000 0.4902 0 0.4941 0.5117 0.4863
0.5215 0.4961 0.4961 0.4941 0.4941 0 0.4883 0.4883
0.5176 0.5156 0.4941 0.4688 0.5117 0.4883 0 0.4902
0.5234 0.5039 0.5215 0.5078 0.4863 0.4883 0.4902 0
Table 5 BIC-nonlinearity matrix of the proposed S-box

0 98 100 100 104 102 104 106
98 0 102 100 100 108 108 104
100 102 0 100 102 100 106 108
100 100 100 0 102 106 108 102
104 100 102 102 0 102 104 104
102 108 100 106 102 0 106 104
104 108 106 108 104 106 0 100
106 104 108 102 104 104 100 0

SAC are 0.4590 and 0.5234, and the mean value is 0.5,
which equals to the ideal value. The minimum and max-
imum values of the BIC-nonlinearity are 98 and 108,
and the mean value is 103.21. These indicate that the
S-box shows good performance in this criterion.

3.2.4 Differential approximation probability

The differential attack is an effective cryptanalysis
technique by analyzing the connections between the
cipher image with the corresponding plain image. As
the important nonlinearity part of the image encryption
algorithm, the S-box should have the ability to resist
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this attack. The differential approximation probability
(DAP) can measure the ability of an S-box to resist the
differential attack [4].

To calculate the DAP value, a differential distribu-
tion table with the size of 256 x 256 should be gener-
atedin advance. For eachinteger x, Ax, Ay € [1, 256],
the element aa Ay in the differential distribution table
adds 1 if S(x) & S(x & Ax) = Ay, where S(-) is
the substitution operation with S-box. Then for each
Ax € [1,256], find the maximum aax Ay and put it
into a new vector M of length 256. Finally, the DAP
matrix is obtained by rearranging M into a matrix of
size 16 x 16. A lower DAP value shows a stronger S-
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Table 6 The DAP matrix of the proposed S-box
6 6 6 8 6 6 6 6 6 8 8 6 10 6 6 6
6 6 6 8 6 8 6 6 6 6 8 6 8 6 6 8
6 6 8 6 8 10 6 6 6 8 8 8 8 6 6 6
10 8 6 6 6 6 6 6 8 6 8 8 8 4 6 6
6 6 6 8 8 8 6 6 10 6 10 6 6 6 6 6
6 6 6 6 6 8 8 8 6 6 6 6 8 8 8 6
6 6 12 8 10 6 6 6 8 8 8 8 8 6 8 8
6 8 6 6 8 8 6 6 6 6 6 6 6 10 6 8
8 6 8 6 6 6 6 8 6 6 6 10 8 6 6 6
8 6 6 8 8 8 6 6 8 6 10 8 6 6 8 6
6 6 6 4 6 6 6 8 8 8 6 6 10 6 8 8
6 6 6 10 6 8 6 6 6 12 6 6 6 8 10 6
6 10 6 8 8 6 10 8 6 6 6 6 8 6 6 6
6 6 6 6 8 6 8 8 6 6 8 6 6 6 6 6
6 8 8 8 6 8 6 6 10 6 6 8 6 8 6 6
6 6 6 6 8 6 14 6 6 8 6 8 8 6 8 0
Table 7 The comparison results of S-boxes generated by different methods
S-box Nonlinearity BIC-SAC BIC-nonlinearity SAC DAP
Min. Avg. Max. Min. Max. Offset.
Proposed 102 105.25 108 0.5000 103.21 0.4688 0.5938 0.0390 14
Ref. [38] 101 103.88 108 0.5018 102.68 0.3906 0.5781 0.0307 14
Ref. [39] 103 104.88 109 0.5039 102.96 0.3984 0.5703 0.0319 10
Ref. [7] 100 103.00 106 0.4993 103.14 0.4219 0.6094 0.0327 10
Ref. [16] 96 104.00 110 0.4980 103.00 0.3900 0.5930 0.0323 32
Ref. [17] 100 104.75 108 0.4965 105.07 0.3906 0.5938 0.0317 32
Ref. [2] 100 103.00 106 0.4983 102.93 0.3906 0.5938 0.0356 10
Ref. [22] 96 103.00 106 0.5031 100.36 0.3906 0.6250 0.0583 12
Ref. [18] 98 102.25 108 0.4992 101.57 0.3281 0.6250 0.0493 16
Ref. [32] 100 104.70 108 0.4942 103.10 0.4218 0.5781 0.0307 10
Ref. [21] 96 103.25 106 0.4864 103.07 0.3906 0.6719 0.0500 44
Ref. [27] 102 104.25 108 0.5045 103.07 0.4219 0.6016 0.0337 12
Ref. [26] 100 105.00 108 0.5038 103.00 0.3906 0.6250 0.0293 12
Ref. [31] 102 104.75 106 0.5017 103.00 0.3906 0.5938 0.0356 12

box of resisting the differential attack. Table 6 shows
the DAP matrix of the proposed S-box. It can be seen
that the minimum value is 4 and the maximum value is
14. This indicates that the proposed S-box has strong
ability to against the differential attack.

3.2.5 Performance comparison

To show the superiority of our proposed S-box, we com-
pare it with other S-boxes generated by some latest
algorithms. Table 7 shows the comparison results in
different aspects. The offset in the SAC is the average
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value of the differences between each element with the
ideal value 0.5. As can be seen, the proposed S-box
can achieve the ideal value of 0.5 in the BIC-SAC and
the largest average value in the nonlinearity, compared
with the other S-boxes. Besides, it can also outperform
most S-boxes in the other criteria. These comparison
results indicate that the S-box generated by the pro-
posed algorithm has better performance than most S-
boxes generated by many other algorithms and thus has
high performance in design encryption algorithm.

4 Application of S-box in image encryption

To show the high efficiency of the proposed S-box
in encryption algorithm, in this section, we apply it
to an image encryption algorithm, and Fig. 4 shows
the structure of the developed image encryption algo-
rithm. The algorithm is mainly constructed by high-
efficiency permutation, S-box-based confusion, feed-
back diffusion and finite field multiplication. The secret
key is the initial states of the enhanced logistic map
and the S-box generation. The chaotic sequence gener-
ated by the enhanced logistic map is used to generate
the Latin square and random matrix for high-efficiency
permutation and feedback diffusion. The S-boxes gen-
erated are used in the S-box-based confusion, which can
effectively shuffle pixel positions. Meanwhile, feed-
back diffusion operation can completely change the
pixel values and spread few changes of plain image to
whole cipher image. The finite field multiplication can
improve the security of the encryption algorithm. Two
rounds encryption are used to obtain a cipher image
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with a high security level. Next, we will introduce the
encryption steps in detail.

4.1 High-efficiency Permutation

The high-efficiency permutation is a process to simply
change the pixel positions. In our algorithm, we use a
Latin square generated from chaotic sequences to per-
mute the pixels in rows and columns, respectively. The
Latin square D is generated as

DG, j) = (a x R(j) +a® x R@)) mod N, (8)

where R is an index vector of length N, and it is gen-
erated by sorting a chaotic sequence, and a = R(1).
Using the Latin square D, the high-efficiency permuta-
tion to a plain image U can be represented as:

Step 1: Generate the row permutation matrix Hy and
column permutation matrix He with

H: (i, j) = (UG, D + DG, j))

mod N, i €[2,N] 9
H.G, j) = (U, j) + DG, j))
mod N, j e[2, N] (10)

For each row of Hy, if Hy (i, j) = 1, replace
H, (i, j) with s - sum(i, :), where sum(i, :) is

the sum of the ithrow of Hy., and s = w —
1. For each column, change H, with the same

operation.

Step 2: For each row of U, exchange the pixels
on U(i, j) and U@, Hy (7, j)), where i, j €
[2, N].
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Step 3: For each column of matrix U, exchange the
pixels on U(i, j) and UMH(i, j), j), where
i,jel2,N]

Step 4. Initial the index vector a and b as the first row
and first column of D. Exchange the pixels on
U(1,i)and U(1, a(i)). Exchange the pixels on
U(j, 1) and U(b(j), 1), wherei € [1, N], j €
[2, N].

4.2 S-box-based Confusion

To increase the security level, the confusion is designed
to randomly change the positions of pixel. Here, the
permuted image is confused using two S-boxes. The
detailed steps of confusing an image of size 256 x 256
are shown as follows.

Step 1: Traverse the permutated image P and trans-
form the coordinate of each pixel into 8-bit
binary, marked as (u, v).

Step 2: Set the first 4 bits of u as x1, and the remain
4 bits as y;. Find the pixel x in the first S-box
with the coordinate (x1, y1). Similarly, set the
first 4 bits of v as xp, and the remain 4 bits as
v>. Find the pixel y in the second S-box with
the coordinate (x2, y2).

Step 3: Exchange the positions of the pixel on coordi-
nates (u«, v) and (x, y) in image P.

Step 4: Repeat the above steps until all the pixels have
been processed and obtain the confused image
T.

To better explain the process of S-box-based confu-
sion, a numeral example of size 4 x 4 is provided and
Fig. 5 details the process. Since the first pixel on the
coordinate (0, 0) is 14, transform the coordinate (0,0)
into 2-bit binary, marked as (00,00). Combine the first
bit and the second bit of the x-coordinate to get the coor-
dinate (0,0). Similarly, combine the first bit and second
bit of the y-coordinate to another coordinate (0,0). Then
find the pixel in the first S-box S; with the coordinate
(0,0) to get the value 3. Find the pixel in the second S-
box S with the coordinate (0,0), and we get the pixel
2. Find the pixel with coordinate (3,2) in P, and we get
the pixel 13. Finally exchange the positions of pixel 14
on coordinate (0,0) and pixel 13 on coordinate (3,2).
Altering and performing these steps to all the pixels of
P, the S-box-based confusion operation is finished.

- (0,0) —>  (00,00)

\ 51 9 3N+t 00) 00«(2)| 0

0 13

2 | o 3 | o 3 }
8

13

(8]

19
=

o
=

P

Fig.5 An example of S-box-based confusion operation

4.3 Feedback diffusion

The diffusion is to diffuse the image by spreading a
slight change in the plain image all over the whole
cipher image. Many existing diffusion processes use
the xor operation, which may spend much time in bit
calculation. Our scheme diffuses the row pixels and col-
umn pixels separately. Using a matrix W of size N x N
constructed by reshaping the chaotic sequence of the
enhanced logistic map, the feedback diffusion opera-
tion for each row or column can be represented as

(T(x) + W(j) + T(N) + T(N — 1))mod N

forx =1
(T(x) + W)+ C() + T(N))mod N
forx =2

Clx) = .
(T(x) +W()+Ckx — 1)+ C(x —2))mod N

forx € [3, N — 1]
(T(x) +W(k)+C(x —1) + C(x —2))mod N
forx = N

11
where j = (x + T(x 4+ 1))mod N, k = (N +r1 +
romod N, ri = W(128,127), r, = W(127,128),
and T is the image to be diffused.
4.4 Finite field multiplication
To achieve good diffusion and security properties, we

apply the finite field multiplication for every 4 x4 image
block Cy, within the plain image C as shown in

Jb =@ -Cp-L)ys, (12)

where L is a4 x 4 Latin matrix of GF(2%) generated by
Eq. (8). This operation is performed within two encryp-
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Fig. 6 Simulation results of the proposed image encryption algorithm: a plain images include binary, grayscale, and color images; b
histograms of a; ¢ encrypted results of a; d histograms of c; e decrypted results of ¢

tion rounds. The inverse process of the multiplication
is shown in

Cp= (L Jp-L s, (13)

where L~! is the inverse matrix of L in GF(2%).

4.5 Encryption algorithm

After introducing each process of the encryption algo-
rithm, we can present the whole image encryption algo-
rithm. The encryption process for a plain image of size
256 x 256 is described as follows.
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Step 1: Generate four S-boxes Sy, Sy, S3, S4 of size
16 x 16, two index vectors Ry, Ry of length
256, one index vector Q of length 4 and two
index vectors O1, Oy of length 65536 using
the enhanced logistic map with the given secret
key. The S| and S, are used for S-box-based
confusion, the Ry is used to generate the Latin
square for high-efficiency permutation, and the
O is used to generate the random matrix for
feedback diffusion in the first round. The Q
is used to generate the Latin square for finite
field multiplication. The S3, S4, Ry, and O; are
used for the second encryption round.
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(a) (b) (© (@)

Fig. 7 Key sensitive analysis results: a plain images; b encryp-
tion result of a; ¢ decryption results of a using a changed key on
a; = aj + 1; d decryption results of a using a changed key on
X2 = x2 4 0.000000000000001;

Step 2: First, generate a Latin square D of size 256 x
256 using Ry. Then, the high-efficiency per-
mutation matrices H, and H, are constructed
using the Latin Square D. Finally, change the
pixel positions of the plain image U using H,
and H; to obtain the permuted image P.

Step 3: Perform S-box-based confusion operation to
the permuted image P using two S-boxes
S, S to obtain the confused image T.

Step 4: Generate arandom matrix W of size 256 x 256
using Oy, and then perform the feedback dif-
fusion to each row and column of the confused
image T using W.

Step 5: Generate a Latin square of size 4 x 4 in GF(2%)
using Q and multiply the Latin square with
image block Cy, of the confused image C.

Step 6: Repeat Steps 2 to Steps 4 using the rest param-
eters to obtain the cipher image B.

Since the proposed encryption algorithm is a sym-
metric key encryption algorithm, the decryption pro-
cesses are the inverse operation of the encryption pro-
cesses.

5 Simulation results and security analysis

This section simulates the designed image encryption
scheme using S-boxes and analyzes its security level.

5.1 Simulation results

An effective image encryption algorithm should have
the ability to encrypt different kinds of digital images

into unrecognizable cipher images. Only with the cor-
rect key, the decryption process can correctly recover
the original image. Without correct key, one cannot
obtain any useful information. Figure 6 shows the simu-
lation results of the designed image encryption scheme
for binary, grayscale and color images. One can observe
from Fig. 6a, b that all the plain images have very
obvious patterns, as shown in their histograms. Fig-
ure 6¢ shows that the cipher images encrypted by our
encryption scheme are random-like and don’t contain
any meaningful information. Figure 6d indicates that
the cipher images are uniformly distributed. One can-
not get any useful information from their histograms.
With the correct secret key, one can totally recover the
original image, as shown in Fig. 6e. Thus, the proposed
encryption algorithm has strong ability to encrypt both
grayscale and color images into unrecognizable cipher
images with high security level.

5.2 Key sensitivity

An encryption algorithm should have very sensitive
secret key. Otherwise, it will exist equivalent keys. The
secret key in our proposed encryption algorithm is con-
sisted as K = {ay, x1, az, x2}. Several experiments
are designed to test the key sensitivity of the proposed
image encryption scheme. First, randomly generate a
secret key K and then separately change a tiny to the
components a1 and x, to generate other two secret keys
K> and K3. These secret keys are

Ky = {20, 15, —0.339800693932357,

— 0.092813258691572}

K> = {21, 15, —0.339800693932357, (14)
— 0.092813258691572}

K3 = {20, 15, —0.339800693932357,
— 0.092813258691571}

Fig. 7 shows the key sensitivity analysis results. One
can see that a tiny change to the secret key can result
in totally different decrypted results. This straightfor-
wardly indicates that the proposed encryption scheme
is sensitive to its secret key.

The key sensitivity of our proposed image encryp-
tion scheme can be quantitatively tested by the number
of bit change rate (NBCR). For two data sequences Z
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Table 8 The NBCRs of cipher images and NBCRs of decrypted images with a tiny change in the secret keys

Origin key Changed component NBCRs
Encryption process Decryption process
a ap 46 47 0.5004 0.5002
as 27 26 0.5005 0.5006
X X1 —0.101325026440898 —0.101325026440897 0.4998 0.5000
X2 —0.761517651598448 —0.761517651598447 0.5003 0.5001
Mean - - - 0.5003 0.5002

and Z, with the same size, their NBCR can be calcu-
lated by

H(Zy, Z)
b

NBCR = x 100%, (15)

where Ly is the length of Z1 or Z,, and H(Z1, Z3) cal-
culates the Hamming distance of Z; and Z;. The ideal
value of NBCR is 50%, and it can be achieved when
the two data sequences are completely independent.

For each component of the secret key, we test its
key sensitivity using the following steps. (1) Randomly
generate a secret key as an original key and separately
cause a tiny change to each component of the original
key to generate a group of new secret keys. (2) Encrypt
the same plain image using these secret keys and cal-
culate the NBCRs between the cipher image by the
original key and the cipher images by each new key.
(3) Decrypt the same cipher image using these secret
keys and calculate the NBCRs between the decrypted
result by the original key and the decrypted results by
each new key. Table 8 lists the calculated results. As
can be seen, all the NBCRs are close to the ideal value
0.5. This indicates that a tiny change in each compo-
nent of the secret key can cause totally different cipher
images in encryption process and cause totally dif-
ferent decrypted images in decryption process. Then
the image encryption algorithm is quite sensitive to its
secret key in both the encryption and decryption pro-
cesses.

5.3 Ability to resist differential attack

The differential attack is one of the most used and
effective security attack methods. An image encryption
algorithm with high security level should have the abil-
ity to resist this attack. If it has strong ability to resist
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the differential attack, it must be sensitive to the change
of the plain image. Specifically, the slight change in the
plain image can change it to the totally different cipher
image. The number of pixel change rate (NPCR) and
unified average changing intensity (UACI) are two cri-
teria to test the ability of an encryption algorithm in
resisting the differential attack [41]. For two images E
and E; encrypted from two plain images with only one
bit difference, their NPCR and UACI are calculated as

S AG k
NPCR = Z4AUK) 00, (16)
and
1 E1(j, k) — E2(j, k
UACI = 2 10 = B2 Ry 0096
LxM~ 255
(17)

respectively. The A(j, k) = 1if E1(j, k) # E2(J, k);
otherwise A(j, k) = 0. According to the discussions in
[46], an image can pass the NPCR test if the obtained
NPCR is greater than the threshold value ¥, which is
calculated as

L= @)y

L+1

(18)

o

where « is a significance level and L is the largest
allowed value of the image, L = 255 in an 8-bit
grayscale image, M and N are the height and width of
an image, respectively. A greater NPCR result means
better performance in resisting differential attack. An
image can pass the UACI test if the obtained value falls
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Table 9 NPCR results of different image encryption algorithms on special positions (9,5 = 99.5693)
Position Encryption schemes

Proposed Ref. [5] Ref. [28] Ref. [34] Ref. [12] Ref. [49]
(2,2) 99.6201 99.6262 99.6231 99.5911 99.5575 99.6109
(255,255) 99.6094 99.5621 99.6338 99.6216 99.6521 99.6124
(255,2) 99.6399 99.5895 99.6155 99.5926 99.5850 99.6124
(2,255) 99.6460 99.6307 99.6201 99.5743 99.6002 99.5667
(127,128) 99.5850 99.6506 99.5759 99.5636 99.5819 99.6124
Mean 99.6201 99.6118 99.6137 99.5886 99.5953 99.6030
Table 10 UACI results of different image encryption algorithms on special positions (6] s 0;}'(')'5) =(33.2824,33.6447)
Position Encryption schemes

Proposed Ref. [5] Ref. [28] Ref. [34] Ref. [12] Ref. [49]
(2,2) 33.6123 33.5461 33.2999 33.5461 33.5528 33.6355
(255,255) 33.4635 33.5422 33.3869 33.5422 33.5502 33.2864
(255,2) 33.4320 33.3666 33.5216 33.3666 33.5560 33.4453
(2,255) 33.4381 33.4738 33.5175 33.4738 33.4678 33.3733
(127,128) 33.4633 33.5909 33.3038 33.5306 33.3957 33.4891
Mean 33.4818 33.5032 33.4059 33.4919 33.5045 33.4459
Offset 0.0413 0.0791 0.1024 0.0671 0.0681 0.1144

into the interval of (6, 62™), which are calculated as

gF— — L+2 _¢—1(g)(L+2)(L2+2L+3)
o« T 3L+3 27 18(I+1)2LMN
*+ _ L2 —1pay (L+2)(L24+2L+3)
O = 3L+3 T () 18(+12LMN

If the UACI result is close to the median value of
the interval, the relative algorithm will have a better
performance in resisting differential attack. According
the recommendations in [46], our experiments set the
significance level « = 0.05. Thus, the threshold for the
NPCR with image size 256 x 256 is 9995 = 99.5693
and the interval for the UACI with image size 256 x 256
is (65 5 96"_6“5) = (33.2824, 33.6447).

First, we choose five peripheral pixels in a plain
image of size 256 x 256 and separately change only one
bit to obtain five changed images. Then calculate the
NPCR and UACT values of the cipher images encrypted
from the original and changed images. Tables 9 and 10
show the calculation results for different image encryp-
tion schemes. As can be seen, the proposed image
encryption algorithm can almost achieve the largest
NPCR values and its UACI values are the closest to
the median value of the interval, namely 33.46355.

Second, we randomly change one bit in the plain
image and calculate the NPCR and UACI values of the
cipher images encrypted from the original and changed
images. Table 11 lists the best NPCR and UACI results
of 100 times of experiments. One can see from the
table that the proposed image encryption algorithm can
achieve relatively higher NPCR values, and its UACI
values are most close to the median value of the inter-
val. Thus, the proposed algorithm shows strong ability
to resist differential attack from this aspect.

5.4 Correlation analysis

High correlations exist in adjacent pixels of a natural
image. An effective encryption algorithm should have
the ability to break these correlations. The correlation
of adjacent pixels can be calculated by the correlation
coefficient. For two data sequences X and Y with the
same length, their correlation coefficient is defined as

E[(X —ux)(Y — py)]
Ox0Oy

Corr(X,Y) =

19)
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Table 11 The UACI and NCPR results for different image encryption schemes

Encryption schemes Images
Lena Word Finger Tree
NPCR Proposed 99.6353 99.6521 99.6307 99.6536
Ref. [5] 99.6292 99.6384 99.6307 99.6277
Ref. [28] 99.6231 99.6246 99.6445 99.6521
Ref. [34] 99.6277 99.6216 99.6460 99.5972
Ref. [12] 99.6506 99.6414 99.6033 99.6277
Ref. [49] 99.6140 99.6368 99.6353 99.6201
UACI Proposed 33.4693 33.5088 33.4620 33.4594
Ref. [5] 33.4769 33.5319 33.5800 33.5723
Ref. [28] 33.4854 33.3132 33.3537 33.5390
Ref. [34] 33.3175 33.3507 33.4749 33.3901
Ref. [12] 33.5187 33.5104 33.5810 33.6061
Ref. [49] 33.4683 33.4595 33.4550 33.3803
0.2 0.2 0.2
—C-CD —C-CD —C-CD
—CO —CO —CO
0.1 Do 0.1 Do 0.1 Do
% 0 % L>) 0 ><\/\/><\/< 8 0 WOQ
-0.1 0.1 0.1
-0.2 -0.2 -0.2
5 10 15 5 10 15 5 10 15
round round round
(a) (b) (c)

Fig.8 Correlation coefficients under the confusion-only (CO), diffusion-only (DO) and combination of confusion and diffusion (C-CD)

along the a horizontal, b vertical and ¢ diagonal directions

where E(-), u and o represent the mathematical
expectation, mean and standard deviation, respectively.
When using the correlation coefficient to test the adja-
cent correlation of an image, X represents a sequence
of pixels and Y represents another sequence of pixels,
which are the horizontal, vertical or diagonal pixels
adjacent to that in X. The Corr value closes to 1 if the
X and Y have strong correlations. Otherwise, the value
close to 0. Thus, a lower Corr value indicates a weaker
correlation of two sequences of adjacent pixels.

First, we investigate the ability of confusion and dif-
fusion operations in our proposed scheme to break the
strong correlations of adjacent pixels. Figure 8 shows
experiment results of the confusion-only, diffusion-
only and combination of confusion and diffusion. As
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Fig. 9 Distributions of adjacent pixel pairs in a the plain image
and b its cipher image encrypted by the proposed image encrypt-
ing scheme

can be seen, the performance in the confusion-only and
diffusion-only processes are close to that in the com-
bination of confusion and diffusion processes. Thus,
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Table 12 The correlation coefficients of the plain images and cipher images encrypted by different encryption schemes
Images Direction  Plain images Cipher images encrypted by different encryption schemes

Proposed Ref. [5] Ref. [28] Ref. [34] Ref. [12] Ref. [49]

Lena Horizontal  0.9655

Vertical 0.9335
Diagonal ~ 0.8978
Word Horizontal  0.8429 0.00540000 — 0.00760000
Vertical 0.7703 0.00095000 — 0.00620000
Diagonal  0.6481 —0.00170000 — 0.00940000
Finger  Horizontal 0.8829 —0.00170000 — 0.00580000
Vertical 0.6972 0.00086888 — 0.00710000
Diagonal  0.7757 0.00180000 — 0.00390000
Tree Horizontal  0.8774 0.00150000 — 0.00360000
Vertical 0.8035 —0.00250000 — 0.00160000
Diagonal ~ 0.7866 —0.00340000

—0.00048481 —0.01180000 — 0.01060000
0.00340000 —0.01230000 —0.01110000
—0.00750000 —0.01090000 - 0.01040000

0.00002549

0.00960000 — 0.02080000 — 0.00440000
0.00850000 — 0.02060000 — 0.00410000
0.00880000 —0.03340000 - 0.00450000

0.00550000  0.00610000  0.03480000 —0.00550000
0.00420000  0.00630000 —0.03930000 —0.00510000
0.00780000  0.00580000  0.00420000 - 0.00600000
0.00450000  0.00510000  0.03830000 —0.00790000
—0.00290000  0.00029000  0.00630000 — 0.00800000
—0.00350000  0.00540000  0.02300000 —0.00800000

0.00790000 —0.00530000 —0.00420000 —0.00350000
0.00760000 —0.00520000 —0.00340000 —0.00350000
0.00810000 —0.00540000 —0.00430000 —0.00350000

the confusion and diffusion processes in our proposed
scheme have strong ability to break the correlations of
adjacent pixels.

Figure 9 plots the adjacent pixel pairs of the plain
image and its cipher image encrypted by the proposed
algorithm. It shows that the pixel pairs in the plain
image mostly distribute on the diagonal line, which
indicates strong correlations between adjacent pixels.
However, the pixel pairs in the cipher image are ran-
domly distributed on the whole plane, indicating the
weak correlations between adjacent pixels. It indi-
cates that the proposed image encryption algorithm can
effectively break the strong correlations of the adjacent
pixels in a plain image.

Table 12 lists the Corr values of cipher images
encrypted by different image encryption schemes. It
shows that the cipher images encrypted by our pro-
posed image encryption algorithm have the smallest
Corr values, compared with other encryption schemes.

5.5 Ability to resist chosen-plaintext attack

The chosen-plaintext attack is an effective and com-
monly used security attack. By choosing some special
images such as all-zero images to encrypt and ana-
lyzing the obtained cipher images, the attackers can
constructed the equivalent keys for the encryption pro-
cesses. Using these equivalent keys, the attackers can
successfully attack a cipher image without the secret
key. For example, in [23], the attacker first constructs

plain images with zeros and ones and then build equiva-
lent keys for the permutation process. In [24], the attack
can also build the equivalent keys for the diffusion
process by selecting plain images to encrypt. In these
attacks, the permutation matrices and diffusion matri-
ces are only related to the secret keys and are fixed for
different plain images. Using chosen-plaintext attack,
the equivalent keys for the permutation and diffusion
processed can be constructed.

However, in the proposed image encryption scheme,
the permutation and diffusion matrices are related to
both the plain image and secret key. In the permutation
process, the row permutation matrix and column per-
mutation matrix are related to the first value of each row
and column of the plain image. In the diffusion process,
the i-th value of the diffusion matrix is related to the
(i + 1)-th pixel of the image. Thus, when encrypting
different plain images, the permutation and diffusion
matrices are different. Then it is impossible to con-
struct the equivalent keys in the chosen-plaintext attack.
Thus, the proposed encryption algorithm has strong
ability to resist the chosen-plaintext attack. In addition,
since the chosen-plaintext attack is more powerful than
the ciphertext-only and known-plaintext attacks, our
encryption scheme can also well defense these secu-
rity attacks.

6 Conclusion

In this paper, we proposed a new S-box construction
method using the complete Latin square and enhanced
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logistic map. First, a complete Latin square is gen-
erated using the chaotic sequences produced by the
enhanced logistic map. By expanding the complete
Latin square, a pair of orthogonal matrices can be gen-
erated. The S-box is generated after scrambling and
combining the orthogonal matrices. The performance
of the proposed S-box is analyzed using the nonlinear-
ity, strict avalanche criterion, bit independence criterion
and differential approximation probability. The analy-
sis results show that the proposed S-box has strong
ability to resist different kinds of security attacks, and
it has better performance than several newly proposed
S-boxes. To show the application of the proposed S-
box, we design an image encryption algorithm. The
main components of the algorithm are high-efficiency
permutation, S-box-based confusion, feedback diffu-
sion and finite field multiplication. The first two opera-
tions can randomly shuffle the pixel positions with high
security. The feedback diffusion operation can change
the pixel values and spread the change of a pixel to the
whole cipher image. Simulation results show that the
image encryption algorithm proposed has strong ability
to encrypt different kinds of digital images into unrec-
ognizable cipher images. The security analyses demon-
strate that the image encryption algorithm proposed has
better performance than some advanced image encryp-
tion algorithms. Our future work will investigate the
construction of 3D S-box and its application in color
image.
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