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Designing Hyperchaotic Cat Maps With Any
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Abstract—Generating chaotic maps with expected dynamics
of users is a challenging topic. Utilizing the inherent relation
between the Lyapunov exponents (LEs) of the Cat map and its
associated Cat matrix, this paper proposes a simple but effi-
cient method to construct an n-dimensional (n-D) hyperchaotic
Cat map (HCM) with any desired number of positive LEs. The
method first generates two basic n-D Cat matrices iteratively and
then constructs the final z-D Cat matrix by performing similarity
transformation on one basic n-D Cat matrix by the other. Given
any number of positive LEs, it can generate an n-D HCM with
desired hyperchaotic complexity. Two illustrative examples of n-D
HCMs were constructed to show the effectiveness of the proposed
method, and to verify the inherent relation between the LEs
and Cat matrix. Theoretical analysis proves that the parameter
space of the generated HCM is very large. Performance evalua-
tions show that, compared with existing methods, the proposed
method can construct n-D HCMs with lower computation com-
plexity and their outputs demonstrate strong randomness and
complex ergodicity.

Index Terms—Cat map, Cat matrix, chaotification, hyper-
chaotic behavior, Lyapunov exponent (LE).

I. INTRODUCTION

HAOTIC behaviors can be observed in all kinds of

natural and non-natural phenomena, such as weather
forecasting in meteorology [1] and population growth in
sociology [2]. Dynamic systems are mathematical concepts
describing chaotic behaviors, and attract intensive atten-
tions [3], [4]. A dynamic system demonstrating chaotic behav-
ior has properties of ergodicity, unpredictability, and sensitivity
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to change of initial condition and/or control parameter. So,
strong chaotic behavior is very desired in many real applica-
tions [5] and Lyapunov exponent (LE) is a widely used indi-
cator to quantitatively measure it [6]—[8]. If a dynamic system
owns one positive LE, it is considered chaotic. Furthermore,
if a high-dimensional (HD) dynamic system has at least two
positive LEs, it can demonstrate hyperchaotic behavior, and
its attractors irregularly distribute in several dimensions [9].
Thus, its behavior is usually much more complex and it has
much unpredictable topological structure than that owning
only one positive LE [10], [11], making hyperchaotic sys-
tems are more attractive, especially in the field of chaos-based
cryptography [12]-[14].

Existing hyperchaotic systems can be classified into two
categories: 1) discrete-time system and 2) continuous-time sys-
tem. A discrete-time system is commonly defined by a differ-
ence equation and it can be implemented through an iterative
procedure. In contrast, a continuous-time system is usually
represented by a partial and/or ordinary differential equation.
In the past decades, a wide body of research has been devoted
to developing continuous-time hyperchaotic systems using var-
ious strategies: state feedback control [15], [16], linear or
nonlinear coupling [17], [18], and other techniques [19]-[23].
It deserves noting that Shen et al. [20], [21] proposed a sys-
tematic methodology for constructing hyperchaotic systems
with multiple positive LEs and further developed a simple
model to design hyperchaotic systems with any desired num-
ber of positive LEs. Using the methods given in [20] and [21],
one can construct a continuous-time hyperchaotic system with
multiple positive LEs, and thus can customize it with the
expected complex behavior. Compared with continuous-time
systems, the occurrence of chaotic behaviors of discrete-
time systems can be directly observed. Thus, the latter
has many advantages in performance analysis and hard-
ware/software implementation, making designing discrete-
time hyperchaotic systems with multiple positive LEs very
attractive [24].

As a special discrete-time chaotic system, Arnold’s Cat
map not only has common properties of discrete-time chaotic
systems, but also possesses many exclusive characteris-
tics, including adaptability to arbitrary finite precision [25],
reversibility [26], area preserving [25], Anosov diffeomor-
phism and structural stability [27]. Such nice properties let
Cat map receive many researchers’ attentions [28]—[30]. It has
been used in many applications, such as the cryptographic
applications [31]-[33] and steganography [34]. Besides, Cat
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map also has potential for some hot applications, such as
real-time secure communication system [35] and networked
system [36]. To achieve high randomness and a large param-
eter space, some construction methods of generating Cat map
were proposed. Among them, a typical generation method
is to construct n-dimensional (n-D) Cat matrices, i.e., trans-
formation matrices of n-D Cat maps. These methods can
be further classified into two classes: 1) fixed dimensional
Cat map generation methods [25], [37], [38] and 2) variable
dimensional Cat map generation methods [39]-[41]. As for
the former, the parameter spaces are commonly too small
to satisfy the security requirement of cryptographic appli-
cations [31]. As for the latter, the number of independent
parameters is quite small even when the dimension is very
large, due to all kinds of linear operations involved in con-
structing the Cat matrices, e.g., matrix multiplication and
addition.

To construct Cat maps with more independent parameters,
higher randomness and desired complexity, this paper first dis-
closes some inherent relation between LEs of the Cat map
and its associated Cat matrix, and then proposes a simple
model to construct n-D hyperchaotic Cat map (HCM) with
any desired number of positive LEs, where n > 3. In the
process of constructing an n-D Cat matrix, two basic n-D
Cat matrices are iteratively constructed using a parametric
2-D Cat matrix. The final n-D Cat matrix can be obtained
by performing similarity transformation on a basic n-D Cat
matrix with another. Additional spatial location parameters are
introduced to expand the parameter space of Cat matrices. It
was proved that the obtained n-D Cat maps have |[n/2] pos-
itive LEs. Thus, one can customize a new n-D HCM owning
any given number of positive LEs. To verify the effective-
ness of the proposed method and the found relation between
LEs and the Cat matrix, we construct two concrete exam-
ples of n-D HCMs: 1) a 5-D HCM with two positive LEs
and 2) a 10-D HCM with five positive LEs. Theoretical anal-
ysis shows that the proposed method can generate an n-D
Cat matrix with [n?/2] independent elements. Compared with
existing methods proposed in [25] and [37]-[42], the pro-
posed method can generate n-D HCMs owning any desired
number of positive LEs with a lower computation complexity.
Meanwhile, ergodicity property of the obtained HCM is more
complex.

The rest of this paper is organized as follows. Section II
briefly reviews n-D Cat map and explores its properties.
Section III presents the proposed method of constructing
n-D Cat maps, and Section IV provides two representative
examples of them. Section V further evaluates performance
of the proposed method and the last section concludes this

paper.

II. n-D CAT MAP AND ITS DYNAMIC PROPERTY

The n-D discrete Cat map can be defined as

x(t+1) = (C-x(t)) mod N (1)
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TABLE I
DESCRIPTIONS OF IMPORTANT NOTATIONS

Notation  Description

n the Cat map dimension

N the number of finite states

C an n-D Cat matrix

Ci,j an element of C

x(t) the observation state of Cat map in time ¢

LE; the j-th Lyapunv exponent of Cat map

Aj the j-th eigenvalue of C

J(x(¢))  the Jacobian matrix of chaotic system with x(t)

I an identity matrix

C’ the parametric 2-D Cat matrix

D, q two parameters of C’

a a pseudo-random binary sequence

b a pseudo-random binary sequence

h a pseudo-random integer sequence

g a pseudo-random integer sequence

K the number of positive LEs

#sLes the total number of spatial location configuration

Psrcs the parameter space of spatial location configuration

#mEcs  the total number of matrix entity configuration

Prniecs  the parameter space of matrix entity configuration

Pc the whole parameter space of constructing C
where x(1) = {x1 (1), x2(2), . .., xx, (D)} € N1 N is the finite

number of states in the range spanned by the components of
x(1), and

C11 C12 Cln
21 22 T Con

C=| . . . (2)
Cnl Cn2 o Cnn

is the corresponding Cat matrix, which satisfies ¢;; € N and
det(C) = 1 [25], [29], [32]. When the elements of x(r) are
real numbers, (1) is an n-D general Cat map. In the rest of
this paper, we use the discrete Cat map to demonstrate the
properties of the Cat map. These properties also hold for the
general Cat map. To facilitate description of this paper, some
important notations are defined in Table I.

As shown in Propositions 1 and 2, there is simple mapping
relation between LEs of n-D Cat map (1) and eigenvalues of
the corresponding Cat matrix. In addition, summation of the
n LEs is equal to zero. Proposition 3 describes a property of
two eigenvalues of a special type of 2-D Cat matrix.

Proposition 1: Let LE{, LE,, ..., LE, denote the n LEs of
the n-D Cat map given in (1), one has

LE; = ln(kj) forl <j<n 3)

where A1, A2, ..., A, represent the n eigenvalues of the corre-
sponding Cat matrix, respectively.

Proof: For an n-D discrete-time chaotic system, x(t + 1) =
F(x(7)), it has n LEs because its orbits have n indepen-
dent initial displacement directions. Suppose J(x(¢)) is the
Jacobian matrix of F(x) with the observation state x(¢) and
)L’l‘(t) ~ )Lz(t) are the n eigenvalues of J(x(¢)). From defi-
nition of LE (e.g., [43, eq. (1)]) and its calculation method
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(e.g., [6, eq. (8)]), one can obtain the n LEs of the system

Z ln( X(I))

where j = 1, ..., n. As for the n-D Cat map (1), its Jacobian
matrix is not related to the observation state x(¢), which means
that J(x(O)) = J(X(l)) = = Jx(t — 1)) = C. So, one has

= lim —
—0o0 f

A] A = Aj = A, for any j. Then, one can get

t—1

LE; = lim — In(%)) = In(%;).

i=0

|
Proposition 2: The n LEs of n-D Cat map (1) satisfy
Z exp LE Z Cjj “)
j=1
and

S)

n
> LE; =0
j=1

where ¢;j; is the diagonal element of the Cat matrix (2).
Proof: The characteristic equation of the n-D Cat matrix
Cis

A—c1q —C12 —Cln
—C21 A—cC2 —Con
det(AI — C) = (6)
—Cnl —Cn2 A= Cpn
=M d A b A+ dy
=0

where d; is the ith order polynomial coefficient of det(AI—C).
According to definition of determinant, the right part of (6)
can be represented as addition of determinant of 2" matri-
ces, whose every entry is composed by one element in set
Y Ul=eihi) j—1- Among them, there are n ones containing
item A"~

—C11 0 . 0 A 0 e —Cln
—c; A - 0 0 A —Con
—cp 0 - A 0 O —Cnn

Summation of the above n determinants is

n
-1 -1
(=ci1—cpp—--— sz))\n = Z C/:/')‘n :
j=1
So, dy—1 = — Z;l:l cjj. The constant item of the determi-
nant (6) is
—C11  —C12 —Cln
—C21 —C22 —C2n
. = (—=1)"det(C)
—Cnl —Cn2 —Cnn

= (="
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Then, dy = (—1)". Using Vieta’s formulas shown in [44],
one has
n n
2 H=—dum1 = ¢ ™
j=1 j=1
and
n
]‘[Aj =(=D)"dy =1 (8)
J=1
where A1, A2, ..., A, are n roots of (6), namely the n eigen-

values of Cat matrix C.

From Proposition 1, one can get A; exp(LE;) for
Jj =1~ n. Substituting the above equation into (7) and (8),
one can obtain

n n
> exp(LEj) = > ¢
=1 =1

and

n n
[ [exp(LE) = exp| > LE;
j=1 j=1

respectively. Then, one has )7 | LE; = 0, which completes
proof of this proposition. |
Proposition 3: Two eigenvalues of parametric 2-D Cat

matrix
r_(Patl p
Y
A1 and Ap, satisfy
In(|21]) - In([A2]) <O
if
®-q) ¢ 10, —4}. (10)
Proof: The characteristic equation of C’ is
A=@-q+1)  —p
det(AI - C') = g s 1
—(P-q+2)r+1=0. (11)

The root discriminant of (11)is A = (p-g+2)>—4.If (p-q) ¢
{0, —4}, A # 0. This means that (11) has two different roots,
namely, A1 # X>. From (8), one has A; - Ao = 1. Thus, one
can get [A1| < 1, |Az] > 1 or |X2| < 1, |A1| > 1, i.e., In(|Aq]) -
In(JA2]) < 0, which completes proof of this proposition. M

III. METHODOLOGY

This section introduces the proposed method of constructing
n-D HCMs with a desired number of positive LEs. First, two
basic n-D Cat matrices are constructed from the parametric
2-D Cat matrix. Then, the final n-D Cat matrix is generated
by doing similarity transformation on one basic Cat matrix
with the other.
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A. Constructing Basic n-D Cat Matrix From (n — 2)-D One

First, we introduce Proposition 4 that constructs a Cat
matrix from two Cat matrices with lower dimensions.

Proposition 4: Let the C; and C; denote i-D Cat matrix
and (n — i)-D Cat matrix, respectively. If at least one of M|
and M is zero matrix, block matrix

i M
C= (Mz (0)) )
is an n-D Cat matrix and its eigenvalues are composed by that
of C; and C,, where n > i, M; and M; are i X (n — i) matrix
and (n — i) x i matrix, respectively.

Proof: Since C; and C; are two Cat matrices, one has
det(C;) = 1 and det(C,) = 1. As at least one of M;
and M; is zero matrix, then |M;||Mj| = 0, and det(C) =
|C1]|C2| — IM||[M2| = 1. Thus, C is an n-D Cat matrix, and
its eigenvalues are the eigenvalues of its submatrices in the
main diagonal line, C; and C,. u

Referring to Proposition 4, one can construct an n-D Cat
matrix (12) from an (n — 2)-D Cat matrix by one of the
following two types of setting.

1) C; = C/, where p and ¢ are random integers in (9), C;

is the (n — 2)-D Cat matrix.

2) C, = C/, where p and g are random integers in (9), C;

is the (n — 2)-D Cat matrix.
In both cases, at least one of Mj and M, in Proposition 4 is
Zero matrix.

As shown in Proposition 3, C’ in (9) has one eigenvalue
of absolute value larger than 1 if (p - ¢) ¢ {0, —4}. So, one
can assure that the obtained n-D Cat matrix has one more
eigenvalue of absolute value larger than 1 than the (n — 2)-D
Cat matrix.

(12)

B. Constructing n-D Cat Map With |n/2]| Positive LEs

Using Proposition 4, one can construct basic n-D Cat matrix
by iteratively expanding an initial matrix with a 2 x 2 matrix.
The construction procedure is described as follows.

1) Step I: Set the initial matrix as a 1 x 1 special matrix
if n is odd, otherwise set it as the parametric 2-D Cat
matrix given in Proposition 3.

2) Step 2: Place the initial matrix and another paramet-
ric 2-D Cat matrix in the main diagonal of a 2 x 2
block matrix (12). To increase the parameter space of the
obtained Cat matrix, the locations of the two matrices
are assigned randomly.

3) Step 3: As for the other two matrix blocks in the antidi-
agonal direction, randomly select one and set it of fixed
value zero. Then, elements of the other matrix block are
assigned with any integer randomly.

4) Step 4: Set the current composite matrix as the initial
matrix.

5) Step 5: Repeat step 2 through step 4 [(n — 1)/2] — 1
times.

Algorithm 1 presents the pseudocode of the function oper-
ating the above procedure, HCMF(a, b, h, g, n), where
a = {ai}l.Linl_l)/ 2 and b = {b,-}}i"l_l)/ 2 are pseudo-random
hi}!_n/ZJ-Z n?/2]~1n/2] 2

i=1 i=1

binary sequences, h = { and g = {gi};_

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 2, FEBRUARY 2018

Algorithm 1 Algorithm for Generating a Basic n-D Cat Matrix
1: function HCMF(a, b, h, g, n)
2 c=(n+1) mod?2)+1;

3 if c = 1 then
4 C=11]
5 else
6: C = C/, where p, q are selected from h.
7 end if
8 fori=1to [(n—1)/2] do
9: Initialize a C’, where p, ¢ are fetched from h.
10: if a; = 1 then
11: C] = C, C2 = C/,
12: M, € N(Z(i—l)+c)><2, M, € NZX(Z(i—l)-‘t‘L‘).
13: else
14: C=C,C=C,
15: M, € N2XQi=D+0) M, ¢ NQG—D+0x2,
16: end if
17: if b; = 1 then
18: M; = 0, elements of M, are fetched from g.
19: else
20: M; = 0, elements of M; are fetched from g.
21: end if M
1 M
22: C= <M2 C, >
23: end for
24: return C.

25: end function

are pseudo-random integer sequences. To obey the require-
ment (10), the elements of h satisfy (hy;_; - hy;) & {0, —4} for
i=1~|n/2].

Fig. 1 shows an example of generating a basic 5-D Cat
matrix using Algorithm 1. The parameters are set as follows:
a={1,0}, b =1{0,1}, h = {hi}f'zl, and g = {g,-}?zl. The
detailed procedures can be described as follows.

1) As ¢ =1, set the initial matrix C = [1], which is shown

in Fig. 1(a).

2) The following four steps are performed to generate the
3-D Cat matrix shown in Fig. 1(b): a) initialize a 2-D
Cat matrix C’ in (9) with p = h; and g = hy; b) set
Ci=Cand C; =C asa; =1; c) set M, = 0 and
use the elements of g to initialize M; as b = 0; and
d) construct the 3-D Cat matrix using (12).

3) The following four steps are performed to generate the
basic 5-D Cat matrix shown in Fig. 1(c): a) initialize a
2-D Cat matrix C’ in (9) with p = h3 and g = hy; b) set
Ci=Cand C; =Casa, =0; ¢) set M| = 0 and
use the elements of g to initialize M, as by = 1; and
d) generate the basic 5-D Cat matrix using (12).

As zero matrices are used in the generation procedure, the
obtained Cat matrix using Algorithm 1 has blocks of fixed
value zero, which can be observed from Fig. 1(c). To further
enhance dynamics of the constructed n-D Cat map, we use
the following two steps to construct the final n-D Cat matrix:
1) construct two basic n-D Cat matrices, C and C, by running
Algorithm 1 twice with different inputs and 2) generate the
final n-D Cat matrix C by operating similarity transformation
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Fig. 1. Example of generating a basic 5-D Cat matrix using Algorithm 1.

(a) 1-D Cat matrix. (b) 3-D Cat matrix. (c) Obtained basic 5-D Cat matrix.

on C with C, namely
c=C.C-¢c .. (13)

As the proposed method can construct n-D Cat map with
n/2] positive LEs, one can get the number of positive LEs

if n mod2=0
if n mod2=1.

n/2,

S (RS "

From Proposition 2, one can assure that the summation of all
the n LEs of the obtained n-D Cat map is equal to zero. As its
LEs are dependent on the eigenvalues of the used parametric
2-D Cat matrix C’ in (9), the number of positive LEs can be
deduced via Proposition 3, but their magnitude cannot be set
a priori.

C. Parameter Space of the Obtained HCM

The proposed method has two kinds of parameters in con-
structing an n-D Cat matrix: 1) spatial location configuration
(SLC) and 2) matrix entity configuration (MEC). The elements
in a and b are SLCs while those in h and g are MECs. A binary
element in a controls the position of a newly added paramet-
ric 2-D Cat matrix C’ while that in b indicates the position
of a newly added nonzero submatrix in (12). There are total
L(n — 1)/2] iterations in constructing a basic n-D Cat matrix,
thus a and b both has [(n — 1)/2] binary elements. Then the
total number of SLCs to construct two basic n-D Cat matri-
ces is #srcs = 4[(n — 1)/2]. As each SLC has two possible
values, the parameter space of SLCs is

Pgp s = 2MsLes — 24ln=1)/2]

Sequences h and g contain the matrix entities of each newly
added C’ and nonzero submatrix, respectively. As shown in
Algorithm 1, constructing a basic n-D Cat matrix needs |n/2]
C’s, and every one has 2 MECs. So, h has 2|n/2] elements. In
every expansion, the same number of determined entities and
MECs are used. Constructing a basic n-D Cat matrix needs
|n?/2] MECs. Thus, the number of elements in g is |n?/2] —
2|n/2], and the total number of MECs in constructing two
basic n-D Cat matrices is #Mpcs = ZLn2 /2]. For simplicity of
calculation, we assume that all MECs are randomly selected
from M possible values. Then the parameter space of MECs

is Pyvpcs = MPMECs — M2 2]
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TABLE II
PARAMETER SPACES OF CONSTRUCTING AN n-D CAT
MATRIX C WITH DIFFERENT DIMENSIONS

Dimension  Pgpcs Pryrgcs Pc
3 16 M3 16M8
4 16 M1 16016
5 256 M* 256024
6 256 M3 256 M36

n oal(n—1/2] pp2ln®/2] oal(n-1)/2] pp2ln’/2]

Because SLC and MEC are independent, the whole param-
eter space of constructing an n-D Cat matrix C is the
multiplication of the parameter spaces of SLCs and MECs,
namely

Pc = PsLcs X PMECs
— 24ln=D/2] pp21n%/2)

Table II lists the parameter spaces of constructing an n-D
Cat matrix with different dimensions n.

IV. TWO ILLUSTRATIVE EXAMPLES

This section provides two n-D HCMs with desired num-
ber of positive LEs using the proposed method: 1) a 5-D
HCM with two positive LEs and 2) a 10-D HCM with five
positive LEs.

A. 5-D HCM With Two Positive LEs

In this example of generating the 5-D HCM, a typical setting
was used to generate the first basic 5-D Cat matrix: a = {1, 0},
b={0,1},h={21,1,1},and g = {2,1,1,1,1,2, 1, 2}.
Starting with 1-D Cat matrix C = [1], run Algorithm 1
and get

2 1 0 0 O
1 1.0 0 O
C=|1 2 1 2 1
1 1 0 3 2
1 2 0 1 1

To get the second basic 5-D Cat matrix, we set a = {1, 1},
b=1{0,1}, h ={2,2,2,1}, and g = {2,1,2,2,2,1, 1, 1}.
Starting with 1-D Cat matrix C = [1] also, we obtain

1 2 1 0 0

0 5 2 0 O

cC=10 2 1 0 O

2 2 1 3 2

2 1 1 1 1

The final 5-D Cat matrix C can be generated by (13)

5 2 -8 1 -1
7 3 -—-11 2 =2
C=1]3 1 -4 1 -1
2 12 =30 4 1
4 6 —17 2 0
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The five LEs of the constructed 5-D HCM composed with
the above Cat matrix are LE; = 1.3170, LE, = 0.9624,
LE; = 0, LE4 = —0.9624, and LEs = —1.3170. There are
two positive LEs, and it is easy to verify that

5 5
Y _exp(LE) =8=3_C]
j=1 j=1

and Z?:l LE; = 0, which agree with the theoretical
expectations.

B. 10-D HCM With Five Positive LEs

When n = 10, the input parameters for generating the first
basic 10-D Cat matrix are set as follows: a = {1,0,0, 1},
b = {0,1,1,0}, elements in h = {;}°, and g = {g}{,
are randomly selected from the set {1,2}. Run Algorithm 1
and get

SN —= W
O = = =N ==
O = = N~ DN wn oo
SN = == =N OO
[eNeNeR N NeNeNoNol
S OO = NO O OO
SN —OO OO
S =D = =00 OO0

—_ 0 = N = N = NN =
—_— N = N = NN = =N

(e
(e
(e
(e}
(e
(e
(e
(e

As for the second basic 10-D Cat matrix, the input parameters
are set as follows: a = {1,0, 1,0}, b = {1, 1, 1, 0}, elements
of h = {h,-}l.li)1 and g = {gi}fgl are also randomly selected

from the set {1, 2}. Then, we obtain

32 1 1 1 2 1 2 2 1
11 12 2 1 1 2 2 2
0o 0 3 1.0 0 0 O O O
0o 0 2 1 0 0 O O O O
¢ = 0o 0 2 1 3 1 0 0 0 O
o o0 2 2 2 1 0 0 0 O
o 0 2 2 2 1 3 1 0 O
o o0 2 1 1 1 2 1 0 O
o o0 1 2 2 2 1 2 3 2
o o0 2 1 1 2 1 1 1 1
The final 10-D Cat matrix is obtained by performing (13)
and get
9 0 —104 192 41 =75 34 —60 —8 31
7 1 —68 133 30 =57 31 =54 -6 26
1 5 150 —219 —38 51 13 —19 1 -8
1 3 82 —117 =20 26 9 —14 0 -3
C— 2 8 178 —265 —43 5919 -28 —1 =5
3 5 81 —111 —16 19 17 —28 =3 4
7 1 =79 148 31 —58 27 —42 -7 23
5 1 —28 63 14 —-30 20 —30 —4 13
7 -1 =99 182 39 —-70 30 —-52 -5 28
5 1 -8 34 10 —24 22 -35 -3 13

The 10 LEs of this 10-D HCM are LE; = 1.7627, LE; =
1.7627, LEs = 1.3170, LE4 = 1.3170, LEs = 1.3169,
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Fig. 2. Trajectory projections of the constructed 10-D HCM with five positive
LEs. (a) x; — xp — x3 plane. (b) xp — x3 — x4 plane. (c) x3 — x4 — x5 plane.
(d) x4 — x5 — x¢ plane. (e) x5 — x5 — x7 plane. (f) x4 — x7 — xg plane.
(g) x7 —xg — xg plane. (h) xg —x9 — x1¢ plane. (i) x9g — xj9 — x1 plane.

LEs = —1.7628, LE; = —1.7627, LEg = —1.3173, LEg =
—1.3168 + 0.0003i, and LE;g = —1.3168 — 0.0003i. As
expected, the number of positive LEs is five. It is easy to
calculate that

10 10
> exp(LEj) =24 = "C;
j=1 j=1

and

10
D LE;=38177 x ¢! ~0.
j=1

The above approximation is caused by finite precision of
digital computer. So, the 10-D HCM still agrees with the
expectations.

To verify the randomness of the obtained 10-D HCM, we
set the number of finite states N = 512 and initial value
x(0) = 119« in (1). Fig. 2 plots the distributions of the gen-
erated outputs projected in different 3-D phase planes. As can
be seen in Fig. 2, the generated trajectory is randomly dis-
tributed in the entire 3-D phase planes, which demonstrates
the outputs of the 10-D HCM have good randomness.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
method from four aspects: 1) LE; 2) time complexity; 3) infor-
mation entropy; and 4) correlation dimension. Some typical
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TABLE III
AVERAGE NUMBER OF POSITIVE LES OF n-D CAT MAPS
GENERATED BY DIFFERENT METHODS

Dimension n-D Cat map generation methods
n Tang’s  Falcioni’s  Nance’s Wu’s Proposed
3 1.025 1 1 0.75 1
4 1.275 1.1375 1 1.15 2
5 2 1.1625 1 1.975 2
6 2.4125 1.3344 1 2.7344 3
7 2.9063 1.4921 - 3.6078 3
8 3.5781 1.5789 - 4.6070 4
9 4.2285 1.8445 - 5.6512 4
10 4.6594 2.0002 - 6.6377 5
11 5.1815 2.2209 - 7.5915 5
12 5.7666 2.4559 - 8.4290 6
13 6.3348 2.6714 - - 6
14 6.7812 2.8990 - - 7
15 7.2893 3.1344 - - 7
16 7.9066 3.3548 - - 8

Cat map generation methods are used as comparison meth-
ods: Lian et al.’’s method [42], Chen et al.’s method [25],
Liu et al’s method [37], Pan and Li’s method [38],
Tang and Tang’s method [45], Falcioni et al.’s method [39],
Nance’s method [40], and Wu et al.’s method [41]. The former
four ones are fixed dimensional Cat map generation methods
while the latter four ones are generation methods of variable
dimensional Cat map. For Wu ef al.’s method [41], we set the
spatial configuration parameters in I and J as 2, and randomly
determine the matrix entries parameters in P and Q.

A. Lyapunov Exponent

The number of positive LEs is a key factor to measure
dynamics complexity of a dynamic system. Based on this
point, we did a large number of experiments to compare the
proposed method with Tang’s, Falcioni’s, Nance’s and Wu’s
methods in terms of the number of positive LEs. We found
the proposed method owns obvious superiority in this aspect.
Here, we list a typical example: M = 2 (MECs are restricted to
{1, 2}) and dimension 7 is selected in the scope {3, 4, ..., 16}.
Table III lists the average number of positive LEs for different
generation methods under different dimensions n. As can be
seen, the proposed method can generate n-D Cat maps with
n/2] positive LEs. It allows users to generate n-D Cat maps
with a specified and desired number of positive LEs. Although
Tang’s and Wu’s methods can also generate a large number
of positive LEs, their quantities cannot be controlled. In con-
tract, Falcioni’s and Nance’s methods can only generate few
positive LEs.

Furthermore, Nance’s and Wu’s methods require a large
number of multiplications and additions in generating n-D Cat
matrix. When dimension n > 7 in Nance’s method and n > 13
in Wu’s method, some entities of the generated Cat matrix are
too large to be correctly represented by commonly used data
formats, which lead to inaccurate experimental results. Thus,
we only display the experimental results for dimension n < 6
in Nance’s method and n < 12 in Wu’s method.
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TABLE IV
TIME COMPLEXITY OF DIFFERENT n-D CAT MAP GENERATION METHODS

n-D Cat map generation methods
Tang’s Falcioni’s Nance’s Wu’s Proposed
5 1135 22 746 232 129
10 44045 150 22300 3042 1010
50 5048174 5024785 5045948 5036558 503-001
100 1004.8473 1002.5528 1004.6532 1003.7033 1003.000
n O(n®) O(n3) O(nd) O(n*) O(n3)

B. Time Complexity

The previous methods of generating n-D Cat maps require
complicate operations and the costed time complexity is very
high. This becomes a bottleneck when Cat maps are used in
real applications, especially in real-time scenarios. In Tang’s,
Falcioni’s, Nance’s, Wu’s methods and the proposed method,
there are four kinds of involved operations: matrix entity addi-
tion, matrix entity multiplication, matrix multiplication, and
matrix determinant. The computation complexity of matrix
multiplication for two k x k matrices is of order O(k>373) [46]
and that of matrix determinant of size k x k is of order
0(k2'376) [47]. We consider them as 0(k3) for simplicity.
In Tang’s, Falcioni’s, Nance’s, and Wu’s methods, the num-
bers of matrix entity additions are n(n — 1)/2, (n/2)%, 0,
and 2(n — 1), respectively. Their computation complexities
caused by matrix multiplication and matrix determinant are
(n(n — 1)/2 — HO®?), 0((n/2)*), Y }_3(k — DOK?) and
Y ke O(k3), respectively. Thus, the total time complexity of
the four generation methods are

Trngs = nn—1)/2+ (a1 = 1)/2 = 1)0(n’)
Talcion’s = (1/2)* + 0((n/2)3)
g = - _ 3
TNance ;(k l)O(k )
5= 2(n— 3
Twuws = 2(n 1)+§0(k>

respectively. As for the proposed method, the time complex-
ities of matrix entity addition, matrix entity multiplication,
and matrix multiplication are [n/2], |n/2], and O(n?), respec-
tively. So, its time complexity is

TProposed =2[n/2] + 0(1’13).

Table IV compares the time complexity of different meth-
ods. As can be seen, the proposed method has the time
complexity of order O(rn®), which has the same order of mag-
nitude as Falcioni’s method and is less than Wu’s method by
one order of magnitude, and is less than Tang’s and Nance’s
methods by two orders of magnitude.
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TABLE V
MAXIMUM INFORMATION ENTROPY VALUES OF 3-D CAT MAPS GENERATED BY DIFFERENT METHODS WITH VARIOUS NUMBER OF FINITE STATES
The number of finite states N
3 4 5 6 7 8 9 10 11 12 13 14 15
Lian’s 3.6972 3.8069 4.9540 6.5072 5.8328 4.8073 52854 7.7615  7.0553 7.5078 7.5157 8.6402 8.6546
Chen’s 3.6972  3.8069 4.9540 6.5072 5.8328 4.8073 52854 7.7615  7.0553 7.5078 7.5157 8.6402 8.6546
Liu’s 3.5819 3.5846 49067 5.1699 5.8073 4.5850 5.1699 59069  7.0444 6.1699 7.5078 7.3923 7.4919
Pan’s 3.6972 3.5846 4.9540 6.2848 5.8328 4.5850 5.2854 7.5391 7.0553 7.2854 7.5157 7.8329 8.6546
Tang’s 3.6972 3.8069 49540 6.5072 5.8328 4.8073 5.2854 7.7615  7.0553 7.5078 7.5157 8.6402 8.6546
Falcioni’s | 3.5819 3.5846 4.9067 5.1699 5.8073 4.5850 5.1699 5.9069  7.0444 6.1699 7.5078 7.3923 7.4919
Nance’s 3.6972 3.5846 49540 5.7004 5.8328 4.5850 5.2854 6.9542  7.0553 7.2854 7.5157 7.8329 8.6546
Wu’s 3.6972 57704 6.7604 7.6051 82817 8.8732 9.3931 9.8513 10.3036 10.6556 11.0092 11.3338 11.6377
Proposed | 4.6267 5.8621 6.8455 7.6563 8.3295 89173 9.4358 9.8978 103147 10.6978 11.0477 11.3722 11.6738
Hmax 47549  6.0000 6.9658 7.7549 8.4221 9.0000 9.5098 9.9658 10.3783 10.7549 11.1013 11.4221 11.7207
C. Information Entropy . e A
. o = = 1 ,
Information entropy is a widely used measure to test §1° BT
randomness of a sequence of data, which is defined as 2 g 0 ’ /
= =
L 2 g -
g £
H = =" Pr(i) log, Pr(i) Z g /
where L is the number of possible values and Pr(i) is the :? z 2‘
probability of the ith possible value. For the n-D Cat map 5 s % : R
defined in (1)’ its observation state X(l+ 1) — {xl (l+ 1)’ X7 (l+ The number of finite states N Cat map dimension n
D,...,x,(t + D}T has n dimensions and N finite states. (a) (b)
Therefore, each dimension has N channels and the number
Fig. 3. Average information entropy values of n-D Cat maps generated

of possible values is L = N". A larger value of information
entropy indicates better randomness. The theoretical maxi-
mum information entropy Hmax = log,(N") = nlog, N when
Pr(i) = 1/N" for Vi € [1, N"].

We designed two groups of experiments to test the ran-
domness of outputs of n-D Cat maps. The first group fixes
the dimension n = 3 and investigates the information entropy
value against the number of finite states in interval [3, 15].
For each generation method of HCM, we randomly gener-
ate SN n-D Cat maps with M = N (MECs are restricted
to {1,2,...,N}), and then calculate their information entropy
values with the initial value x(0) = 134 and iteration number
N*. Fig. 3(a) shows the average information entropy values
of 3-D Cat maps generated by different methods with dif-
ferent values of N. It displays that the proposed method can
generate 3-D Cat maps with much larger average information
entropy values than other eight existing methods. Table V lists
the maximum information entropy values of these 3-D Cat
maps generated by different methods. For different numbers
of finite states N, the 3-D Cat maps generated by the proposed
method can achieve the maximum values larger than that of
other methods, which means that they have better randomness.

The second group of experiments investigates the informa-
tion entropy values against different dimensions n by fixing
M = N = 3 (all MECs are restricted to {1, 2, 3}). For each
n-D Cat map generation method with n € {3,4, ..., 10}, we
randomly generate 5n° n-D Cat maps, and then calculate their
information entropy values with the initial value x(0) = 1,,«1
and iteration number 3"*!. Fig. 3(b) shows the average infor-
mation entropy values of n-D Cat maps generated by those

by different methods. (a) Dimension n = 3 and the number of finite states
N € {3,4,...,15}. (b) Number of finite states N = 3 and dimension
nef{3,4,...,10}.

methods with different dimensions n. As can be seen from the
figure, when dimension n < 6, the proposed method can gen-
erate n-D Cat maps with bigger average information entropy
values; when dimension n > 7, both Wu’s method and the pro-
posed method can achieve bigger average information entropy
values than other methods. Table VI lists the maximum infor-
mation entropy values of n-D Cat maps achieved by different
methods and that can be obtained theoretically. The Wu’s
method and the proposed method can both approach theoret-
ical optimal performance very much and demonstrate much
better than other methods in the aspect. These further verify
that the proposed method can generate n-D Cat maps with
extremely good randomness.

D. Correlation Dimension

Correlation dimension describes the space dimensionality
of a set of points as a type of fractal dimension [48]. For a
dynamic system, its attractor strangeness or degrees of free-
dom can be measured by correlation dimension. For a set of
points S = {s; | i = 1,2,..., M} with a given embedding
dimension e, a new point set S = {5; | + = 1,2,...} can
be obtained, where 5; = (s, Sy, Sr426, - -+, St4(e—1)¢) and
te{l,2,...,M—(e—1)&}, £ is the time delay (It is usually
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TABLE VI
MAXIMUM INFORMATION ENTROPY VALUES OF n-D CAT MAPS
GENERATED BY DIFFERENT METHODS WITH THE NUMBER OF

FINITE STATES N = 3 AND DIMENSION n € {3,4, ..., 10}
Dimension n-D Cat map generation methods
n Tang’s Falcioni’s Nance’s Wu’s  Proposed | Hmax
3 3.6972 3.5819  3.6972 3.6972 4.5619 | 4.7549
4 5.3206  4.1689  5.2822 6.0505 6.0394 | 6.3399
5 69184 51696  4.1698 7.5783  7.6088 | 7.9248
6 8.5076  5.1699  3.4926 9.2116  9.1259 | 9.5098
7 10.0940  6.4918 - 10.7792  10.6707 | 11.0947
8 11.6795 6.4918 - 12.2388 12.2239 | 12.6797
9 13.2646  7.9773 - 13.7932  13.9718 | 14.2647
10 14.8496  7.9773 - 15.5143  15.5521 | 15.8496

set as 1). The correlation dimension d can be calculated as
log C,(r)
logr

d=lim lim

r—>0M—o0
where log C,(r) is called the correlation integral defined by
. 1
lim
M—oo [M — (e — DEIM — (e — 1)¢ — 1]
M—(e—1)¢ M—(e—1)¢

x> Y e(r=li—5)

Ce(r) =

i= j=itl
where 6(w) is a step function
0, ifw<0
b =1" 1 “=
1, ifw>0.

If it exists, the correlation dimension d can be regarded as the
slope of log C,.(r) with respect to log r, defined by

.. d(og Ce(r))/dr
d=lim lim —————
r—0M—oo d(logr)/dr
With a bigger correlation dimension value, the trajectory of a
dynamic system can occupy space of a larger dimensionality
and its attractors can achieve more complex strangeness.

In the experiment, we set the embedding dimension e = 2
and designed two groups of experiments. The first group
fixes n = 3 and investigates the correlation dimension val-
ues of n-D Cat maps against the number of finite states N
in (1). For each generation method with N € {3,4,..., 15},
5N? n-D Cat maps are randomly generated with M
N (all MECs are restricted to {1,2,...,N}). The initial
value is set as x(0) 13«1 and the observation state
x(t+ 1) ={x(t+ 1), x0t+1),...,x,( + 1)}T in every iter-
ation is scaled

n
X =Y _xi(t+ DN /N
i=1
Fig. 4(a) shows the average correlation dimension values of
3-D Cat maps generated by different methods. As can be seen
from the figure, the 3-D Cat maps generated by the proposed
method have trajectories with higher correlation dimension
values than the other eight methods.
The second group of experiments is to investigate the corre-
lation dimension values of n-D Cat maps against the dimension
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Fig. 4. Average correlation dimension values of n-D Cat maps gener-
ated by different methods. (a) Dimension n = 3 and the number of finite
states N € {3,4,...,15}. (b) Number of finite states N = 3 and dimension
ne{3,4,...,10}

()

n € {3,4,...,10}. For each generation method, 5n% n-D Cat
maps are randomly generated by fixing N = 3 and M = 3
(all MECs are restricted to {1, 2, 3}). The correlation dimen-
sion values of these Cat maps are then calculated with initial
value x(0) = 1,,«1. Fig. 4(b) depicts their average values. The
results further prove that the proposed method can generate
n-D Cat maps with bigger correlation dimensions and better
ergodicity.

VI. CONCLUSION

This paper has studied the inherent relation between the LEs
of the Cat map and its associated Cat matrix, and proposed
a simple but efficient model of constructing n-D HCMs with
[n/2] positive LEs. For an arbitrarily desired number of posi-
tive LEs, the proposed method allows users to produce a new
n-D HCM with expected complexity. To verify the effective-
ness of the proposed method and the inherent relation, two
numerical examples of HCMs, a 5-D HCM with two positive
LEs and a 10-D HCM with five positive LEs, were constructed.
Performance evaluations were performed in terms of LE, time
complexity, information entropy and correlation dimension.
Compared with existing HD Cat map generation methods, the
proposed method can generate n-D HCMs with a desired num-
ber of positive LEs and lower computation time complexity,
and the corresponding n-D Cat maps have better randomness
and ergodicity. This research will promote practical application
of digital Cat maps.
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