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Abstract. When a deep learning-based model is attacked by backdoor
attacks, it behaves normally for clean inputs, whereas outputs unex-
pected results for inputs with specific triggers. This causes serious threats
to deep learning-based applications. Many backdoor detection methods
have been proposed to address these threats. However, these defenses
can only work on the backdoored models attacked by static trigger(s).
Recently, some backdoor attacks with dynamic and invisible triggers have
been developed, and existing detection methods cannot defend against
these attacks. To address this new threat, in this paper, we propose a
new defense mechanism that can detect and mitigate backdoor attacks
with dynamic and invisible triggers. We reverse engineer generators that
transform clean images into backdoor images for each label. The gener-
ated images by the generator can help to detect the existence of a back-
door and further remove it. To the best of our knowledge, our work is the
first work to defend against backdoor attacks with dynamic and invisi-
ble triggers. Experiments on multiple datasets show that the proposed
method can effectively detect and mitigate the backdoor with dynamic
and invisible triggers in deep learning-based models.
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1 Introduction

Deep neural networks (DNNs) have been widely used in many applications such
as image classification [7], object detection [15], and language processing [1]. The
performance of a DNN model relies on the high complexity of the model and
the large amount of training data. It is thus acknowledged that common DNN
end-users do not possess the capability to train a well-performed model by them-
selves. Therefore, users often outsource the training process of DNNs to a third
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party or directly use a well-trained model from a model-sharing platform [6].
Either option introduces the attack surface of DNN backdoor.

Backdoor attacks aim to embed a backdoor into a DNN model [6]. The back-
door does not degrade the model’s performance on clean inputs, but outputs the
wrong results expected by the attackers when a specific trigger appears in the
inputs [6]. Backdoor attacks are stealthy because the backdoor triggers are kept
secret by the attacker, and model users with only clean inputs cannot activate
the backdoor. In this regard, it is hard for model users to realize the existence
of the backdoor [14]. Therefore, backdoor attacks cause a serious threat to the
application of deep learning.

Various backdoor defense methods have been proposed to defend against
backdoor attacks [2,4,20]. Most of these methods are empirical methods that are
developed based on the characteristics of existing attack methods. For example,
the trigger-synthesis-based defense methods [3,20,23] first reverse engineer a
trigger for each label of the models and then run anomaly detection to determine
the attacked target label. The saliency-map-based defense method [2] utilizes
model visualization techniques to locate the potential trigger regions by finding
common saliency regions in different input images. Besides, the input-filtering-
based defense method [4] first adds different perturbations to the input image,
and then calculates the randomness of the model’s prediction to detect backdoor.
However, all these defense methods are based on the assumption that a static
trigger is involved in different images to launch an attack. They are ineffective
against the newly proposed backdoor attacks [13,14] with dynamic and invisible
triggers, since these attacks add different triggers for different clean images.

In this paper, we propose a backdoor defense method to detect and mit-
igate backdoor attacks with dynamic and invisible triggers. We reverse engi-
neer the trigger pattern from the backdoored model. Different from existing
trigger-synthesis-based methods that can reverse engineer only a static trigger,
we reverse engineer a generator to transform clean images into backdoor images,
which allows us to add different triggers for different images and capture more
complex trigger patterns. The contributions of this paper are summarized as
follows:

1. We design a new backdoor defense method that can defend against the back-
door attacks with dynamic and invisible triggers. We design a reverse engi-
neering process of backdoor image generators using the characteristics of
backdoor attacks.

2. The reversed generators are used for anomaly detection to detect the backdoor
target. When a backdoor target is found, we use the generated backdoor
images and a small subset of clean data to unlearn the backdoor.

3. We evaluate our proposed method on MNIST, CIFAR10, and GTSRB
datasets with the most recent backdoor attack WaNet [14]. Experimental
results show that the proposed method can effectively detect the backdoor
and greatly reduce the attack success rate with only a small drop in clean
accuracy.
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2 Related Works

2.1 Backdoor Attacks

Backdoor attacks are aimed at embedding a backdoor associated with a trigger
pattern into a DNN model. The model with a backdoor should preserve perfor-
mance on clean inputs. However, when the inputs are patched with the trigger
pattern, the model will output the results expected by the attackers.

Trigger pattern design is the core of backdoor attacks, where better trigger
patterns can make backdoor attacks stealthy and effective. According to whether
different triggers are applied to different images, backdoor attacks can be divided
into static and dynamic backdoor attacks. For the case of static attacks, the
injection of a static trigger into a clean image x can be formulated as

x′ = (1 − m) · x + m · Δ, (1)

where Δ is the trigger pattern specified by the attacker, m is the mask to decide
the location for the trigger to stamp on clean images. Gu et al. [6] proposed the
first backdoor attack that use a small patch as the trigger pattern. Later works
use optimized triggers [10], smooth triggers [21] for better stealthy.

For the case of dynamic backdoor attacks, Nguyen et al. [13] firstly suggested
input-aware triggers. They optimize a generator to generate different triggers for
different images with a diversity loss. When a trigger generated for one image
is added to another image, the resulting image cannot activate the backdoor.
WaNet [14] is another dynamic backdoor attack, which creates backdoor images
using a small and smooth warping field. And the backdoor images contain trig-
gers that vary from image to image. As the distortion caused by warping is slight,
it is difficult to distinguish the backdoor images from the original images. Thus,
the triggers in the WaNet attack are dynamic and invisible. Backdoor attacks
with such triggers are more powerful than previous attacks as they not only break
assumptions of various defense methods but also evade manual inspection.

2.2 Backdoor Defense Methods

Existing backdoor defense methods can be classified as directly reducing back-
door attack success rates (i.e., mitigation) or detecting the backdoor for a victim
model (i.e., detection). For the case of mitigation, Liu et al. [12] proposed to
prune neurons not useful for clean images and fine-tune the pruned model on
clean images. Li et al. [11] used attention distillation to guide the fine-tuning
process and showed a better result compared to pruning and fine-pruning. The
major limitation of these methods is that they are blind to the existence of back-
door: if they are used for clean models, they also cause a decrease in model’s
accuracy.

For detection, trigger synthesis is the most popular method for its capability
to not only detect the existence of the backdoor but also remove/unlearn the
backdoor. Wang et al. [20] proposed the first trigger synthesis based defense
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method Neural Cleanse (NC), which reverses triggers for each label and uses the
L1 norm of trigger masks to detect backdoor target labels. Once a backdoor is
detected, they mitigate the backdoor by filtering inputs or patching the back-
doored model. Zhu et al. [23] proposed GangSweep which uses GAN [5] to better
reconstruct triggers. Dong et al. [3] extended it to the black-box setting where
the weights of the model is not accessible.

Our work also falls into the same category of backdoor detection and mitiga-
tion. But existing methods are based on the same assumption that a universal
trigger is used, so they are not able to defend against attacks with dynamic
triggers.

3 Proposed Method

3.1 Threat Model and Defense Goal

We consider that a user obtains a pre-trained model from an untrusted third
party. The model could be backdoored. In particular, a stronger backdoor attack
with dynamic and invisible triggers [14] instead of a static trigger [6,10,21] is
possible.

Following the literature studies [11,20], the defender has full access to the
model and has a subset of clean data. The set of clean data can be the well-
labeled data used to test the performance of the model. The defender aims to
detect whether the model is backdoored and find out what the attacker’s target
label is. Upon detection, the defender will also try to mitigate the backdoor.

3.2 Intuition and Overview

Backdoor attacks with dynamic and invisible triggers use different triggers for
clean images. The backdoored model has learned to classify images with such
triggers toward the attacker specified target label. We model the process of
transforming clean images into backdoor images as a generator, taking clean
images as input and outputting backdoor images, and try to reverse engineer
such a generator from the backdoored model. The proposed method consists of
three steps:

1. Reverse engineering backdoor image generator. Given a classifier model, we
reverse engineer a backdoor image generator for every label by optimizing the
generator to output images that not only close to the input images but also
change the prediction of the model to a specific label regardless of the input
images’ ground truth labels.

2. Backdoor detection. We use an outlier detection algorithm to judge if there
is a generator that can generate backdoor images with small modifications
and achieve a high probability of misleading the model to predict them into
a specific label.

3. Backdoor mitigation. We leverage the reversed generator to generate back-
door images and combine them with a set of clean images to fine-tune the
backdoored model.
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3.3 Reverse Engineering Backdoor Image Generator

We define the transformation of a clean image x to a backdoor image x′ via
a generator model G as x′ = G(x). The generator G is required to perform
an image-to-image transformation, thus we choose U-Net [16] as the generator
model. Compared with the basic encoder-decoder model, U-Net concatenates
high-level features and low-level features to propagate context information and
is easier to train on a small dataset, which is suitable for our task as we assume
the defender only has a small set of clean data.

Fig. 1. The framework to reverse engineer the backdoor image generator.

As shown in Fig. 1, the reverse engineering of G from a classifier model f is
the optimization for two objectives: effectiveness and stealthiness. The effective-
ness goal requires the reversed generator to transform images from other classes
into images that will be classified as a given class yt with a high probability.
The stealthiness goal requires that the transformed images be as similar to the
original images as possible.

For the effectiveness of G to mimic trigger pattern, we use the cross-entropy
loss Latk to encourage the generated images to be classified as the target label
yt by model f , i.e.,

Latk = λ1 · CrossEntropy(yt, f(G(x)). (2)

For the stealthiness of the G’s output, we use Lrec to encourage G to reconstruct
images from inputs. It is a combination of mean square error (MSE) and learned
perceptual image patch similarity (LPIPS) [22] to measure reconstruction loss,
which can be formulated as

Lrec = λ2 · MSE(x,G(x)) + λ3 · LPIPS(x,G(x)). (3)

Here, the MSE loss measures the pixel value difference between the generated
image and the input image, and the LPIPS loss measures the feature difference
between the generated image and the input image.

The final loss function to train G is the combination of Latk and Lrec:

L = Latk + Lrec. (4)

For each label of model f , we optimize the parameters of a generator using the
above loss functions. We use a binary search to find the hyper-parameters λ1,
λ2, λ3 to achieve a high attack success rate.
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Fig. 2. Norm value distribution of clean and target labels on three datasets.

3.4 Backdoor Detection

With all the reversed generators associated with each label available, we then
use them to detect the backdoor. Intuitively, for the attacker’s target label,
if the generator can capture the trigger pattern, it would be able to generate
backdoor images with fewer modifications. To achieve a high attack success rate
on clean labels, the generator needs to generate backdoor images with larger
modifications. As there is not a universal trigger, the modification for label yt
is defined as the mean L1 norm of the residuals between the generated images
and the clean input images:

myt
=

1
n

n∑

i=1

|Gyt
(xi) − xi|, for xi ∈ X/yt

, (5)

where Gyt
is the generator reversed for label yt, X is the set of clean images the

defender has access to, X/yt
is the set of clean images that are not belonging to

label yt.
To validate our intuition, we calculate the average L1 norm value on test

dataset. Figure 2 shows the distributions of residuals norm of different labels on
3 datasets. For each dataset, the box-plot shows the norm value distribution of
clean labels, while the dot under the box-plot is the norm value of the target
label, which is much smaller than that of clean labels. Therefore, we can leverage
this characteristic to detect the target label. By taking MNIST as an example,
Fig. 3 visualizes this observation. The bright and dark spots on the residual
images are indications of large image modifications. The residual image for the
target label 0 is grayer and more smooth than those of other labels, which means
that there are fewer modifications.

We use the Median Absolute Deviation (MAD)-based outlier detection
method adopted in NC [20] over each label yt with its residual myt

obtained
from Eq. (5). The anomaly index of yt is calculated as follows:

AIyt
=

|myt
− m̃|

c · mediani∈{1,··· ,K}(|myi
− m̃|) , (6)

where m̃ is the median of all residuals, K is the number of classes of the dataset,
and c is a constant to normalize the anomaly index. For the purpose of detecting
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backdoor, we only need to focus on small residuals, so only labels with a residual
smaller than the median residual value are considered. Similar to NC, we assume
that the data satisfy normal distribution, c is thus set to 1.4826 and any label
with an anomaly index larger than 2 will be considered as an attack target label
with a 95% confidence level. Moreover, maxt∈{1,··· ,K}(AIyt

) is called the model
anomaly index.

Fig. 3. Comparison of images generated by generators reversed for different labels.
The first row is the generated images and the second row is the residuals between the
generated image with the original images. The residuals are normalized from [−1, 1] to
[0, 1]. The label ‘0’ is the target label.

3.5 Backdoor Mitigation

Once a backdoor is detected, we use the generator reversed for the detected target
label to remove the backdoor. We use a subset of clean data and transform these
clean images into backdoor images, label them with their original labels, and
combine them with the subset of clean data to form a new dataset. We use the
new dataset to fine-tune the backdoored model for a few epochs (empirically, 10
is enough).

4 Experiments

In this section, we describe our experiments on multiple classification tasks
attacked by state-of-the-art backdoor attack method WaNet [14].

4.1 Experiment Setup

To evaluate the effectiveness of our defense method, we use three classification
tasks: MNIST [9], CIFAR10 [8], GTSRB [19]. We use the default DNN models
used in WaNet, namely, a simple classifier consisting of 3 ConvBlocks + 3 fcs
for MNIST, and pre-activation Resnet-18 [7] for CIFAR10 and GTSRB. We
also use VGG16 [18] and MobileNetV2 [17] for CIFAR10 and GTSRB. For each
dataset and model architecture, we also train a clean model using the entire
clean training dataset.

The hyper-parameters λ1, λ2, λ3 are set to 0.1, 1, 0.1 respectively. We use
an Adam optimizer with a learning rate of 0.001 to train the generator for each
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label. Instead of training the generators with random initial weights, we first
optimize the generator using Lrec for 20 epochs to get a pretrained generator.
The pretained weights are then loaded as initial weights to optimize generators
for each label using the final loss L. For backdoor detection, we use 1% of the
clean training data for each dataset. For backdoor mitigation, we use 5% of the
training data.

4.2 Detection Performance

For each clean and backdoored model, we repeat the experiments 10 times with
different random seeds, and the averaged model anomaly index is reported.
Table 1 shows the tested anomaly indices. For backdoored MobileNetV2 mod-
els, their model anomaly indices are around 3. For other backdoored models,
the model anomaly indices are larger than 4. For clean models, the anomaly
indices are smaller than 2. This shows that our method can accurately detect
the backdoored models.

Table 1. The backdoor detection results.

Dataset Model Method Anomaly Index Detailed Detection Results

Clean Backdoor Case 1 Case 2 Case 3 Case 4

MNIST 3ConvBlocks+3fcs NC 1.10 0.75 0/10 0/10 0/10 10/10

Ours 1.07 5.41 9/10 1/10 0/10 0/10

CIFAR10 PreActRes18 NC 2.52 2.32 0/10 0/10 6/10 4/10

Ours 1.66 5.06 9/10 1/10 0/10 0/10

VGG16 NC 1.91 4.00 0/10 4/10 3/10 3/10

Ours 1.94 4.01 8/10 1/10 0/10 1/10

MobileNetV2 NC 1.30 1.59 0/10 0/10 1/10 9/10

Ours 1.30 2.98 9/10 1/10 0/10 0/10

GTSRB PreActRes18 NC 2.65 1.52 0/10 3/10 1/10 6/10

Ours 1.99 4.92 9/10 1/10 0/10 0/10

VGG16 NC 1.94 1.94 0/10 0/10 3/10 7/10

Ours 1.89 6.36 6/10 4/10 0/10 0/10

MobileNetV2 NC 2.42 3.98 2/10 8/10 0/10 0/10

Ours 1.95 3.24 5/10 4/10 0/10 1/10

To further assess the proposed algorithm’s capability in detecting the target
labels, we compare it with NC [20] by considering the following four cases:

– Case 1: The backdoor is detected and only the target label is detected.
– Case 2: The backdoor is detected and the target label is detected, but at least

one clean label is identified as target label.
– Case 3: The backdoor is detected but the target label is not detected.
– Case 4: The backdoor is not detected.

The results are listed in Table 1. From this table, for the backdoored model on
MNIST dataset, the target label is detected accurately 9 times with one excep-
tion: a clean label is mistakenly identified as the target label. There are similar
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results for all backdoored models on CIFAR10 dataset. For GTSRB dataset,
the detection algorithm can detect the backdoor but has more false positive
alarms for target labels on VGG16 and MobileNetV2 models than other mod-
els. This may be because there are more classes on GTSRB and the attack has
side effects on other classes. While NC fails to detect the target label except for
VGG16 model on CIFAR10 and MobileNetV2 model on GTSRB. The detection
accuracy on these two models is still much lower than our method.

Visual Similarity. Figure 4 compares the original backdoor images and back-
door images generated by reversed generators. The generated backdoor images
are close to the original backdoor images. The residuals with the clean image of
the original backdoor image and the generated backdoor image both show the
texture of the original images. It indicates that the optimization of the generator
is capable of getting close to the trigger pattern.

Fig. 4. Comparison of backdoor images, generated backdoor images, and their residuals
with the clean images of three datasets.

4.3 Backdoor Mitigation Performance

We use a Stochastic Gradient Descent (SGD) optimizer with a learning rate of
0.001 and a momentum of 0.9 to fine-tune the backdoored model for 10 epochs.
We compare the mitigation results with basic fine-tuning and NAD [11].

The results of backdoor mitigation with different amount of clean data are
shown in Table 2, where ACC stands for accuracy on clean inputs and ASR
stands for attack success rate. The results show that on the MNIST and GTSRB
datasets, even with only 1% clean training data, our method reduces the attack
success rate to less than 1%, while the drop of the accuracy on clean data is less
than 1%. On the CIFAR10 dataset, our method reduces the attack success rate
to 2.58% using 5% clean data, while the accuracy on clean data drops by 1.18%.
Without generated backdoor images of the reversed generator, fine-tuning has
little effect on backdoor mitigation.

Figure 5 compares the mitigation performance of different methods with dif-
ferent learning rates when 5% of the clean training data is available. It shows
that fine-tuning can be more effective when the learning rate is increased. How-
ever, fine-tuning the model with a larger learning rate has a risk of decreasing its
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accuracy on clean data. Similar to fine-tuning, NAD is sensitive to learning rate
settings. The accuracy on clean data would drop severely when the learning rate
is larger than a certain value, which is unstable. Compared to fine-tuning and
NAD, our method shows a more stable mitigation effect with a small learning
rate. It may be because tuning model with only clean data mitigates the back-
door through forgetting the trigger pattern, while we explicitly force the model
to unlearn the trigger pattern.

Table 2. Mitigation performance with different percentages of clean training data.

Dataset # of data w/o reversed w/ reversed

ACC ASR ACC ASR

MNIST 1% 99.37 99.77 99.09 0.07

3% 99.34 99.55 99.16 0.08

5% 99.38 98.49 99.26 0.09

CIFAR10 1% 93.74 97.66 93.88 19.20

3% 94.08 83.28 93.93 9.45

5% 92.50 82.04 92.96 2.58

GTSRB 1% 98.76 93.60 98.89 0.79

3% 99.03 94.63 99.00 0.43

5% 99.03 94.65 99.03 0.19

Fig. 5. Mitigation performance with different learning rates when 5% of clean training
data is available.
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4.4 Ablation Study

In Eq. (3), we use a combination of MSE and LPIPS. LPIPS uses a trained deep
neural network to extract features to calculate features’ difference and pays more
attention to the image’s overall changes. We conduct an ablation study without
using the LPIPS loss. As shown in Fig. 6, when only the MSE loss is used, there
are chances that the training falls into a local optimum. Although the generated
image is basically the same as the original image in texture, there is a large
change in color. This is because in an image with three channels, scattering
the modifications to images across three channels may have equal MSE loss as
centralizing the modifications to one channel. The LPIPS loss can help avoid
this issue and better reconstruct the original image.

Fig. 6. Comparison results with and without LPIPS loss. Images from left to right
are clean image, backdoor image, generated backdoor image with LPIPS loss, and
generated backdoor image without LPIPS loss.

5 Conclusion

In this paper, we propose to defend against backdoor attacks with dynamic and
invisible triggers by reverse-engineering the backdoor image generator. By care-
fully designing the optimization objectives, we can effectively reverse engineer a
generator that can capture the embedded trigger pattern. The target label can be
thus detected and the reversed generators can help eliminate the backdoor. We
conduct experiments on multiple datasets under the WaNet attack. The experi-
mental results show that our method can detect backdoors more effectively than
the existing trigger-synthesis-based methods. Compared to fine-tuning using only
clean data, fine-tuning aided by the reversed generator has a more stable back-
door mitigation performance, thus avoiding the trade-off between preserving
accuracy on clean data and reducing attack success rate.
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