
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023 1003

Enabling Large-Capacity Reversible Data Hiding
Over Encrypted JPEG Bitstreams

Zhongyun Hua , Member, IEEE, Ziyi Wang, Yifeng Zheng , Yongyong Chen , Member, IEEE,

and Yuanman Li , Member, IEEE

Abstract— Cloud computing offers advantages in handling the
exponential growth of images but also entails privacy concerns
on outsourced private images. Reversible data hiding (RDH)
over encrypted images has emerged as an effective technique
for securely storing and managing confidential images in the
cloud. Most existing schemes only work on uncompressed images.
However, almost all images are transmitted and stored in com-
pressed formats such as JPEG. Recently, some RDH schemes
over encrypted JPEG bitstreams have been developed, but these
works have some disadvantages such as a small embedding
capacity (particularly for low quality factors), damage to the
JPEG format, and file size expansion. In this study, we propose a
permutation-based embedding technique that allows the embed-
ding of significantly more data than existing techniques. Using
the proposed embedding technique, we further design a large-
capacity RDH scheme over encrypted JPEG bitstreams, in which
a grouping method is designed to boost the number of embed-
dable blocks. The designed RDH scheme allows a content owner
to encrypt a JPEG bitstream before uploading it to a cloud server.
The cloud server can embed additional data (e.g., copyright and
identification information) into the encrypted JPEG bitstream for
storage, management, or other processing purpose. A receiver can
losslessly recover the original JPEG bitstream using a decryption
key. Comprehensive evaluation results demonstrate that our
proposed design can achieve approximately twice the average
embedding capacity compared to the best prior scheme while
preserving the file format without file size expansion.

Manuscript received 4 March 2022; revised 24 June 2022 and 11 August
2022; accepted 4 September 2022. Date of publication 20 September
2022; date of current version 7 March 2023. This work was sup-
ported in part by the National Natural Science Foundation of China
under Grant 62071142 and Grant 62106063; in part by the Guang-
dong Basic and Applied Basic Research Foundation under Grant
2021A1515011406, Grant 2022A1515010645, Grant 2021A1515110027,
and Grant 2022A1515010819; in part by the Shenzhen College Stability
Support Plan under Grant GXWD20201230155427003-20200824210638001
and Grant GXWD20201230155427003-20200824113231001; in part by the
Foundation for Science and Technology Innovation of Shenzhen under
Grant RCBS20210609103708014; and in part by the Guangdong Provincial
Key Laboratory of Novel Security Intelligence Technologies under Grant
2022B1212010005. This article was recommended by Associate Editor
D. Gragnaniello. (Corresponding author: Yuanman Li.)

Zhongyun Hua and Yongyong Chen are with the Guangdong Provin-
cial Key Laboratory of Novel Security Intelligence Technologies, the
School of Computer Science and Technology, Harbin Institute of Tech-
nology, Shenzhen, Shenzhen 518055, China (e-mail: huazyum@gmail.com;
huazhongyun@hit.edu.cn; yongyongchen.cn@gmail.com).

Ziyi Wang and Yifeng Zheng are with the School of Computer Science
and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen 518055,
China (e-mail: yiwangdow@gmail.com; yifeng.zheng@hit.edu.cn).

Yuanman Li is with the Guangdong Key Laboratory of Intelli-
gent Information Processing, the College of Electronics and Informa-
tion Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
yuanmanli@szu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2022.3208030.

Digital Object Identifier 10.1109/TCSVT.2022.3208030

Index Terms— Reversible data hiding, JPEG image, encrypted
image, format compatibility, file size preservation.

I. INTRODUCTION

MASSIVE images are exponentially produced everyday
from different types of imaging devices, such as smart-

phones and cameras, and the growth is greatly expedited
with the rapid development of various Internet of Things
applications. Cloud computing is a natural and convenient
method for handling exponentially produced images. However,
outsourcing image services to the cloud raises critical privacy
concerns regarding information-rich images. Reversible data
hiding over encrypted images (RDH-EI) is an effective tech-
nique for securely storing and managing confidential images
in the cloud [1]. This allows an image owner to encrypt an
image to protect confidentiality before uploading it to the
cloud server. The cloud server can embed additional data into
the encrypted image for management, identification, or other
processing purposes without accessing the image contents.
An authorized receiver can completely decrypt the encrypted
image using a decryption key.

According to embedding room vacation strategies, existing
RDH-EI schemes can be divided into two classes: reserving
room before encryption (RRBE) [2], [3], [4] and vacat-
ing room after encryption (VRAE) [5], [6], [7]. RRBE-
based schemes require image owners to reserve embedding
room in plain images. As these schemes can fully use the
pixel redundancy of plain images, they can obtain a large
embedding room [3]. However, this strategy requires image
owners to reserve the embedding room, which may cause
a heavy computational burden because performance-limited
terminal devices are typically used in many applications [8].
In contrast, VRAE-based schemes require the cloud server
in the encrypted domain to vacate the embedding room [9].
To maintain data redundancy in the encrypted domain for
data embedding, most VRAE-based schemes encrypt images
using lightweight encryption techniques [10], [11], [12],
which exhibit limited strengths in protecting image conte-
nts [13], [14]. To achieve a higher security level, some public
key encryption schemes are used to encrypt images [15],
[16], [17], and data are embedded using the homomorphic
properties. However, these public encryption schemes have
high computational costs and large data expansions [18].

When images are stored or transmitted over networks, they
are first compressed to reduce the storage or communica-
tion costs. The JPEG format is a widely used compressed

1051-8215 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3529-0541
https://orcid.org/0000-0001-7852-6051
https://orcid.org/0000-0003-1970-1993
https://orcid.org/0000-0003-4526-3018

1004 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

image format because it can achieve a large compression
ratio while retaining good visual quality [19]. However, most
existing RDH-EI schemes [20], [21], [22] are designed for
uncompressed images and cannot be applied to JPEG bit-
streams [23]. This is because these RDH-EI schemes embed
data using image pixel redundancy, which is eliminated in
the JPEG bitstreams. In addition, a JPEG bitstream must
maintain a fixed data structure, and data embedding operations
in these schemes may destroy the data structure and render the
bitstream unreadable by JPEG decoders. This further increases
the difficulty of data hiding in JPEG bitstreams [24], [25].
In [26], Qian and Zhang proposed the first RDH method that
can embed data into a JPEG bitstream. Subsequently, more
studies were devoted to RDH over JPEG bitstreams [27],
[28]. However, these methods can not be used directly in
encrypted JPEG images. Without considering image distor-
tion, the embedding method of an encrypted JPEG image
is different from that of an unencrypted JPEG image. Thus,
developing schemes is desirable for RDH over encrypted JPEG
bitstreams.

Recently, some RDH schemes over encrypted JPEG bit-
streams have been developed [23], [24], [25], [29], [30], [31].
In 2014, Qian et al. first proposed an RDH scheme over
encrypted JPEG bitstreams [29], in which additional data were
encoded with error correction codes to achieve lossless data
extraction and image recovery. Later, a new RDH scheme over
encrypted JPEG bitstreams with a large embedding capacity
was developed [24]. However, this scheme cannot keep the
file size unchanged in the marked encrypted JPEG bitstreams.
Similar to the scheme in [24], Qian et al. developed a scheme
in [25] that can embed more data but incurs additional file size
expansion. In addition, Sheidani et al. [31] proposed an RDH
scheme over encrypted JPEG bitstreams using a public-key
encryption strategy to encrypt JPEG bitstreams. This scheme
can achieve a large embedding capacity without incurring
file size changes in the encrypted JPEG bitstreams. However,
the JPEG format is destroyed during the encryption and data
embedding processes, which may result in encrypted JPEG
bitstreams that are unreadable by JPEG decoders [32]. The
other schemes in [30] and [23] can achieve both file size
and JPEG format preservation during the encryption and data-
embedding processes. However, they cannot achieve a large
embedding capacity, which is a very important property of
cloud-based image services [25]. In summary, existing RDH
schemes over encrypted JPEG bitstreams have disadvantages
in terms of a small embedding capacity [23], [29], [30], file
size changes [24], [25] and JPEG format damage [31].

In this study, we propose a new large-capacity RDH scheme
over encrypted JPEG bitstreams, which is a new design
to embed data into encrypted domain using a scrambling-
embedding technique. Our design accommodates the following
workflow. An image owner encrypts a JPEG bitstream and
uploads to a cloud server. The cloud server can embed some
data, e.g., the copyright and identification information, into the
encrypted JPEG bitstream for storage, management, or other
processing purposes. A receiver can losslessly recover the
original JPEG bitstream using an encryption key. The main
contributions of this study are as follows.

• We propose a permutation-based embedding technique on
an ordered sequence, which achieves a larger embedding
capacity than existing techniques.

• We propose an RDH scheme over encrypted JPEG bit-
streams, in which a grouping method is developed to
greatly boost the number of embeddable blocks for JPEG
bitstreams.

• We conduct a comprehensive evaluation, which shows
that our scheme outperforms the best existing scheme
in average embedding capacity, while preserving the file
format without size expansion.

The remainder of this paper is organized as follows.
Section II introduces the JPEG format and previous RDH
schemes over JPEG bitstreams. Section III presents the
permutation-based embedding technique. Section IV describes
the proposed RDH scheme over encrypted JPEG bitstreams.
Section V presents the results for the proposed RDH scheme
and discusses its properties. Section VI evaluates the proposed
scheme and compares it with previous methods. Finally,
Section VII concludes the paper.

II. JPEG FORMAT AND RELATED WORKS

In this section, we introduce the JPEG format, present
existing RDH schemes over encrypted JPEG bitstreams, and
discuss their properties.

A. JPEG Format

The JPEG format is a widely used image-compression
format, and its coding process includes four steps.

1) Blocking: An uncompressed image is first divided into
8× 8 equally sized blocks. The color space is converted from
the RGB space to the YUV space for a color image, and only
the Y channel exists for a grayscale image. In addition, each
pixel is subtracted by 128 such that all pixel values can be
evenly distributed with a center of 0.

2) DCT: For each block, perform a discrete cosine trans-
form (DCT) to obtain an 8 × 8 coefficient matrix. The first
number in position (1, 1) of the coefficient matrix is called
the DC coefficient, and the remaining 63 numbers are called
AC coefficients.

3) Quantization: A quantization operation is performed on
each coefficient matrix, and a quality factor parameter is
used to determine an 8× 8 quantization matrix Q. Generally,
a lower quality factor indicates greater image data loss and a
smaller file size. The quantized coefficient matrix is obtained
as DCT �(x, y) = round(DCT (x, y)/Q(x, y)), where DCT is
the DCT coefficient matrix and the function round(·) is used
to obtain the nearest integer.

4) Entropy Coding: After quantization, the two-dimensional
quantized coefficient matrix is pulled into a one-dimensional
array using a zigzag transform. Then the 64 coefficients in
each block are encoded into several triples using run length
coding [19]. The j -th triple in the i -th block is represented by

p(j)
i = (R(j)

i , S(j)
i , V (j)

i), where R is the number of contin-
uous zero coefficients, S is the bitstream length of the non-zero
coefficient, and V is the bitstream of the non-zero coefficient.
Since the DC coefficient is the first number in each block, the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1005

Fig. 1. Numeral example of the entropy encoding result to a quantized
coefficient matrix.

R in the triple of the DC coefficient is a constant zero and
can be ignored. Then, the first triple of the i -th block can be
degenerated into a doublet p(0)

i = (S(0)
i , V (0)

i). Consequently,
the i -th block Bi of an image can be represented as Bi =
{p(0)

i , p(1)
i , · · · }.

Finally, the i -th block Bi is encoded as the i -th
multiple minimum coded unit MCUi = {DCCi , ACC(1)

i ,

ACC(2)
i , · · · , E O B}. The i -th block’s DC code DCCi

includes two parts DC Hi and DC Ai , where DC Hi is the
Huffman code of S(0)

i and DC Ai is V (0)
i . The i -th block’s

j -th AC code ACC(j)
i also includes two parts AC H (j)

i and
AC A(j)

i , where AC H (j)
i is the Huffman code of R(j)

i and S(j)
i ,

and AC H (j)
i is V (j)

i . The E O B indicates the end of block. The
remaining zeros after the last non-zero AC coefficients do not
need to be encoded, because a block has 63 AC coefficients.

To better show the process of entropy coding for a block,
we provide a numeral example in Fig. 1. The quantized DCT
coefficient matrix is first converted as a 1D array using the
zigzag transform. The first value of 26 is the DC coeffi-
cient, and the remaining 63 values are the AC coefficients.
Using run-length coding, the DC coefficient is encoded as
a doublet p(0) = (5, 110102) and the AC coefficients are
encoded as triples, for example, p(8) = (4, 1, 12). Then, DC H
and AC H (j) can be obtained by encoding S0 in p(0) and
(R(j), S(j)) in p(j) using the Huffman code. For example,
S0 = 5 is encoded as DC H = 0012 and (R(8), S(8)) = (4, 1)
is encoded as AC H = 1110112.

B. RDH-EI Schemes Over Encrypted JPEG Bitstreams

Recently, some RDH-EI schemes over encrypted JPEG
bitstreams have been developed with different properties.
Depending on whether the file size and format can be pre-
served, these schemes can be discussed as follows.

1) Without File Size Preservation: This type of schemes
can achieve a large embedding capacity; however, the size of
the marked encrypted JPEG bitstreams differs from that of
the original JPEG bitstreams. The authors of [24] proposed
such a scheme by dividing an original JPEG bitstream into
two parts by blocks. The first part includes randomly selected
DCT coefficients that are encrypted by a secret key with an
XOR operation. The other part of data is placed into the header
of the JPEG bitstream after rearranging and encrypting. The
embedding capacity is vacated by compressing the second part
of data. The embedded data were extracted using the high pixel
redundancy of adjacent blocks. In addition, image recovery

and data extraction are simultaneously performed. However,
some practical applications require image recovery and data
extraction to be separable. For example, in the cloud storage,
additional data are extracted by the cloud server for storage,
whereas the image is recovered by an authorized receiver.

Similar to the scheme of [24], the authors in [25] divided
a JPEG bitstream into two parts by blocks, in which one
part constructs a new JPEG bitstream, and the other part is
encrypted and hidden in the JPEG header. Additional data are
embedded into the new JPEG bitstream using variable-length
coding and histogram shifting. It can achieve a larger embed-
ding capacity than the scheme in [24], and its data extraction
and image recovery are separable. However, this scheme
causes an increase in the file size in the encrypted bitstreams.

2) Without Format Preservation: The schemes in [24]
and [25] cannot preserve the JPEG format, because the JPEG
header changes during encryption and data embedding.

The authors of [31] proposed a separable RDH scheme over
encrypted JPEG bitstreams. This scheme uses an asymmetric
encryption strategy to encrypt JPEG bitstreams. The two most
significant bits of each DC H are used for data embedding
and the image is recovered using the characteristics of the
Huffman code in the JPEG format. It achieves good embedding
capacity and has a high security level for chosen-plaintext
attack. However, this scheme destroys the JPEG format during
encryption and embedding processes. A JPEG bitstream is
unreadable by JPEG decoders, and thus, causes problems for
file compatibility if its JPEG format is destroyed [32].

3) With Both File Size and Format Preservation: File size
preservation indicates that the encryption and data embed-
ding processes do not cause file size changes in the marked
encrypted JPEG bitstreams. However, according to the dis-
cussions in [19] and [32], minor changes in the final file
size may occur when processing JPEG bitstreams because
of the byte alignment in the encoding procedure, which is
unavoidable. Thus, the minor file size change caused by the
byte alignment is ignored in all RDH schemes over encrypted
JPEG bitstreams [23], [29], [30].

In 2014, Qian et al. proposed RDH over encrypted JPEG
bitstreams with both file size and format preservation [29].
AC As and DC As are encrypted by the stream cipher, whereas
AC H s and DC H s remain unchanged. Additional data are
embedded by flipping the least significant bits of the encrypted
AC As of each embeddable block, and the image is recovered
using the blocking artifact function. As an early study, the
embedding capacity is not high and the image could not be
recovered losslessly before data extraction. In addition, the
encrypted DC As may cause an overflow of the quantized DC
coefficients because of differential pulse code modulation.

The scheme in [30] losslessly compresses part of the
JPEG bitstreams for data embedding before encryption. The
image is encrypted by performing an XOR operation on the
DC As and AC As, and the additional data are embedded into
the room preserved by compression. Because data extraction
and image recovery are independent, this scheme is separa-
ble. The authors of [23] proposed a rotation-based scheme,
in which a rotation-embedding technique was developed for
data embedding by rotating the RSV triples, and an encryption
strategy introduced in [32] was used for image encryption.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

1006 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

This method can preserve both the file size and JPEG format
during data embedding and image encryption, as well as
avoid data overflow. For all these schemes with both file size
and format preservation, their embedding capacities are not
high, particularly with low quality factors. However, in some
practical applications such as cloud storage, a cloud server
may be willing to embed more data into encrypted bitstreams
for further processing, such as image retrieval [33]. Thus,
designing RDH schemes is meaningful for encrypted JPEG
bitstreams with high security and a large embedding capacity.

III. NEW DATA EMBEDDING TECHNIQUE

BASED ON PERMUTATION

In this section, we introduce a new data embedding tech-
nique based on permutation, develop a fast search implemen-
tation to it, and finally discuss its properties.

A. Permutation-Based Embedding

Here, we present a new permutation-based embedding tech-
nique for an ordered sequence. The main concept is that
we first calculate the number of different permutations of
the sequence and then provide a unique number for each
permutation. Finally, we treat the data to be embedded as
a distance and change the original ordered sequence to a
permuted sequence according to the distance.

First, we introduce the concept of a multiset. Suppose that
S = {a1 ·b1, · · · , av ·bv · · · , aK ·bK } is a descending multiset
with N elements, where av indicates the number of bv . For
example, a multiset S = {2 · 4, 1 · 2, 2 · 1} can be expressed
as S = {4, 4, 2, 1, 1}, which contains three different elements.
For the multiset S = {a1 · b1, · · · , av · bv · · · , aK · bK } with
N elements, the number of permutations can be calculated as

|S| = N !∏K
v=1(av !)

. (1)

Then, we number these |S| permutations by comparing
their elements from left to right. Thus, the sequence {a1 ·
b1, · · · , av · bv · · · , aK · bK } is numbered 0, whereas the
sequence {aK · bK , · · · , av · bv · · · , a1 · b1} is numbered as
|S| − 1. For example, for the descending multiset S = {2 ·
4, 1 · 2, 2 · 1}, there are 30 different permutations according
to Eq. (1). Then the sequence {4, 4, 2, 1, 1} is numbered 0,
the sequence {4, 4, 1, 2, 1} is numbered 1, and the sequence
{1, 1, 2, 4, 4} is numbered 29.

Because each permutation corresponds to a value, the largest
bit number that can be embedded into the descending multiset
S can be calculated as:

C = �log2 |S|� =
⌊

log2
N !∏K

v=1(av !)

⌋
. (2)

Thus, when embedding C bits into the descending multiset S,
we first convert the C bits to a decimal value and then change
the descending multiset as the sequence that corresponds to
this value.

The entire data embedding process for the descending
multiset S = {a1 ·b1, · · · , av ·bv · · · , aK ·bK } with N elements
can be described as follows.

• Step 1: Calculate the permutation number of |S| according
to Eq. (1);

• Step 2: Calculate the embedding capacity C according to
Eq. (2);

• Step 3: For the C bits D = {d1, d2, · · · , dC } to be
embedded, convert them to a decimal integer DI .

• Step 4: Number these |S| different permutations of S by
comparing their elements from left to right;

• Step 5: Embed DI into S by selecting the sequence S�
numbered as DI as the output sequence.

B. Fast Search Implementation

The permutation operation of the multiset is complex,
with a heavy computational cost. To address this problem,
we designed a fast search implementation to determine the
permuted sequence S� corresponding to the value of DI . For a
descending multiset S = {a1 ·b1, · · · , av ·bv · · · , aK ·bK } with
N elements, we first calculate the number of different permu-
tations beginning with bv , that is, the number of permutations
in multiset S/{bv} = {a1 · b1, · · · , (av − 1) · bv · · · , aK · bK }:

tv = (N − 1)!
a1! · · · (av − 1)! · · · aK ! . (3)

Evidently |S| = t1 + · · · + tK . Letting t0 = 0, we can
calculate the permutation range beginning with bu as Ru =
[∑v=u−1

v=0 tv ,
∑v=u

v=0 tv). Then, if DI ∈ Ru , we can determine
that the first element of the search sequence is bu . After
determining the first element bu , we exclude a bu from the
sequence and update the value DI by DI = DI −∑v=u−1

v=0 tv .
Repeat this to determine all elements in the searched sequence.
The entire fast search implementation can be described as
follows.
• Step 1: Initialize an empty sequence S�;
• Step 2: If DI = 0, append the remaining elements in S

to S�, that is, S� = S� ∪ S. Then the operation ends and
we find the sequence S� that corresponds to DI ;

• Step 3: Count the number of elements with different
values in S as K . Calculate the number of different
permutations beginning with bv according to Eq. (3) to
obtain a K -length vector T = {t1, t2, · · · , tK }.

• Step 4: Calculate the permutation range beginning with
b1, · · · , bK to obtain R1, · · · , RK .

• Step 5: Determine the first element of the searched
sequence as bu if DI ∈ Ru .

• Step 6: Remove a bu from S and append it to the S�.
Update DI by subtracting the lower bound of Ru .

• Step 7: Repeat Steps 2 to 6.
Algorithm 1 presents the pseudo-code of the data embed-

ding procedures using the fast search implementation, while
Algorithm 2 shows the pseudo-code of the data extraction pro-
cedures. The fast search implementation can reduce the time
complexity of data embedding from O(N !) to O(N2), which
can significantly improve the data embedding efficiency. For
the original algorithm, the computational complexity is O(n!)
to search for an n-length vector with n different elements. For
the fast search algorithm, we must only traverse each element
and calculate the number of sequences with different elements.
Thus, the complexity in the worst case is only O(n2).

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1007

To better illustrate the data embedding and extraction proce-
dures, a numeral example is provided in Fig. 2. Suppose that
the descending multiset is S = {4, 4, 3, 2, 1}. According to
Eqs. (1) and (2), the embedding capacity C = 5 and embedded
bits are assumed to be D = {0, 1, 1, 0, 0}. The decimal number
of D is obtained as DI = 12. In the embedding phase, first
calculate the initial T = {24, 12, 12, 12}. Then, the ranges
of the permutations with the first numbers “4,” “3,” “2,”and
“1” are [0, 24), [24, 36), [36, 48) and [48, 60), respectively.
As DI ∈ [0, 24), we determine the first number to be “4.”
Then, update S = S\{4} = {4, 3, 2, 1}, S� = S�∪{4} = {4} and
DI = 12−0 = 12. Second, calculate T = {6, 6, 6, 6}, and the
ranges of the permutations with the first numbers “4,” “3,” “2,”
and “1” are [0, 6), [6, 12), [12, 18) and [18, 24), respectively.
As DI ∈ [12, 18), we determine the second number to be “2.”
Then, update S = S \ {2} = {4, 3, 1}, S� = S� ∪ {2} = {4, 2}
and DI = 12 − 12 = 0. Third, as DI = 0, we can get the
result S� = S� ∪ S = {4, 2, 4, 3, 1} and the embedding process
ends.

Algorithm 1 Data Embedding Procedures
Input: Binary bits D = {d1, d2, · · · , dC} and the descending

multiset S = {a1 · b1, · · · , av · bv · · · , aK · bK } with N
elements;

Output: Permuted sequence S�.
1: DI ← bin2dec(D);
2: while DI �= 0 do
3: K ← getK(S);
4: T = {t1, t2, · · · , tv , · · · , tK };
5: for v ← 1 : K do
6: tv ← |S \ {bv}|;
7: end for
8: u← 1;
9: while DI ≥ tu do

10: DI ← DI − tu , u ← u + 1;
11: end while
12: S� ← S� ∪ {bu}, S← S \ {bu} ;
13: end while
14: return S� ← S� ∪ S;

In the extraction phase, we obtain S = {4, 4, 3, 2, 1} by
sorting S� = {4, 2, 4, 3, 1} in descending order. The data
extraction is similar to the data embedding. First, initialize
DI = 0, calculate T = {24, 12, 12, 12} and the ranges of the
permutations with the first numbers “4,” “3,” “2,” and “1” are
[0, 24), [24, 36), [36, 48) and [48, 60), respectively. As the
first number of S� is s1 = b1 = 4, DI = 0 + 0 = 0, and
S = S\{b1} = {4, 3, 2, 1}, S� = S� \{s1} = {2, 4, 3, 1}. Second,
calculate T = {6, 6, 6, 6} and the ranges of the permutations
with the first numbers “4,” “3,” “2,” and “1” are [0, 6), [6, 12),
[12, 18), and [18, 24), respectively. As the first number of S� is
s1 = b3 = 2, DI = 0+ 12 = 12 and S = S \ {b3} = {4, 3, 1},
S� = S� \ {s1} = {4, 3, 1}. Third, as S = S�, the data extraction
ends and the embedded data value is DI = 12. From Eq. (2),
the embedding capacity C = 5. Subsequently, DI is converted
into five bits D = {0, 1, 1, 0, 0}.

Algorithm 2 Data Extraction Procedures

Input: Permuted sequence S� = {s1, s2 · · · , sN };
Output: Binary bits D = {d1, d2, · · · , dC}.
1: S = {a1 · b1, · · · , av · bv · · · , aK · bK };
2: C ← |S|, DI ← 0;
3: while S� �= S do
4: K ← getK(S);
5: T = {t1, t2, · · · , tv , · · · , tK };
6: for v ← 1 : K do
7: tv ← |S \ {bv}|;
8: end for
9: s1 ← fisrtNumber(S�), u ← 1;

10: while s1 < bu do
11: DI ← DI + tu , u ← u + 1;
12: end while
13: S← S \ {bu}, S� ← S� \ {s1};
14: end while
15: return D← dec2bin(DI , C);

C. Embedding Capacity Discussion

Using the permuted sequence to present the embedded data,
the proposed permutation-based embedding technique can
achieve a high embedding capacity. It can also achieve rela-
tively high efficiency using a fast search implementation. Here,
we investigate its embedding capacity against different types
of descending multisets and compare its capacity with that of
similar techniques introduced in [34], [35], and [23]. Note that
the AC-coefficient-based embedding technique in [34] is used
as the competing method because it follows the same principle
as ours.

These techniques and ours embed data by changing the
order of an ordered sequence, and they are scrambling-
embedding techniques. The data embedding techniques
in [34], [35], and [23] embed data over an ordered sequence
by rotating it. The techniques in [34] and [35] can rotate the
sequence in both directions, whereas those in [23] can only
rotate the sequence in one direction. Our technique first num-
bers each permutation of the ordered sequence, and then treats
the data to be embedded as a distance. The embedding process
involves determining the permuted sequence that corresponds
to the distance. For an ordered multiset S = {a1 · b1, · · · , av ·
bv · · · , aK · bK } with N elements, the embedding capacity of
the technique in [34] and [35] can be calculated as

C1 = �log2 2N� = �log2 N� + 1, (4)

and the embedding capacity of the technique in [23] is
calculated as

C2 = �log2 N�. (5)

Note that K should satisfy K ≥ 3 in [34] and [35] and
K ≥ 2 in [23]. Accorded to Eq. (2), when K = 1, the
embedding capacity of the proposed permutation-based
embedding technique is C = 0. Thus, K should satisfy
K ≥ 2 in the proposed technique.

Lemma 1: For an ordered multiset S = {a1 · b1, · · · , av ·
bv · · · , aK · bK } with N elements and K ≥ 2, the embedding

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

1008 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

Fig. 2. Numeral example of data embedding and extraction with the multiset S = {2 · 4, 1 · 3, 1 · 2, 1 · 1} and embedded data D = {0, 1, 1, 0, 0}.

capacity of our technique is given by Eq. (2), which is not
lower than the embedding capacity shown in Eqs. (4) and (5).

Proof: When K = 2, (a1!)(a2!) can evidently achieve the
maximum value (N − 1)! when one of a1 and a2 is 1 and the
other is N −1. Thus (a1!)(a2!) ≤ (N −1)! and the embedding
capacity of the proposed scheme in Eq. (2) can be rewritten
as follows:

C =
⌊

log2
N !

(a1!)(a2!)
⌋

≥
⌊

log2
N !

(N − 1)!
⌋

= �log2 N� = C2. (6)

This is unavailable for the techniques in [34] and [35] when
K = 2.

When K ≥ 3, (a1!)(a2!) · · · (aK !) can evidently achieve the
maximum value (N−K+1)! when one of av is N−K+1 and
the others are one. Thus (a1!)(a2!) · · · (aK !) ≤ (N−K+1)! and
the embedding capacity of the proposed technique in Eq. (2)
can be rewritten as follows:

C =
⌊

log2
N !

(a1!)(a2!) · · · (aK !)
⌋

≥
⌊

log2
N !

(N − K + 1)!
⌋

= �log2 N(N − 1) · · · (N − K + 2)�. (7)

Because K ≥ 3, we can obtain C ≥ �log2 N(N − 1)� ≥
C1 > C2. This completes this proof.

Table I lists the embedding capacities of the different
techniques over a decreasing multiset S of length 5. When
K = 1, the embedding capacities of all techniques are zero,
because the five elements in S are the same. When K = 2,
the embedding capacity of [34], [35] is still zero, because
the technique in [34] and [35] embed data by circularly

TABLE I

EMBEDDING CAPACITY OF DIFFERENT TECHNIQUES

OVER A DECREASING MULTISET OF LENGTH 5

shifting and flipping the original sequence, and same permuted
sequences may be obtained when embedding different values
under this case. This causes that the embedding values can-
not be extracted correctly. However, the embedding capacity
of [23] and the proposed scheme is 2. Six different types
of sequences exist when K = 3. The embedding capacity
of [34], [35] and our technique is 3, whereas that of [34],
[35] is 2. When K > 4, the proposed technique can achieve a
larger embedding capacity than the other techniques. Thus, the
proposed permutation-based embedding technique can achieve
a large embedding capacity.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1009

Fig. 3. Framework of our large-capacity RDH scheme over encrypted JPEG bitstreams.

IV. LARGE-CAPACITY RDH SCHEME OVER

ENCRYPTED JPEG BITSTREAMS

In this section, we introduce a large-capacity RDH scheme
over encrypted JPEG bitstreams, and Fig. 3 illustrates this
framework.

A. JPEG Encryption

The JPEG bitstream consists of a structured data in a special
format. Its structure is damaged if it directly encrypted using
existing encryption methods such as the Advanced Encryption
Standard (AES), and then becomes unreadable for JPEG
decoders. As a result, the JPEG bitstreams should be encrypted
using specific strategies.

According to the JPEG format introduced in Section II-A,
an entire JPEG bitstream can be divided into AC and DC
coefficients. The DC coefficients include DC H s and DC As,
whereas the AC coefficients include AC H s and AC As. AC H s
and DC H s are the Huffman codes of lengths and their values
should remain unchanged. Otherwise, the JPEG bitstream may
become unreadable.

When encrypting the AC coefficients, we encrypt the AC As
using AES encryption, which has a high security level. First,
we extract all AC As from a JPEG bitstream to obtain a
bitstream,

BAC A = AC A(1)
1 ||AC A(2)

1 || · · · ||AC A(1)
i ||AC A(2)

i || · · · (8)

Then, we encrypt the BAC A using AES with an encryption
key.

Because the values of the AC H s cannot be changed,
we randomly scramble their positions among the blocks. The
AC H s of each block consist of the Rs and Ss. Then, this
scrambling can not change the positions of the Rs and Ss
within each block. For example, the AC coefficients of i -th
block can be decoded as

BAC
i = {(R(1)

i , S(1)
i , V (1)

i), · · · , (R(n)
i , S(n)

i , V (n)
i)}.

The AC H of the i1-th and i2-th blocks can be decoded as

BAC H
i1 = {(R(1)

i1
, S(1)

i1
), (R(2)

i1
, S(2)

i1
), · · · , (R(n1)

i1
, S(n1)

i1
)},

and

BAC H
i2
= {(R(1)

i2
, S(1)

i2
), (R(2)

i2
, S(2)

i2
), · · · , (R(n2)

i2
, S(n2)

i2
)},

Fig. 4. JPEG encryption scheme.

respectively. When exchanging the positions of BAC H
i1

and
BAC H

i2
, the Rs and Ss within each block remain unchanged.

To achieve better security, the scrambling key K ey1 is
obtained from the BAC A using a SHA-512 hash algorithm.

For the DC coefficients, the DC As are not the real values
of the DC coefficients because differential pulse modulation
coding is used. Thus, directly encrypting the DC As may
cause overflow in the JPEG decoding process. The encryption
method introduced in [32] is used to encrypt the DC coef-
ficients. It has a high security level with both file size and
format preservation, and can avoid overflow [32]. To achieve
better security, the encryption key K ey2 is also obtained from
BAC A using a SHA-512 hash algorithm.

After encryption, the encrypted data must be reassembled.
In this process, the encrypted DC H s and AC H s are encoded
using a Huffman table. Fig. 4 shows the processes of encrypt-
ing the AC and DC coefficients. The decryption processes are
the opposite operations of the encryption processes and can
be described as follows.

• Step 1: Split the encrypted JPEG bitstream to construct
the B�AC A;

• Step 2: Decrypt the AC bitstream B�AC A using the encryp-
tion key and obtain the original BAC A;

• Step 3: Calculate the encryption key for decrypting
AC H s K ey1 = H ash(B̂AC A); Calculate the encryp-
tion key for decrypting the DC coefficients K ey2 =
H ash(B̃AC A);

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

1010 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

• Step 4: Recover the DC coefficients using K ey2.
• Step 5: Recover the AC H s using K ey1.
• Step 6: Assemble the original JPEG bitstream.

After encryption, the encrypted JPEG bitstream is sent to
the data hider such as a cloud sever.

B. Data Embedding

When a data hider receives the encrypted JPEG bitstream,
he/she can embed additional data, e.g., authorization and
copyright information, to the encrypted bitstream for storage,
management or other processes.

Here, we use the proposed permutation-based embed-
ding technique to embed additional data. As discussed in
Section III, the permutation-based embedding technique oper-
ates over an ordered sequence. Thus, we use the AC coeffi-
cients of each block to embed data.

1) Decision of Embeddable Blocks: First, we determine the
embeddable blocks. As discussed in Section II-A, the AC
coefficients in each block are encoded into several triples
p(j)

i = (R(j)
i , S(j)

i , V (j)
i). In a quantized coefficient matrix,

the upper-left values are typically larger and have fewer zeros
than bottom-right values. Because R represents the number
of continuous zero coefficients, and S represents the bitstream
length of the non-zero coefficient, R shows an ascending order
and S shows a descending order after the zigzag-transform.
Then we can use their orders to construct an ordered sequence.

Note that not all blocks have strict orders for the Rs
and Ss of AC triples. Thus, we should first determine the
embeddable blocks. To increase the number of embeddable
blocks, we uniformly divide the AC triples in each block into
several groups and calculate a number called ‘label number’
for each group. Suppose that we divide the Nac AC triples
(R(j), S(j), V (j)) of a block into M groups, and each group
has �Nac/M� AC triples. For the �Nac/M� AC triples of the
h-th (1 ≤ h ≤ M) group, we calculate its label number as

L(h) =
�Nac/M�∑

l=1

(S(l))2

R(l) + 1
. (9)

When L(h) ≥ L(h+1) and L(1) > L(M) are satisfied, the
M groups are in descending order and the block is embed-
dable. When the descending order is not satisfied, the block
is a failed block. In addition, if the number of AC triples Nac

is less than M , the block is useless.
Our grouping strategy differs from that in [34]. For the

grouping method in [34], the number of AC triples in each
group was fixed at two, and the group numbers of the different
blocks can be different. However, the settings of our method
are the opposite. In particular, for different blocks, the group
numbers are the same, whereas the number of the AC triples
in each group can be different. The sequence size of each
block can be reduced by dividing the AC triples into groups.
However, the number of embeddable blocks is significantly
increased, because this strategy can greatly strengthen the
order of the Rs and Ss in the AC coefficients. The embedding
capacity is evidently determined by the group number M
and we find that most natural images can achieve the largest

TABLE II

EMBEDDING SPACE WASTE OF THE MULTISET SL WITH DIFFERENT K
WHEN M = 4. THE |SL | IS THE NUMBER OF PERMUTATION OF SL ,

THE C IS THE EMBEDDING CAPACITY, AND THE WASTED

EMBEDDING SPACE IS W = |SL | − 2C

embedding capacity when M = 4, which is discussed in
Section V-A.

2) Embedding Strategy: For each embeddable block with
M groups of AC triples, we can calculate M label
numbers L(1), L(2), · · · , L(M) with descending order. Then
a multiset in descending order is constructed as SL =
{L(1), L(2), · · · , L(M)}. We can embed additional data into SL

using the permutation-based embedding technique. According
to Eq. (2), the embedding capacity of the v-th embeddable
block can be calculated as

Cv = �log2 |S(v)
L |�, (10)

where |S(i)
L | is the number of permutations.

Not all permutations can be utilized to embed data. Suppose
the grouping number is set to M = 4. The block is an
embeddable block only when the multiset has a descending
order, which means that K ≥ 2. In addition, because K ≤ M ,
we obtain K ∈ {2, 3, 4}. Then for the multiset SL with
different K s, we can calculate the number of permutations |SL |
using Eq. (2) and embedding capacity C according to Eq. (10).
Table II shows the wasted embedding space. Evidently,
some embedding space is wasted. For example, for multiset
SL = {b3, b2, b1, b1}, the number of permutations is |SL | =

4!
1!1!2! = 12, and its embedding capacity is C=�log2 |SL |�=3.
Thus, the wasted embedding space is W = |SL | − 2C = 4.

By combining multiple blocks for embedding, the amount
of waste can be reduced. Suppose that P embeddable blocks
are combined for data embedding and their multisets of
label numbers are S(1)

L , S(2)
L , · · · , S(P)

L . We can calculate the
combined embedding capacity C � as

C � = �log2(

P∏
v=1

|S(v)
L |)� = �

P∑
v=1

log2 |S(v)
L |�

≥
P∑

v=1

�log2 |S(v)
L |� = C1 + C2 + · · · + CP . (11)

Thus, the embedding capacity can be enhanced by combining
several embeddable blocks.

With P combined blocks, we first obtain the embedding
capacity C � from Eq. (11) and then obtain the embed-
ded value D by transforming the C � bits into a decimal

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1011

value. Finally, we divide the value D into P parts, that is
D(1)

I , D(2)
I , · · · , D(P)

I , and separately embed them into the P
blocks. The idea is to ordinally embed D into the P multisets
of the P blocks. In particular, we embed the value into the
multisets of label numbers from the first S(1)

L to the last S(P)
L

and the details are described as follows.

• When D < |S(1)
L |, only S(1)

L is required to embed D. Then

D(1)
I = D;

D(w)
I = 0 for w = 2, · · · , P.

• When |S(1)
L | ≤ D < |S(1)

L | · |S(2)
L |, we should use S(1)

L and
S(2)

L to embed D. Then

D(1)
I = mod (D, |S(1)

L |);
D(2)

I =
⌊

D/|S(1)
L |

⌋
;

D(w)
I = 0 for w = 3, · · · , P.

• When
∏u−1

v=1 |S(v)
L | ≤ D <

∏u
v=1 |S(v)

L |, we should use
S(1)

L , · · · , S(u)
L to embed D. Then

D(1)
I = mod (D, |S(1)

L |);
D(2)

I = mod
(⌊

D/|S(1)
L |

⌋
, |S(2)

L |
)
;

D(u−1)
I = mod

(⌊
D/(

u−2∏
v=1

|S(v)
L |)

⌋
, |S(u−1)

L |
)
;

D(u)
I =

⌊
D/(

u−1∏
v=1

|S(v)
L |)

⌋
.

The rest D(w)
I = 0 for w = u + 1, · · · , P . Note that if

u = P , all the P blocks are used to embed data.

To better understand the process of calculating D(1)
I , · · · ,

D(P)
I , we provide a simple example using two multisets S(1)

L =
{4, 3, 2, 1} and S(2)

L = {3, 3, 2, 1} with P = 2. We first
calculate |S(1)

L | = 24 and |S(2)
L | = 12 and then obtain the

embedding capacity of two blocks C � = ⌊
log2(24 · 12)

⌋ =
8 according to Eq. (11). Suppose that an 8-bit stream is
embedded and then obtain its decimal value D = 166.
Because D ∈ [|S(1)

L |, |S(1)
L | · |S(2)

L |), we can obtain D(1)
I =

mod (D, |S(1)
L |) = 22 and D(2)

I =
⌊

D/|S(1)
L |

⌋
= 6.

In the data extraction process, we can recover D using
D(1)

I , · · · , D(P)
I as

D=D(P)
I

P−1∏
v=1

|S(v)
L | + · · · + D(u)

I

u−1∏
v=1

|S(v)
L | + · · · + D(1)

I . (12)

Finally, the total embedding capacity can be calculated as

Ctotal =
�Ne/P�∑

v=1

Cv
� + C �last , (13)

where Ne is the total number of embeddable blocks, C �v is the
capacity of the v-th combination of P blocks, and C �last is the
capacity of the remaining several blocks smaller than P .

3) Entire Data Embedding Process: After determining the
embeddable blocks and embedding strategy, we can embed the
additional data into the encrypted JPEG bitstream.

First, we use a marker to indicate whether a block is embed-
dable. In particular, an embeddable block is marked “1,”
whereas a failed block is marked as “0.” In addition, if the
number of AC triples within a block is less than M , there is
no need to mark this block and we call a useless block. This
is because we know that a block cannot be used from the
number of AC triples in the block. We embed the marker of
each block by replacing the first bit of AC A(1). Then, the first
AC coefficients of all marked blocks, FB, should be embedded
into the image. The length of FB is affected by QF and the
JPEG image itself. In general, when QF = 80, the length of
FB is approximately 3000 bits. Because the length of FB is
easy to be calculated after determining the number of useless
blocks, it does not need to be embedded into the image.

When embedding the confidential data into the image, one
first encrypts the data, calculates the verification information of
the embedded data using some Hash functions such as MD5,
and finally embeds the verification information along with the
embedded data.The final embedding bitstream is

ED = FB||D�. (14)

Finally, we describe the data-embedding process as follows.
• Step 1: Extract the first AC coefficients of all the embed-

dable and failed blocks to obtain a stream FB. Place a
marker ‘1’ for an embeddable block, and ‘0’ for a failed
block by replacing the first AC coefficient of the block;

• Step 2: Encrypt additional data D by D� = Enc(D, K eyed)
if it is confidential. Then the final embedding bitstream
ED = FB||D�;

• Step 3: Find P embeddable blocks sequentially, decode

the bitstreams and calculate S(1)
L , S(2)

L , · · · , S(P)
L ;

• Step 4: Calculate their embedding capacity C � using
Eq. (11). Take C � bits from the current embedded bit-
stream ED and convert them into a decimal numbers D.
Calculate the embedded numbers of the P blocks as
D(1)

I , D(2)
I , · · · , D(P)

I .
• Step 5: Embed the numbers D(1)

I , D(2)
I , · · · , D(P)

I using
the S(1)

L , S(2)
L , · · · , S(P)

L , respectively, and obtain P per-

muted multisets of number label S(1)�
L , S(2)�

L , · · · , S(P)�
L ,

according to the permutation-based embedding method
in Section III;

• Step 6: Change the order of the AC triples according to
the index of S(1)�

L , S(2)�
L , · · · , S(P)�

L . Exchange the marker
of the block with the first bit of the new first AC
coefficient. Encode the triples as bitstreams;

• Step 7: Repeat Steps 3-6 until all the data have been
embedded.

To illustrate the data embedding process, we provide a
numeral example in Fig. 5. Suppose that M = 4 and that an
image block MCU = {DCC, ACC(1), · · · , ACC(8), E O B}.
After Huffman decoding, we obtain the AC coefficients as
B = {p(1), · · · , p(8)} = {(0, 3, 1112), · · · , (4, 1, 12)}. Then
we can calculate the multiset of four label numbers as SL =
{L(1), L(2), L(3), L(4)} = {13, 5, 0.58, 0.53} using Eq. (9).

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

1012 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

Fig. 5. Numeral example of data embedding process. (a) A block of the JPEG bitstream; (b) dividing the 8 triples of the AC coefficients as 4 groups;
(c) label numbers of each group; (d) data embedding; (e) changing the orders of the triple groups according to the index of the permuted label numbers; and
(f) Huffman encoding and exchanging the marker of the block with the first bit of the new first AC coefficient.

As described in Section III-A, there are four different numbers
in the multiset SL ; thus, N = 4 and K = 4. As described in
Section III-B, we can number each permutation of multiset SL .
When embedding the value 12, we change the multiset SL

to be the new sequence, which is numbered 12. According
to the new sequence, the AC coefficients are rearranged and
encoded as a JPEG bitstream. Evidently, the data structures
of the triples did not change. Thus, this embedding operation
can preserve the file size and format.

C. Data Extraction and Image Recovery

The data extraction and image recovery are separable.
1) Data Extraction: First, we determine the embed-

dable blocks using the marker and the number of AC
triples within each block. Data extraction is performed over
P embeddable blocks. After calculating the multisets of
label numbers S(1)�

L , S(2)�
L , · · · , S(P)�

L of the P embeddable
blocks, we can obtain the capacity of the P embeddable
blocks C � using Eq. (11). Subsequently, the embedded num-

bers D(1)
I , D(2)

I , · · · , D(P)
I of the P blocks can be calculated

using the Fast Search method in Section III-B. Then the
embedded number D can be calculated using Eq. (12).

Then D is converted into C �-bit data. After extracting all
embeddable blocks, we obtain ED. The length of BF is the
sum of the number of embeddable blocks and failed blocks.
After splitting ED, we obtain FB and D�. Finally, we decrypt
D� to obtain the embedded data D using the embedding key.
The data extraction process is as follows:
• Step 1: Calculate the length of FB by subtracting the

number of useless blocks using the total block number;
• Step 2: Find continuous P embeddable blocks according

to their markers. Decode the bitstream and calculate their
label numbers S(1)�

L , S(2)�
L , · · · , S(P)�

L ;
• Step 3: Calculate the embedding capacity C � using

Eq. (11). Calculate the embedded numbers of the

P blocks D(1)
I , D(2)

I , · · · , D(P)
I ;

• Step 4: Calculate the embedded decimal number D by
Eq. (12). Convert D to C �-bit binary numbers;

• Step 5: Repeat Steps 2-4 until all the embedded data ED
have been extracted. Split ED into FB and D� according
to the length of FB;

• Step 6: Exclude FB from ED to obtain the embedded
data. Decrypt the extracted data using the embedding key
if necessary.

2) Image Recovery: The image content was changed by
image encryption and data embedding. Thus, we should first
recover the changed content during data embedding and then
decrypt the image using the encryption key. Because the image
recovery must also know the type of each block, FB should
be first extracted, and the first five steps in the image recov-
ery are exactly the same as with the data extraction. After
extracting FB, the following operations are performed:
• Step 1: Rearrange AC coefficients of the embeddable

blocks in descending order and exchange the marker bit.
Encode the bitstream and replace the first bits of AC A(1)

with FB;
• Step 2: Decrypt the image using the decryption processes

mentioned in Section IV-A, and finally obtain the original
JPEG bitstream.

If we first recover the image and then extract the embedded
data, we should retain the following information during image
recovery: intra block orders of AC H s, inter block orders of
AC H s and markers of the blocks. The inter block orders can
be obtained using the key that is the hash of BAC A and thus
does not need to preserve. The inter block orders should be
preserved, which causes distortion to the recovered image.
The markers are retained by replacing the least significant bit
(LSB) of DC , which causes dataloss to the recovered image.
With the above retained information in the recovered image,
one can then completely extract the embedded data. Note that
the image distortion can be recovered after data extraction.

V. EXPERIMENT RESULTS

In this section, we first analyze how to determine the embed-
dable blocks and the number of combined blocks, and then
simulate our RDH scheme over encrypted JPEG bitstreams,
and finally discusses its properties.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1013

Fig. 6. Average embedding capacity of 100 images under different settings
of group number M. The quality factors QF = 50, 60, 70, 80, 90.

A. Embeddable Blocks Analysis

Because our permutation-based embedding technique works
over an ordered sequence and not all blocks have strict orders
for Rs and Ss of the AC coefficients, we use the grouping
strategy to enhance the number of embeddable blocks. Evi-
dently, a smaller group number M can lead to a greater number
of embeddable blocks. However, with smaller group number,
the element number of the ordered sequence is also smaller,
causing a lower embedding capacity in each block. Thus, the
group number M should be set to an appropriate value.

To obtain the best setting for the group number M , we cal-
culate the average embedding capacity of 100 images in
the encrypted domain. These images are randomly selected
from the Bossbase image database [36] and have the size
512 × 512. For each image, we encoded it using different
quality factors QF = 50, 60, 70, 80, 90, and then encrypted
these images using the encryption method. The range of
M in this experiment was [3, 10]. The average embedding
capacity of these 100 images under different quality factors
are calculated and Fig. 6 shows the results. Evidently, when
M is greater than 5, the average embedding capacity decreases
rapidly. This is because the number of triples in each group
is extremely small when the value of M is relatively large.
The largest average embedding capacity can be obtained when
M = 4 for different quality factors. We further calculated the
number of images that can achieve the maximum embedding
capacity under different settings of group number M and
Fig. 7 show the results for different quality factors. We found
that only three settings of M can achieve the maximum
embedding capacity: 3, 4, 5. In addition, most images exhibit
the maximum embedding capacity for M = 4. Therefore,
we set M = 4 in the proposed scheme.

B. Number of Combined Blocks

The number of combined blocks P also affects the embed-
ding capacity. Table III lists the embedding capacities of
different encrypted images under different settings of P when
M = 4. Because of the label number calculation method in
Eq. (9), almost all embeddable blocks have a strict order,

TABLE III

EMBEDDING CAPACITY (BIT) OF FOUR ENCRYPTED IMAGES WITH
DIFFERENT NUMBERS OF COMBINED BLOCKS P (QF = 80, M = 4)

which means that the multiset of label numbers S(i)
L has four

different label numbers. According to Eq. (11), for P com-
bined embeddable blocks, the average embedding capacity of
each block is

μ(P) = �
∑P

v=1 log2 |S(v)
L |�

P
. (15)

When S(i)
L has four different label numbers, its permutation

number is |S(i)
L | = 4!

1!1!1!1! = 24. Then we can get that μ(2) =
μ(4) = μ(6), indicating the same average embedding capacity
for P = 2, P = 4 and P = 6. Because a higher computational
cost is required for a larger P , we set P = 2 in our scheme.

Note that the maximum embedding capacity may be a
little different for encrypted and unencrypted JPEG bitstreams,
because the encryption will change the block positions and
result in different combing results.

C. Simulation Results

Fig. 8 shows the simulation results obtained using images
Lena, Pepper, and Baboon. The image owner encrypts the
plaintext JPEG images into encrypted JPEG images and sends
them to data hider. The data hider can embed additional data
(i.e., the label of the image) into the encrypted JPEG images to
generate marked encrypted images. The receiver can correctly
extract the embedded data and recover the original images.

VI. PERFORMANCE EVALUATIONS

In this section, we present a comprehensive evaluation of
the proposed RDH scheme and compare it with other schemes.

A. Embedding Capacity

Because our RDH scheme can preserve the file size and
JPEG format, we compared its embedding capacity with the
schemes in [29], [30], and [23], which are the latest RDH
schemes over encrypted JPEG images that can also preserve
the file size and JPEG format. Table IV lists the embedding
capacities of several classical images under different quality
factors. The BPNZ value indicates the embedded bits per
non-zero AC coefficient. In addition, we combine the embed-
ding methods in [23] and [34] with our encryption, which
are denoted as “OurEnc+Ref. [23]” and “OurEnc+Ref. [34]”,
respectively. For most schemes, the embedding capacity
increases with the increment of the quality factor. This is
because the data are embedded using the non-zero AC coef-
ficients, and the quantized coefficient matrices can remain
more non-zero AC coefficients with a higher quality factor.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

1014 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

Fig. 7. Image numbers that can achieve the maximum embedding capacity under different settings of group number M when M ∈ [3, 10]: (a) QF = 50,
(b) QF = 60, (c) QF = 70, (d) QF = 80, and (e) QF = 90.

Fig. 8. (a) The JPEG images Lena, Pepper and Baboon; (b) The encrypted
images and their labels of images; (c) The marked encrypted images after
embedding their labels; (d) The recovered images and extracted labels of
images.

As shown in Table IV, our scheme can embed many more
bits and the BPNZ is much larger than that of other schemes
under the same quality factors. Its average embedding bits
are approximately twice those of the previous best scheme
in [23]. The embedding capacity in our scheme is the effective
embedding capacity, which indicates the number of bits that a
data hider can embed. Table V shows the embedding capacity
of four images with the full payload and the PSNRs between
the recovered images and original images. All the PSNRs are
+∞, which indicate the reversibility of our scheme.

B. File Size Preservation

Our RDH scheme can obtain encrypted JPEG bitstreams
with both file size and format preservation, because the encryp-
tion and data embedding processes don not destroy the data
structure of the JPEG format. Table VI lists the file size change
of several RDH schemes for embedded data of several lengths.
The scheme in [24] can generate marked encrypted JPEG
bitstream with a reduced size because it compresses some
DC and AC coefficients. However, this operation destroys
the JPEG format, changes the file information, and augments

the computational complexity of image recovery. In addition,
it can only achieve a small embedding capacity [24]. The
marked encrypted JPEG bitstream obtained by the scheme
in [25] is larger than the original JPEG bitstream, and its size
increases with the payload increment. This is because some
data are embedded in the JPEG header, destroying the JPEG
format. Among all previous schemes with both file size and
format preservation, the scheme in [23] achieves the largest
embedding capacity. However, our RDH scheme achieves a
much larger embedding capacity than the scheme in [23].

Remark: The marked encrypted JPEG bitstreams in our
RDH scheme and the scheme in [23] have slightly different
file sizes from the original JPEG bitstream, which are caused
by byte alignment rather than encryption and data embedding.
According to the discussions in [19] and [32], this kind of file
size change does not increase with the increase in payload
and is ignored in all RDH schemes over encrypted JPEG
bitstreams [23], [29], [30].

To further verify the large embedding capacity and file size
preservation of our scheme, we randomly selected 200 images
from the Bossbase dataset and show their average embedding
capacity and file size change with the full payload of our
scheme in Table VII. Our scheme achieved a large embedding
capacity and file size preservation for these images.

C. Format Compatibility

Many RDH schemes over encrypted JPEG bitstreams can-
not preserve the JPEG format in marked encrypted JPEG
bitstreams. The schemes in [24] and [25] use an exclusive-
or-based encryption strategy to encrypt the DC coefficients,
which may cause an overflow to the quantized DC coefficients,
according to the discussions in [32]. These schemes also
change the file information, thereby making the size of the
encrypted image different from that of the original image. For
the scheme in [31], the characteristics of Huffman coding are
used for data embedding, which destroys the JPEG format
and makes the encrypted JPEG bitstreams unreadable to JPEG
decoders. In our proposed scheme, the encryption and data
embedding processes do not destroy the data structure of the
JPEG format. Thus, our scheme can preserve the JPEG format
and the encrypted JPEG bitstreams and the marked encrypted
JPEG bitstreams are completely compatible with all JPEG
decoders.

D. Security Analysis

In our RDH scheme, we use the encryption method
introduced in [32] to encrypt the DC coefficients. The AC

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1015

TABLE IV

EMBEDDING CAPACITY OF DIFFERENT RDH SCHEMES WITH FILE SIZE AND FORMAT PRESERVATION UNDER
DIFFERENT QUALITY FACTORS. THE BOLD FONT INDICATES THE BEST PERFORMANCE

TABLE V

EMBEDDING CAPACITY (BIT) OF OUR RDH SCHEME WITH THE FULL
PAYLOAD UNDER DIFFERENT QUALITY FACTORS AND THE PSNRS

(dB) BETWEEN THE RECOVERED IMAGES AND ORIGINAL IMAGES

coefficients are divided into AC As and AC H s. The AC As
are encrypted using AES with an encryption key, whereas the
AC H s are encrypted by a scrambling method.

Our encryption system is a plaintext-related encryption
system, because the encryption keys of the DC coefficients
and AC H s are generated using a hash function for the AC As,
and the AC As are different in different images. Any change to
the plaintext results in different encryption keys for encrypting
the DC coefficients and AC H s. Thus, the encryption system
can resist chosen-plaintext attacks.

1) Security of DC Coefficients: The method introduced
in [32] was used to encrypt the DC coefficients. According

to the discussions in [32], the space is

�1 =
T∏

t=1

Yt ! ×
Z∏

l=1

2�N/(2l)×Wl �, (16)

where Gt (t = 1, 2, · · · , T) is the t-th group of consecutive
DCCs with the same sign, Yt denotes the number of DCCs
in Gt, Z is the number of iterations, N is the number of
all DCCs, and W j denotes the percentage of the groups that
can be exchanged.

2) Security of AC Coefficients: The two parts of the AC
coefficients are encrypted using different strategies. The AC As
are encrypted using AES with an encryption key and AES has
high security for protecting confidentiality. Thus, the AC As
can be effectively protected.

The AC H s are encrypted using a scrambling method and
the key is generated using a hash function to the AC As. For
an image with size H ×W , the space for scrambling is

�2 = (H ×W/64)!. (17)

Some image information may be hidden in the file structure,
such as the number of non zero AC coefficients, and this
information may partially reconstruct the edges and textures of
the original image [37]. According to the discussions in [38],
a JPEG encryption system should be highly secure to resist
this outline attack. In our experiments, we used the energy of

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

1016 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

TABLE VI

FILE SIZE CHANGE COMPARISONS UNDER SEVERAL LENGTHS OF EMBEDDED DATA D

TABLE VII

AVERAGE EMBEDDING CAPACITY AND FILE SIZE CHANGE WITH

THE FULL PAYLOAD OF OUR SCHEME ON 200 RANDOMLY

SELECTED IMAGES FROM THE Bossbase DATASET

AC coefficients introduced in [38] to evaluate the security of
our scheme resisting an outline attack. We can calculate the
energy of the AC coefficients in i -th block as

fi = (

8∑
x=1

8∑
y=1

|DCTi (x, y)|)− |DCTi (1, 1)|. (18)

The total number of N results { f1, f2, f3, · · · , fN } is obtained
from N blocks. Normalization to obtain { f �1, f �2, f �3, · · · , f �N }.
Then an attack image of the same size as the original image
can be built and all pixels of the i -th block in the attack image
are set as � f �i × 255�. Fig. 9 shows the outline attack of the
proposed RDH scheme using image Lena. As can be seen,
the built attack image cannot reveal any information regarding
the original image. According to the discussions in [38], these
results can demonstrate the high security of the AC coefficients
under this attack.

3) Security of Embedded Data: The security of embedded
data is also important [39]. It is impossible for an attacker
to obtain the embedded data when the embedded data are
encrypted. Besides, we embed verification information along
with the embedded data, which can prevent attacker modifying

Fig. 9. Outline attack results: (a) The image Lena, (b) the encryption result,
and (c) the built attacked image.

or removing the embedded data. After receiving the image,
the receiver verifies whether the embedded data is correct and
complete using the verification information. The embedded
encrypted image needs to be resent if the verification fails.

4) Discussions: Because a JPEG bitstream has a special
structure, treating it as a binary stream and encrypting it using
an existing encryption standard directly destroys its format,
making it unreadable to JPEG decoders. Therefore, special
encryption strategies should be developed for JPEG bitstreams.

Many encryption schemes only perform scrambling oper-
ations on the DC and AC coefficients, which cannot result
in a high encryption performance [23]. In our scheme, the
DC coefficients are encrypted using the encryption method
introduced in [32] with a high performance and the AC As are
encrypted using AES. Because the security keys of DC and
AC H are dependent on the AC As, the encrypted strategies
are sensitive to plaintext. These operations can guarantee a
better encryption performance than many previous methods.
However, a strict security analysis of the JPEG encryption
methods should be further explored.

E. Advantages of Our Scheme

In our RDH over encrypted JPEG bitstreams, the origi-
nal JPEG bitstream is encrypted using the previous JPEG

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

HUA et al.: ENABLING LARGE-CAPACITY REVERSIBLE DATA HIDING OVER ENCRYPTED JPEG BITSTREAMS 1017

encryption and AES, while additional data are embedded
using a large-capacity permutation-based embedding tech-
nique. Besides, a grouping method is used to enhance the
number of embeddable blocks. With these measures, our RDH
scheme can achieve the following advantages:
(1) Our RDH scheme can ensure image content confidential-

ity, because the used previous encryption strategy for DC
coefficients is proved to have a high security level [32],
and the AES is used to encrypt the AC As.

(2) It can achieve a large embedding capacity, since the data
embedding technique has a high efficiency to embed data
and the grouping method can greatly enhance the number
of embeddable blocks.

(3) Our RDH scheme can obtain the encrypted JPEG bit-
streams with both file size and format preservation,
because the encryption and data embedding processes
don’t destroy the data structure of JPEG format.

(4) The data extraction and image recovery are completely
separable, and the operations are commutative. This is
suitable for many applications.

(5) There is no pre-processing for image owners. The image
owners can encrypt their images using different encryp-
tion techniques. However, the encryption techniques can-
not change the order of the AC H s within each block.
Otherwise, the permutation-based embedding will be
ineffective.

VII. CONCLUSION

In this study, we propose an RDH scheme over encrypted
JPEG bitstreams to securely store and transmit JPEG bit-
streams. We first propose a permutation-based embedding
technique on an ordered sequence, which can embed more data
than previous data-embedding techniques. Using the proposed
embedding technique, we designed an RDH scheme over
JPEG bitstreams with a large embedding capacity. A grouping
method was used to boost the number of embeddable blocks
in the JPEG bitstreams. Because the encryption and data
embedding processes do not destroy the data structure of the
JPEG format, the proposed RDH scheme can preserve both
the file size and JPEG format. Performance evaluations show
that it ensures the image confidentiality and achieves a much
larger embedding capacity than existing schemes.

REFERENCES

[1] P. Puteaux and W. Puech, “An efficient MSB prediction-based method
for high-capacity reversible data hiding in encrypted images,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1670–1681, Jul. 2018.

[2] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible data hiding
in encrypted images by reserving room before encryption,” IEEE Trans.
Inf. Forensics Security, vol. 8, no. 3, pp. 553–562, Mar. 2013.

[3] W. Zhang, K. Ma, and N. Yu, “Reversibility improved data hiding in
encrypted images,” Signal Process., vol. 94, pp. 118–127, Jan. 2014.

[4] X. Cao, L. Du, X. Wei, D. Meng, and X. Guo, “High capacity reversible
data hiding in encrypted images by patch-level sparse representation,”
IEEE Trans. Cybern., vol. 46, no. 5, pp. 1132–1143, May 2016.

[5] X. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal
Process. Lett., vol. 18, no. 4, pp. 255–258, Apr. 2011.

[6] X. Zhang, “Separable reversible data hiding in encrypted image,”
IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 826–832,
Apr. 2012.

[7] J. Zhou, W. Sun, L. Dong, X. Liu, O. C. Au, and Y. Y. Tang, “Secure
reversible image data hiding over encrypted domain via key modulation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 441–452,
Mar. 2016.

[8] Y.-Q. Shi, X. Li, X. Zhang, H.-T. Wu, and B. Ma, “Reversible data
hiding: Advances in the past two decades,” IEEE Access, vol. 4,
pp. 3210–3237, 2016.

[9] X. Liao, K. Li, and J. Yin, “Separable data hiding in encrypted
image based on compressive sensing and discrete Fourier transform,”
Multimedia Tools Appl., vol. 76, no. 20, pp. 20739–20753, Oct. 2017.

[10] Z. Liu and C.-M. Pun, “Reversible data hiding in encrypted images using
chunk encryption and redundancy matrix representation,” IEEE Trans.
Dependable Secure Comput., vol. 19, no. 2, pp. 1382–1394, Mar. 2022,
doi: 10.1109/TDSC.2020.3011838.

[11] Y. Wang and W. He, “High capacity reversible data hiding in encrypted
image based on adaptive MSB prediction,” IEEE Trans. Multimedia,
vol. 24, pp. 1288–1298, 2022, doi: 10.1109/TMM.2021.3062699.

[12] R. Bhardwaj and A. Aggarwal, “An improved block based joint
reversible data hiding in encrypted images by symmetric cryptosystem,”
Pattern Recognit. Lett., vol. 139, pp. 60–68, Nov. 2020.

[13] Q. Lingfeng, C. Fan, Z. Shanjun, and H. He, “Cryptanalysis of
reversible data hiding in encrypted images by block permutation and
co-modulation,” IEEE Trans. Multimedia, vol. 24, pp. 2924–2937, 2022,
doi: 10.1109/TMM.2021.3090588.

[14] F. Khelifi, “On the security of a stream cipher in reversible data hiding
schemes operating in the encrypted domain,” Signal Process., vol. 143,
pp. 336–345, Feb. 2018.

[15] Y. Ke, M.-Q. Zhang, J. Liu, T.-T. Su, and X.-Y. Yang, “Fully homomor-
phic encryption encapsulated difference expansion for reversible data
hiding in encrypted domain,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 30, no. 8, pp. 2353–2365, Aug. 2020.

[16] B. Chen, X. Wu, W. Lu, and H. Ren, “Reversible data hiding in
encrypted images with additive and multiplicative public-key homomor-
phism,” Signal Process., vol. 164, pp. 48–57, Nov. 2019.

[17] M. Li and Y. Li, “Histogram shifting in encrypted images with public
key cryptosystem for reversible data hiding,” Signal Process., vol. 130,
pp. 190–196, Jan. 2017.

[18] P. Zheng and J. Huang, “Discrete wavelet transform and data expansion
reduction in homomorphic encrypted domain,” IEEE Trans. Image
Process., vol. 22, no. 6, pp. 2455–2468, Jun. 2013.

[19] G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 30–44, Apr. 1991.

[20] Z. Tang, M. Pang, C. Yu, G. Fan, and X. Zhang, “Reversible data hiding
for encrypted image based on adaptive prediction error coding,” IET
Image Process., vol. 15, no. 11, pp. 2643–2655, Sep. 2021.

[21] C. Yu, X. Zhang, G. Li, S. Zhan, and Z. Tang, “Reversible data
hiding with adaptive difference recovery for encrypted images,” Inf. Sci.,
vol. 584, pp. 89–110, Jan. 2022.

[22] C. Yu, X. Zhang, X. Zhang, G. Li, and Z. Tang, “Reversible data
hiding with hierarchical embedding for encrypted images,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 2, pp. 451–466, Feb. 2022.

[23] J. He, J. Chen, W. Luo, S. Tang, and J. Huang, “A novel high-capacity
reversible data hiding scheme for encrypted JPEG bitstreams,” IEEE
Trans. Circuits Syst. Video Technol., vol. 29, no. 12, pp. 3501–3515,
Apr. 2019.

[24] Z. Qian, H. Zhou, X. Zhang, and W. Zhang, “Separable reversible
data hiding in encrypted JPEG bitstreams,” IEEE Trans. Depend. Secur.
Comput., vol. 15, no. 6, pp. 1055–1067, Dec. 2018.

[25] Z. Qian, H. Xu, X. Luo, and X. Zhang, “New framework of reversible
data hiding in encrypted JPEG bitstreams,” IEEE Trans. Circuits Syst.
Video Technol., vol. 29, no. 2, pp. 351–362, Feb. 2019.

[26] Z. Qian and X. Zhang, “Lossless data hiding in JPEG bitstream,” J. Syst.
Softw., vol. 85, no 2, pp. 309–313, 2012.

[27] Y. Qiu, Z. Qian, H. He, H. Tian, and X. Zhang, “Optimized lossless
data hiding in JPEG bitstream and relay transfer-based extension,” IEEE
Trans. Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1380–1394,
Apr. 2021.

[28] C. Zhang, B. Ou, H. Tian, and Z. Qin, “Reversible data hiding in
JPEG bitstream using optimal VLC mapping,” J. Vis. Commun. Image
Represent., vol. 71, Aug. 2020, Art. no. 102821.

[29] Z. Qian, X. Zhang, and S. Wang, “Reversible data hiding in
encrypted JPEG bitstream,” IEEE Trans. Multimedia, vol. 16, no. 5,
pp. 1486–1491, Aug. 2014.

[30] J.-C. Chang, Y.-Z. Lu, and H.-L. Wu, “A separable reversible data
hiding scheme for encrypted JPEG bitstreams,” Signal Process., vol. 133,
pp. 135–143, Apr. 2017.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2020.3011838
http://dx.doi.org/10.1109/TMM.2021.3062699
http://dx.doi.org/10.1109/TMM.2021.3090588

1018 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023

[31] S. Sheidani, A. Mahmoudi-Aznaveh, and Z. Eslami, “CPA-secure
privacy-preserving reversible data hiding for JPEG images,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 3647–3661, 2021.

[32] J. He, S. Huang, S. Tang, and J. Huang, “JPEG image encryption with
improved format compatibility and file size preservation,” IEEE Trans.
Multimedia, vol. 20, no. 10, pp. 2645–2658, Oct. 2018.

[33] C. Zhang, J. Li, S. Wang, and Z. Wang, “An encrypted medical image
retrieval algorithm based on DWT-DCT frequency domain,” in Proc.
IEEE 15th Int. Conf. Softw. Eng. Res., Manage. Appl. (SERA), Jun. 2017,
pp. 135–141.

[34] S. Ong, K. Wong, and K. Tanaka, “Scrambling–embedding for JPEG
compressed image,” Signal Process., vol. 109, pp. 38–53, Apr. 2015.

[35] J. Long, Z. Yin, J. Lv, and X. Zhang, “Rotation based reversible data
hiding for JPEG images,” IETE Tech. Rev., vol. 33, no. 6, pp. 607–614,
2016.

[36] P. Bas, T. Filler, and T. Pevný, “‘Break our steganographic system’: The
ins and outs of organizing boss,” in Proc. Int. Workshop Inf. Hiding.
Berlin, Germany: Springer, 2011, pp. 59–70.

[37] W. Li and Y. Yuan, “A leak and its remedy in JPEG image encryption,”
Int. J. Comput. Math., vol. 84, no. 9, pp. 1367–1378, Sep. 2007.

[38] K. Minemura, Z. Moayed, K. Wong, X. Qi, and K. Tanaka, “JPEG image
scrambling without expansion in bitstream size,” in Proc. 19th IEEE Int.
Conf. Image Process., Sep. 2012, pp. 261–264.

[39] I. C. Dragoi and D. Coltuc, “On the security of reversible data hiding
in encrypted images by MSB prediction,” IEEE Trans. Inf. Forensics
Security, vol. 16, pp. 187–189, 2021.

Zhongyun Hua (Member, IEEE) received the B.S.
degree in software engineering from Chongqing Uni-
versity, Chongqing, China, in 2011, and the M.S.
and Ph.D. degrees in software engineering from the
University of Macau, Macao, China, in 2013 and
2016, respectively.

He is currently an Associate Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China.
He has published more than 60 papers on the subject,
receiving more than 3800 citations. His research

interests include chaotic systems, chaos-based applications, data hiding, and
multimedia security.

Ziyi Wang received the B.S. degree in computer
science and technology from Nankai University,
Tianjin, China, in 2016. He is currently pursuing
the M.S. degree in computer technology with the
Harbin Institute of Technology, Shenzhen, China.
His research interests include reversible data hiding
in encrypted JPEG bitstreams.

Yifeng Zheng received the Ph.D. degree in computer
science from the City University of Hong Kong,
Hong Kong, in 2019. He is an Assistant Professor
with the School of Computer Science and Tech-
nology, Harbin Institute of Technology, Shenzhen,
China. He worked as a Post-Doc with the Com-
monwealth Scientific and Industrial Research Orga-
nization (CSIRO), Australia, and the City University
of Hong Kong. His current research interests are
focused on security and privacy related to cloud
computing, the IoT, machine learning, and multime-

dia. His work has appeared in prestigious venues such as ESORICS, DSN,
ACM AsiaCCS, IEEE INFOCOM, IEEE ICDCS, IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING, IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, and IEEE TRANSACTIONS ON

SERVICES COMPUTING. He received the Best Paper Award in the European
Symposium on Research in Computer Security (ESORICS) in 2021.

Yongyong Chen (Member, IEEE) received the
B.S. and M.S. degrees from the Shandong Univer-
sity of Science and Technology, Qingdao, China,
in 2014 and 2017, respectively, and the Ph.D.
degree from the University of Macau, Macao,
in 2020. He is currently an Assistant Professor
with the School of Computer Science and Tech-
nology, Harbin Institute of Technology, Shenzhen,
China. He has published more than 30 research
papers in top-tier journals and conferences, includ-
ing IEEE TRANSACTIONS ON IMAGE PROCESS-

ING, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYS-
TEMS, IEEE TRANSACTIONS ON MULTIMEDIA, IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE TRANS-
ACTIONS ON GEOSCIENCE AND REMOTE SENSING, IEEE TRANSACT-
IONS ON COMPUTATIONAL IMAGING, IEEE JOURNAL OF SELECTED

TOPICS IN SIGNAL PROCESSING, Pattern Recognition, and ACM MM. His
research interests include image processing, data mining, and computer vision.

Yuanman Li (Member, IEEE) received the B.Eng.
degree in software engineering from Chongqing Uni-
versity, Chongqing, China, in 2012, and the Ph.D.
degree in computer science from the University of
Macau, Macao, in 2018.

From 2018 to 2019, he was a Post-Doctoral Fel-
low with the State Key Laboratory of Internet of
Things for Smart City, University of Macau. He is
currently an Assistant Professor with the College of
Electronics and Information Engineering, Shenzhen
University, Shenzhen, China. His current research

interests include data representation, multimedia security and forensics, com-
puter vision, and machine learning.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:14:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

