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Exponential Chaotic Model for Generating
Robust Chaos

Zhongyun Hua , Member, IEEE, and Yicong Zhou , Senior Member, IEEE

Abstract—Robust chaos is defined as the inexistence of peri-
odic windows and coexisting attractors in the neighborhood of
parameter space. This characteristic is desired because a chaotic
system with robust chaos can overcome the chaos disappear-
ance caused by parameter disturbance in practical applications.
However, many existing chaotic systems fail to consider the
robust chaos. This article introduces an exponential chaotic model
(ECM) to produce new one-dimensional (1-D) chaotic maps with
robust chaos. ECM is a universal framework and can pro-
duce many new chaotic maps employing any two 1-D chaotic
maps as base and exponent maps. As examples, we present nine
chaotic maps produced by ECM, discuss their bifurcation dia-
grams and prove their robust chaos. Performance evaluations
also show that these nine chaotic maps of ECM can obtain
robust chaos in a large parameter space. To show the practi-
cal applications of ECM, we employ these nine chaotic maps
of ECM in secure communication. Simulation results show their
superior performance against various channel noise during data
transmission.

Index Terms—Chaotic behavior, chaotic system, nonlinear
system, robust chaos, secure communication.

I. INTRODUCTION

CHAOS theory focuses on the chaotic behaviors that are
sensitive to the changes in initial states [1]. The chaotic

behavior was first noticed by Lorenz [2] in meteorology.
Subsequently, researchers have observed chaotic behaviors in
different types of natural and nonnatural phenomena, such
as the cluster of stars and the change of electricity [3], [4].
According to the definition in [5], a dynamical system
shows chaotic behaviors if it has the properties as follows:
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1) sensitivity to its initial states; 2) topological transitivity;
and 3) density of periodic orbits. With these unique proper-
ties, chaotic systems are widely studied and applied to many
applications [6]–[9], especially in data security [10]–[12] and
nonlinear control [13], [14]. This is because chaotic systems
have general characteristics with these applications [15]–[17].

When studying chaos theory and applying chaotic systems
to real applications, researchers have found that exist-
ing chaotic systems may have disadvantages in several
aspects [18]. First, chaos degradation may occur when chaotic
systems are digitized, because the precision of all the soft-
ware and hardware platforms is finite [19]. Theoretically, the
approaching states of a chaotic system locally oscillate in its
phase plane. However, they may overlap when being digitized
in real platforms. Then the chaotic behaviors may degrade
to regular behaviors [20]. The chaos degradation brings seri-
ously negative influences to the chaos-based applications [21].
Second, with the quick increment of computer ability and fast
development of chaos theory, many chaotic behaviors with low
degree of complexity can be estimated [22], [23]. The com-
monly used strategies of estimating chaotic behaviors are to
predict their chaotic signals [24] and to identify their initial
states [25]. In addition, existing chaotic systems may not have
robust chaos [26]. The robust chaos is extremely important
for many chaos-based applications, because a chaotic system
owning robust chaos can avoid the chaos degradation caused
by parameter perturbations [27], [28].

At present, many research works have focused on improv-
ing the chaos complexity of chaotic systems [29], [30].
These efforts can be classified into two types: 1) perturb-
ing the chaotic signals of chaotic systems and 2) designing
new chaotic systems. The first type of efforts can signifi-
cantly delay the chaos degradation. Deng et al. [31] proposed
a feedback control method to enhance the complexity of
chaotic signals. Li et al. [32] presented a reseeding mix-
ing technology to enlarge the periods of chaotic signals.
The reseeding concept is to remove the chaotic signals with
short periods from the system while the mixing concept
is to enlarge the periods of chaotic signals. The second
type of efforts can obtain new chaotic systems with higher
complexity [33], [34]. Huang et al. [35] introduced a grid
multiwing butterfly chaotic attractor, which is generated by
replacing the state variables in the Lorenz system using piece-
wise hysteresis functions. In [36], a unified approach was
proposed to design hyperchaotic systems with desired prop-
erty. Shen and Jia [37] first investigated the conditions of gen-
erating one-dimensional (1-D) discrete chaotic systems, and
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then constructed several new 1-D chaotic systems according
to these conditions. This article significantly contributes to
the development of discrete chaos. Although these efforts can
reduce the negative effects of chaotic systems in practical
applications, they still have some limitations. When using dif-
ferent technologies to perturb chaotic signals, the mathematical
equations and integrality of chaotic systems may be broken.
This leads the chaotic systems to lose some natural proper-
ties. For previous works of designing new chaotic systems,
they fail to consider the robust chaos and thus the constructed
chaotic systems cannot generate robust chaotic behaviors [33],
[37]–[39]. The robust chaos is a desired property for many
real applications. As a result, designing chaotic systems with
robust chaos is a meaningful and attractive research topic.

To obtain 1-D chaotic maps with robust chaos, this article
introduces an exponential chaotic model (ECM). Motivated by
the concept of exponential operation in arithmetic, ECM can
produce many new chaotic maps using 1-D chaotic maps as
base and exponent maps. Theoretical analysis, experimental
results, and real application are provided to prove the robust
chaos and complex chaotic behaviors of the new chaotic maps
generated by ECM. The contributions and novelty of this
article are summarized as follows.

1) We propose ECM as a universal framework. Employing
two 1-D chaotic maps as base and exponent maps, ECM
can produce many new 1-D chaotic maps with robust
chaos.

2) As examples, we present nine new chaotic maps gen-
erated by ECM. Theoretical analysis demonstrates their
robust chaos.

3) We quantitatively evaluate the chaotic maps of ECM
using Lyapunov exponent (LE), correlation dimension
(CD), and initial state sensitivity. Experiment results
show that these chaotic maps are sensitive to their ini-
tial states, and have robust chaotic behaviors in a large
parameter space.

4) To show the practical application of ECM, we apply the
nine chaotic maps of ECM to secure communication.
Simulation results indicate that these maps exhibit better
performance in resisting various channel noise than their
base and exponent maps.

The rest of this article is organized as follows. Section II
introduces three 1-D chaotic maps and the definition of robust
chaos. Section III presents the proposed ECM and analyzes
its dynamic properties. Section IV generates nine 1-D chaotic
maps of ECM as examples, analyzes their bifurcation dia-
grams and proves their robust chaos. Section V evaluates the
chaos complexity and performance of these chaotic maps of
ECM and Section VI investigates their application in secure
communication. Section VII concludes this article.

II. PRELIMINARIES

This section reviews the logistic, tent and sine maps that
are used as the base and exponent maps in the proposed ECM
in Section IV. The definition of robust chaos is also presented
as preliminary knowledge.

Fig. 1. Top row plots the bifurcation diagrams of the (a) logistic map, (b) tent
map, and (c) sine map, and the bottom row plots their LEs.

A. Existing 1-D Chaotic Maps

The logistic map is designed to describe the change of popu-
lation. By inputting a value within interval [0, 1], the output of
the logistic map can oscillate in this range. The mathematical
definition of the logistic map is described as

xi+1 = L(r, xi) = 4rxi(1 − xi). (1)

The variable r is a control parameter and it is on the
interval [0, 1].

The tent map obtains an output on the interval [0, 1]. It
stretches an input if the input is smaller than 0.5; otherwise,
it folds it. The mathematical equation of the tent map is
written as

xi+1 = T(r, xi) = 2r min{xi, 1 − xi}. (2)

The variable r is a control parameter and it is also on the
interval [0, 1].

The sine map is developed from the sine transform. By
scaling an input with π , the sine map transforms an input on
the interval [0, 1] into the same interval. It has the definition as

xi+1 = S(r, xi) = r sin(πxi) (3)

where variable r is a control parameter and it is also on the
interval r ∈ [0, 1].

Bifurcation diagram shows the occupied or approaching
states by a dynamical system with the increment of its con-
trol parameter(s). The top row of Fig. 1 shows the bifurcation
diagrams of the logistic, tent, and sine maps. The LE is an
indicator of chaos [40] and the bottom row of Fig. 1 shows
the LEs of the three chaotic maps. As can be seen, the logistic,
tent, and sine maps show chaos properties in the parame-
ter ranges [0.8925, 1], (0.5.1), and [0.8656, 1], respectively.
The logistic and sine maps have similar bifurcation diagrams,
because the Taylor series of sin(x) is a combination of polyno-
mials. However, the logistic and sine maps are totally different
chaotic maps with different definitions and behaviors.
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B. Definition of Robust Chaos

The robust chaos is defined as the inexistence of peri-
odic windows and coexisting attractors in the whole chaotic
range [26]. The existence of the periodic windows in chaotic
range indicates that a small change to the parameter will
destroy the chaos, implying frail chaos. A chaotic system own-
ing robust chaos can avoid the chaos degradation caused by
the electromagnetic interference, noise pollution and other per-
turbations to the system parameters. Thus, the robust chaos
is a desired property for chaos-based applications [41]. For
example, when a chaotic system is used to describe a physical
system, the robust chaos is required to correctly reflect whether
the physical system has chaotic behaviors, because the digi-
tized parameter is only an approximation of the real parameter
value [42]. According to [26], a dynamical system can gener-
ate robust chaos if it does not have stable periodic orbits and
has a unique chaotic attractor in the whole parameter space.
The robust chaos of a dynamical system can be verified using
strict mathematical theorem if it is differentiable.

First, we give the definition of 1-D discrete S-unimodal map,
which is described as Definition 1 [26, Definition 11.7].

Definition 1: A map f : I = [m, n] → I is S-unimodal on
I if it satisfies: 1) the function f (x) is of class C3; 2) f (m) =
f (n) = m; 3) f (x) has a unique local maximum at (m, n);
and 4) f (x) has a negative Schwarzian derivative for all x ∈
I − {y, f ′(y) = 0}.

Then the occurrence of robust chaos for a 1-D dis-
crete S-unimodal map can be described in Theorem 1
[26, Th. 11.12].

Theorem 1: Let ϕν(x) : I = [m, n] → I be a parametric
1-D discrete S-unimodal map with the unique maximum at
k ∈ (m, n) and ϕν(k) = n ∀ν ∈ (νmin, νmax). Then ϕν(x)
generates robust chaos for ν ∈ (νmin, νmax).

According to the property of the S-unimodal map
[26, Th. 11.1], the parametric S-unimodal map ϕν(x) for all
ν ∈ (νmin, νmax) follows that there is at most one attracting
periodic orbit with the critical point in its basin of the attrac-
tion. In this case, the orbit with initial value x0 = k maps in
two iterates to the fixed point x = m, because ϕν(k) = n and
ϕν(n) = m. The fixed point x = m is unstable because

|ϕ′
ν(m)| ≥ ϕν(k) − ϕν(m)

k − m
= n − m

k − m
> 1.

Thus, the map ϕν(x) does not have any stable periodic orbits
and there is a unique chaotic attractor. This indicates that
ϕν(x) can generate robust chaos for all ν ∈ (νmin, νmax).
One can also see detailed analysis and proof of Theorem 1
in [26, Ch. 11.2.1].

One can easily prove that the logistic map in (1) and sine
map in (3) are S-unimodal maps on the interval [0, 1] and
their unique maximum values can be obtained at x = 0.5.
However, there does not exist a parameter interval (νmin, νmax)

that satisfies L(ν, 0.5) = S(ν, 0.5) = 1 ∀ν ∈ (νmin, νmax).
Then, the logistic and sine maps cannot satisfy the require-
ments of Theorem 1 and they cannot generate robust chaos.
As the tent map in (2) is an unsmooth map and has a corner
at x = 0.5, Theorem 1 is not feasible to judge whether it has
robust chaos.

Fig. 2. Structure of ECM.

III. EXPONENTIAL CHAOTIC MODEL

This section presents the proposed ECM and discusses its
dynamic behaviors.

A. ECM

Motivated by the concept of exponential operation in arith-
metic, we propose ECM to produce new 1-D chaotic maps
using two 1-D chaotic maps as base and exponent maps. Fig. 2
presents the structure of ECM. As can be seen, the two maps
f (a, xi) and g(b, xi) are the base and exponent maps, respec-
tively, a and b are their control parameters, and c is a small
bias to balance the output of g(b, xi).

The mathematical representation of ECM is written as

xi+1 = E(xi) = f (a, xi)
ln(g(b,xi)+c). (4)

The outputs of ECM are generated in an iteration form. The
variable xi is simultaneously fed into the inputs of the base
map f (a, xi) and exponent map g(b, xi). The base part is the
output of f (a, xi) while the exponent part is the logarithm with
base e to the combination of the output of g(b, xi) and the
bias c.

Using one 1-D chaotic map as the base map and another
1-D chaotic map as the exponent map, ECM in (4) can achieve
the following properties.

1) Users have flexibility to produce a large number of 1-D
chaotic maps employing different combinations of the
base map f (a, xi) and exponent map g(b, xi).

2) The base map f (a, xi) and exponent map g(b, xi) can be
the identical or different 1-D chaotic maps. Even only
exchanging the settings of f (a, xi) and g(b, xi), ECM can
produce totally different chaotic maps, e.g., the TEL and
LET maps in Table I.

3) The chaotic maps of ECM have a larger cycle length
and can be less affected by digitization than their base
and exponent maps. Supposing that the cycle lengths
of the digitized base map f (x) and digitized exponent
map g(x) are p and q, respectively, the cycle length of
the digitized ECM E(x) = f (x)ln(g(x)+c) is the lowest
common multiple of p and q.

B. Fixed Point and Stability Analysis

The fixed point is important characteristic of a dynamical
system and it can reflect the dynamic property of the system.
Here, we calculate the fixed points of ECM and investigate
their stability. The fixed points of the dynamical system xi+1 =
f (xi) are the roots of the equation xi+1 = xi. Thus, the fixed
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TABLE I
CHAOTIC MAPS PRODUCED BY ECM IN (4) USING THE LOGISTIC, TENT, AND SINE MAPS AS THE BASE AND EXPONENT MAPS

logistic-exponent-logistic

logistic-exponent-sine

logistic-exponent-tent

sine-exponent-logistic

sine-exponent-sine

sine-exponent-tent

tent-exponent-logistic

tent-exponent-sine

tent-exponent-tent

points of ECM, denoted as x̃, are the roots of the following
equation:

x̃ = E(x̃) = f (a, x̃)ln(g(b,x̃)+c). (5)

The stability of a fixed point depends on the derivative J
of the dynamical system at that point. The fixed point is a
critical point and it is superstable when J = 0; it is stable
when 0 < |J| < 1; it is neutral when |J| = 1; and it is unstable
and the attractors closing to the point will escape from it when
|J| > 1. The derivative of ECM in (4) can be calculated as
follows:

J = df (a,xi)
ln(g(b,xi)+c)

dxi

= f (a, xi)
ln(g(b,xi)+c)(ln(g(b, xi) + c) ln(f (a, xi)))

′

= f (a, xi)
ln(g(b,xi)+c)

(
f ′(a, xi) ln(g(b, xi) + c)

f (a, xi)

+ g′(b, xi) ln(f (a, xi))

g(b, xi) + c

)
. (6)

Setting the base map f (a, xi) and exponent map g(b, xi) in (5)
and (6) as existing 1-D chaotic maps, one can calculate out the
fixed points and their related derivatives of the chaotic maps
generated by ECM, and then can further deduce the dynamic
behaviors of these chaotic maps.

IV. GENERATION OF NEW CHAOTIC MAPS

Setting the base and exponent maps as different 1-D chaotic
maps, ECM can produce many new chaotic maps. This sec-
tion produces nine chaotic maps of ECM employing the three
existing chaotic maps introduced in Section II-A, and analyzes
their bifurcation diagrams and robust chaos.

Table I lists the nine produced chaotic maps using ECM.
When the base map f (a, xi) and exponent map g(b, xi) are
chosen as an identical chaotic map, the chaotic map per-
forms exponential operation with itself to obtain a new chaotic
map, including the tent-exponent-tent (TET) map, logistic-
exponent-logistic (LEL) map, and sine-exponent-sine (SES)
map. When the base and exponent maps are selected as two
chaotic maps, swapping the base and exponent maps can result
in two completely different chaotic maps. For example, the
tent-exponent-logistic (TEL) and logistic-exponent-tent (LET)
maps. In addition, when two chaotic maps with similar behav-
iors are used in ECM, exchanging the settings of the base and
exponent maps, ECM can also produce new chaotic maps with
totally different chaotic behaviors. For example, the logistic-
exponent-sine (LES) and sine-exponent-logistic (SEL) maps.
All the chaotic maps of ECM have three control parameters a,
b, and c. The parameters a and b are from their corresponding
base and exponent maps, and they are on the interval [0, 1],
while the parameter c is a small bias of the system and it is
on the interval [2, 2.8]. This article investigates the behaviors
of these new chaotic maps in the parameter (b, c) space by
setting a = 1.
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Fig. 3. Bifurcation diagrams of the chaotic maps of ECM on the parameter
(b, c) space when a = 1. (a) LEL map. (b) LES map. (c) LET map. (d) SEL
map. (e) SES map. (f) SET map. (g) TEL map. (h) TES map. (i) TET map.

A. Bifurcation Diagram

The bifurcation diagram of a dynamical system can occupy
a portion of its phase space. A lower degree of density in the
bifurcation diagram indicates more uniform chaotic signals
of the corresponding dynamical system. Thus, the bifurca-
tion diagram can visually reflect the behavior of a dynamical
system.

Fig. 3 shows the bifurcation diagrams of these nine chaotic
maps of ECM on the parameter (b, c) space, where b ∈ [0, 1]
and c ∈ [2, 2.8]. One can observe that these nine chaotic
maps display complex chaotic behaviors in all the parame-
ter settings. Their output values uniformly distribute in the
whole output ranges. On the other hand, their base and expo-
nent maps have chaotic behaviors only in small parameter
ranges and their outputs cannot uniformly distribute, which
can be observed from their bifurcation diagrams in Fig. 1.
With uniform-distribution outputs, these new chaotic maps are
suitable for many applications such as pseudo-random number
generator.

A bifurcation structure can indicate how a dynamical system
leads to chaos. As can be observed from Fig. 1, the existing
logistic and sine maps have period-doubling bifurcation struc-
tures while the tent map has double-sided bifurcation structure
leading to chaos. Because the proposed ECM is an efficient
chaotification structure, the new chaotic maps produced by
ECM have robust chaotic behaviors in the entire parameter
space and they may not have obvious bifurcation structures
that lead to chaos. Their robust chaos will be theoretically

proved in the next section and experimentally analyzed using
the LE and CD in Figs. 5 and 6.

B. Robust Chaos

According to Section II-B, the robust chaos is explained
as the absence of periodic windows and coexisting attractors
in the neighborhood of parameter space. This section proves
that the nine chaotic maps of ECM in Table I can satisfy the
requirements of robust chaos in parameter b ∈ (0, 1) when
parameters a = 1 and c = 2.8. As the LEL, LES, SEL, and
SES maps are differentiable, we first use Theorem 1 to prove
their robust chaos.

Lemma 1: The LEL, LES, SEL, and SES maps on I =
[0, 1] → I are S-unimodal maps under the parameter b ∈
(0, 1) when a = 1 and c = 2.8.

Proof: The LEL, LES, SEL, and SES maps in Table I
are of class C3, because their third derivatives exist and are
continuous. Then condition 1 of Definition 1 is satisfied.

The LEL, LES, SEL, and SES maps satisfy that E(0) =
E(1) = 0, as their base maps, the logistic map L(r, x) and sine
map S(r, x) have L(r, 0) = L(r, 1) = S(r, 0) = S(r, 1) = 0.
Then condition 2 of Definition 1 is satisfied.

Next, we investigate the extreme values of the LEL, LES,
SEL, and SES maps under the parameter settings b ∈ (0, 1),
a = 1, and c = 2.8. The derivatives of the logistic map L(r, x)
and sine map S(r, x) are calculated as

L′(r, x) = 4r(1 − 2x) and S′(r, x) = r cos(πx)π. (7)

Both L(r, x) and S(r, x) have unique maximums at x = 0.5 on
(0, 1). For ∀r ∈ (0, 1), one can get

L′(r, 0.5) = S′(r, 0.5) = 0

L′(r, x), S′(r, x) > 0 for 0 < x < 0.5

L′(r, x), S′(r, x) < 0 for 0.5 < x < 1. (8)

According to the calculation in (6), the derivative of ECM at
x = 0.5 can be obtained as

J(0.5) = f (1, 0.5)ln(g(b,0.5)+2.8)

(
f ′(1, 0.5) ln(g(b, 0.5) + 2.8)

f (1, 0.5)

+ g′(b, 0.5) ln(f (1, 0.5))

g(b, 0.5) + 2.8

)
.

One can obtain that f ′(1, 0.5) = g′(b, 0.5) = 0, because the
base map f (1, x) and exponent map g(b, x) in the LEL, LES,
SEL, and SES maps are the L(r, x) or S(r, x). Then

J(0.5) = 0. (9)

When 0 < x < 1, f (1, x)ln(g(b,x)+2.8) > 0. This is
because f (1, x) and g(b, x) are L(r, x) or S(r, x), and 0 <

L(r, x), S(r, x) < 1. Then the sign of J(x) in (6) is the same
with that of the following equation:

� = f ′(1, x)(g(b, x) + 2.8) ln(g(b, x) + 2.8)

+ g′(b, x)f (1, x) ln(f (1, x)). (10)

Let the function H(x) = x ln(x). One can get that

H′(x) = 1 + ln(x).
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H′(x) < 0 when 0 < x < (1/e); H′(x) > 0 when
x > (1/e); and H′(1/e) = 0. Then the minimum of H(x) is
H(1/e) = −(1/e).

When 0 < x < 0.5, f (1, x), and g(b, x) satisfy that 0 <

f (1, x), g(b, x) < 1, because they are the L(r, x) or S(r, x) and
0 < L(r, x), S(r, x) < 1. Then one can obtain that

(g(b, x) + 2.8) ln(g(b, x) + 2.8) > 2.8 ln 2.8 > 2.8

f (1, x) ln(f (1, x)) ≥ 1

e
ln

(
1

e

)
= −1

e
. (11)

From (8), one can get that f ′(1, x), g′(b, x) > 0 when 0 < x <

0.5. Then � in (10) satisfies that

� > 2.8 f ′(1, x) − 1

e
g′(b, x) = δ(x).

As the base map f (1, x) and exponent map g(b, x) are logistic
map L(r, x) or sine map S(r, x), the δ(x) for the LEL, LES,
SEL, and SES maps when 0 < x < 0.5 are obtained as

δLEL(x) = 2.8 × 4(1 − 2x) − 1

e
× 4b(1 − 2x) > 0

δSES(x) = 2.8 × cos(πx)π − 1

e
× b cos(πx)π > 0

δLES(x) = 2.8 × 4(1 − 2x) − 1

e
× b cos(πx)π

δSEL(x) = 2.8 × cos(πx)π − 1

e
× 4b(1 − 2x).

The derivative of δLES(x) satisfies that δ′
LES(x) < 0 when 0 <

x < 0.5. Thus,

δLES(x) > δLES(0.5) = 0.

The derivative of δSEL(x) can be calculated as

δ′
SEL(x) = −2.8π2 sin(πx) + 8b

e
.

One can easily calculate out that when 0 < x < 0.5, only
one root x̂ exists in δ′

SEL(x) = 0 and δ′
SEL(0) > 0. Thus,

δSEL(x) strictly increases on x ∈ (0, x̂], and strictly decreases
on x ∈ [x̂, 0.5). Then

δSEL(x) > min{δSEL(0), δSEL(0.5)} = 0.

Thus, we can obtain that when 0 < x < 0.5, the � of the
LEL, LES, SEL, and SES maps have � = δ(x) > 0. Because
the sign of J(x) is the same with that of the �, one can obtain
that

J(x) > 0 for 0 < x < 0.5. (12)

When 0.5 < x < 1, one can get that g′(b, x), f ′(1, x) < 0
from (8). Using (11), the � in (10) satisfies that

� < 2.8 f ′(1, x) − 1

e
g′(b, x).

Using the same analysis with 0 < x < 0.5, we can obtain

J(x) < 0 for 0.5 < x < 1. (13)

Combining (9), (12), and (13), one can get that the LEL,
LES, SEL, and SES maps have unique local maximums at
x = 0.5 on (0, 1). Then condition 3 of Definition 1 is satisfied.

The Schwarzian derivative of ECM is defined as

S(E, x) = E ′′′(x)
E ′(x)

− 3

2

(E ′′(x)
E ′(x)

)2

.

According to the definitions of the LEL, LES, SEL, and SES
maps in Table I, one can calculate that when a = 1 and
c = 2.8, the Schwarzian derivatives of the LEL, LES, SEL, and
SES maps on x ∈ [0, 1] are negative for parameter b ∈ [0, 1]
except for the maximum point at x = 0.5. Then condition 4 of
Definition 1 is satisfied. Thus, all conditions of Definition 1
are satisfied and the LEL, LES, SEL, and SES maps are
S-unimodal maps on I = [0, 1] → I under b ∈ (0, 1) when
a = 1 and c = 2.8.

Lemma 2: The LEL, LES, SEL, and SES maps on I =
[0, 1] → I can generate robust chaos for parameter b ∈ (0, 1)

when a = 1 and c = 2.8.
Proof: Lemma 1 has stated that the LEL, LES, SEL,

and SES maps are S-unimodal maps on I = [0, 1] → I.
From (9), (12), and (13), one can get that the LEL, LES,
SEL, and SES maps have unique maximums at x = 0.5
for ∀b ∈ (0, 1). When a = 1, the maximums of the four
chaotic maps can be obtained as Emax

LEL(0.5) = Emax
LES(0.5) =

Emax
SEL(0.5) = Emax

SES (0.5) = 1 for ∀b ∈ (0, 1). This is because
their base maps, the logistic map L(r, x) and sine map S(r, x)
satisfy that L(1, 0.5) = S(1, 0.5) = 1. Thus, Theorem 1
is satisfied and the LEL, LES, SEL, and SES maps on
I = [0, 1] → I can generate robust chaos for b ∈ (0, 1) when
a = 1 and c = 2.8.

As the LET, SET, TEL, TES, and TET maps are piecewise
maps and are not differentiable, one cannot use Theorem 1
to analyze their robust chaos. However, their robust chaotic
behaviors can be analyzed using the stability of their fixed
points. Using (5) and (6), one can calculate out all fixed
points and the related derivatives of these chaotic maps listed
in Table I. Fig. 4 plots the calculated fixed points and the
related derivatives of these chaotic maps on parameter space
b ∈ (0, 1) when a = 1 and c = 2.8. As can be seen, these
nine chaotic maps have unique fixed points on (0, 1) and their
related absolute derivatives |J| > 1 for the whole parameter
space b ∈ (0, 1). Thus, all the nine chaotic maps do not have
stable periodic orbits and they own unique chaotic attractors in
the whole parameter space b, indicating that they have robust
chaotic behaviors.

V. PERFORMANCE EVALUATIONS

This section quantitatively evaluates the nine chaotic maps
of ECM in the parameter (b, c) space. The chaotic behaviors
are evaluated using the LE [40], CD [43], and initial state
sensitivity.

A. Lyapunov Exponent

The LE is a commonly used criterion to test the exis-
tence of chaos [40]. It can test the chaos of a dynamical
system from the deterministic equation(s). For two trajecto-
ries of a dynamical system starting from extremely close initial
states, the LE measures their average separation rate in every
unit time. Mathematically, the LE of the dynamical system
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Fig. 4. Fixed points x̃ and their related derivatives J(x̃) of the nine chaotic
maps of ECM. (a) LEL map. (b) LES map. (c) LET map. (d) SEL map.
(e) SES map. (f) SET map. (g) TEL map. (h) TES map. (i) TET map.

xi+1 = F(xi) is defined as

λF(x) = lim
n→∞

{
1

n
ln

∣∣∣∣F
n(x0 + ε) − Fn(x0)

ε

∣∣∣∣
}

(14)

where ε indicates a very small positive quantity. If F(·) is
differentiable, its LE can also be defined as

λF(x) = lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣F ′(xi)

∣∣
}

. (15)

A positive LE demonstrates that small changes in the
dynamical system’s initial states can lead to completely differ-
ent behaviors. Thus, one positive LE is an indicator of chaotic
behaviors if some other conditions (e.g., phase space com-
pactness) also meet [44]. A bigger positive LE means a faster
separation rate.

Our experiment uses the definition of LE to estimate the LEs
of different chaotic maps. When estimating the LEs, the first
100 iteration values of the chaotic maps are discarded. Fig. 5
plots the computed LEs of the chaotic maps in Table I with
respect to parameters b ∈ [0, 1] and c ∈ [2, 2.8] when a = 1.
The step sizes for b and c are 0.016 and 0.02, respectively. One
can see that the nine chaotic maps have positive LEs in all the
parameter (b, c) space, and their chaotic ranges are continuous.
On the other hand, their base and exponent maps have positive
LEs in only small chaotic ranges that are discontinuous. These
can be seen in Fig. 1. This indicates that these chaotic maps
produced by ECM have robust chaotic behaviors in a large
parameter space of b and c.

Fig. 5. LEs of the chaotic maps produced by ECM on the parameter (b, c)
space. (a) LEL map. (b) LES map. (c) LET map. (d) SEL map. (e) SES map.
(f) SET map. (g) TEL map. (h) TES map. (i) TET map.

B. Correlation Dimension

The CD is a type of fractal dimension. It is a metric to mea-
sure the space dimensionality occupied by a time series [43].
Different from the LE that tests the chaos from the determin-
istic equation(s), the CD can test the existence of chaos from
experimental data. For an embedding dimension e and a time
series {Si|i = 1, 2, . . . , N} generated by a chaotic system, the
CD is defined as

CD = lim
r→0

lim
N→∞

log Ce(r)

log r
(16)

where Ce(r) is the correlation integral that is defined by

Ce(r) = lim
N→∞

1

[N − (e − 1)	][N − (e − 1)	 − 1]

×
N−(e−1)	∑

i=1

N−(e−1)	∑
j=i+1

θ
(
r − |S̄i − S̄j|

)
(17)

where θ(α) is a step function. θ(α) = 1 if α ≥ 0 and θ(α) = 0
if α < 0. 	 is the time delay unit and it usually equals to 1 for
discrete-time system. The new time series {S̄t|t = 1, 2, 3, . . . , }
is derived from {Si|i = 1, 2, . . . , N} and is represented as

S̄t = (
St, St+	, St+2	, . . . , St+(e−1)	

)
t ∈ {1, 2, . . . , N − (e − 1)	}.

If it exists, the CD can also be presented as the gradient of
log Ce(r) against log r, namely

CD = lim
r→0

lim
N→∞

d(log Ce(r))/dr

d(log r)/dr
. (18)
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Fig. 6. CDs of the chaotic maps produced by ECM on the parameter (b, c)
space. (a) LEL map. (b) LES map. (c) LET map. (d) SEL map. (e) SES map.
(f) SET map. (g) TEL map. (h) TES map. (i) TET map.

A bigger CD indicates that a dynamical system can gener-
ate outputs occupying a larger dimensionality and thus its
attractors are more irregular.

Our experiments use the Grassberger–Procacciai algo-
rithm [45] to compute the CDs of time series generated by
different chaotic maps and Fig. 6 shows the computed CDs
of the nine chaotic maps with respect to parameters b ∈ [0, 1]
and c ∈ [2, 2.8] when a = 1. The step sizes for b and c
are 0.032 and 0.04, respectively. One can see that the chaotic
maps of ECM have positive CDs in all the parameter space of
b and c. The experimental results are consistent with the LE
results. This means that the chaotic maps of ECM have robust
chaotic behaviors from the viewpoints of experimental data.

C. Initial State Sensitivity

The most important and straightforward property of the
“chaos” is the initial state sensitivity [46], which means that
a dynamical system owing chaotic behaviors is sensitive to
the change of its control parameter(s) and initial value. The
initial state sensitivity can be measured using the correlation
coefficient (CC), which is defined as

CC(X, Y) = E[(Xt − μX)(Yt − μY)]

σXσY
(19)

where Xt and Yt are two sequences of data, μ is the mean
value, σ is the standard deviation, and E[.] is the expectation
function. The absolute CC closing to 1 means that the data
sequences Xt and Yt have high relationship, and vice versa.

For each of the nine chaotic maps produced by ECM, our
experiments are designed as follows.

Fig. 7. Chaotic trajectories S1 and S2, which are generated using initial states
(x0, b, c) = (0.1, 0.8, 2.1) and (x0, b, c) = (0.10001, 0.8, 2.1), respectively.
(a) LEL map. (b) LES map. (c) LET map. (d) SEL map. (e) SES map. (f) SET
map. (g) TEL map. (h) TES map. (i) TET map.

1) Generate a chaotic trajectory S1 of length 50 000 using
the initial state (x0, b, c) = (0.1, 0.8, 2.1).

2) Generate other three chaotic trajectories S2, S3, and S4 of
length 50 000. The used initial states have small changes
with the initial state of generating S1. Specifically, the
initial states for generating S2, S3, and S4 are (x0, b, c) =
(0.10001, 0.8, 2.1), (x0, b, c) = (0.1, 0.80001, 2.1), and
(x0, b, c) = (0.1, 0.8, 2.10001), respectively.

3) Calculate the correlation coefficient CC(S1, S2),
CC(S1, S3), and CC(S1, S4). Fig. 7 plots the first 40
states of chaotic trajectories S1 and S2 and Fig. 8 plots
the differences between S3 and S1, and between S4
and S1 in the first 40 states. As can be seen, when
the iteration increases, the small change in the initial
value or control parameters can result in significantly
different outputs. Table II shows the CCs of the nine
chaotic maps produced by ECM. One can see that all
the CCs approach to 0. These prove that the chaotic
maps of ECM are quite sensitive to their initial states.

VI. APPLICATION TO SECURE COMMUNICATION

Chaos is a natural candidate for secure communication, due
to its significant properties, such as the unpredictability and
ergodicity [47]. When chaotic maps are applied to secure com-
munication, the distribution of their chaotic signals greatly
affects the performance of resisting channel noise. As the
chaotic maps produced by ECM have uniformly distributed
chaotic signals, they are suitable for secure communication.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUA AND ZHOU: ECM FOR GENERATING ROBUST CHAOS 9

Fig. 8. Differences between S3 and S1, and between S4 and S1.
The chaotic trajectories S1, S3, and S4 are generated using initial states
(x0, b, c) = (0.1, 0.8, 2.1), (x0, b, c) = (0.1, 0.80001, 2.1), and (x0, b, c) =
(0.1, 0.8, 2.10001), respectively. (a) LEL map. (b) LES map. (c) LET map.
(d) SEL map. (e) SES map. (f) SET map. (g) TEL map. (h) TES map. (i) TET
map.

TABLE II
CCS OF CHAOTIC TRAJECTORIES OF THE NINE NEW CHAOTIC MAPS

Here, we use the reference-shifted differential chaos shift key-
ing (RS-DCSK) [48] to demonstrate the application of the
chaotic maps generated by ECM in secure communication.

A. RS-DCSK

The RS-DCSK is a kind of noncoherent frameworks [47]
and it is able to recover the information bits using the inner
correlation of the received signal. It can be divided into two

Fig. 9. Transmitter of the RS-DCSK.

Fig. 10. Receiver of the RS-DCSK.

parts: 1) the transmitter and 2) receiver. The transmitter is
to encode the information bits using chaotic sequences and
sends the transmission signal to the receiver, while the receiver
decodes the received signal to recover the information bits.

1) Transmitter: Fig. 9 shows the structure of the trans-
mitter in RS-DCSK. The signal is transmitted frame by
frame. A frame consists of two parts: 1) reference signal
and 2) information signal. Suppose the spread factor is M,
the reference signal is an M-length chaotic sequence gen-
erated by a chaotic generator, while the information signal
is obtained by modifying the reference signal using the
information bits. As can be seen from Fig. 9, the kth frame
contains two information bits, b2k and b2k+1. The information
signal for b2k is {x2kM+1, . . . , x2(k+1)M}, while the information
signal for b2k+1 is {x(2k+1/2)M+1, x(2k+1/2)M+2, . . . , x2(k+1)M ,
x2kM+1, . . . , x(2k+1/2)M}, which is obtained by circularly shift-
ing the reference signal of b2k by M/2. Subsequently, the
reference signal and information signal are modulated to
obtain the transmission signal si. In summary, the kth frame of
the transmission signal si(k) can be obtained by the following
equation:

si(k) =

⎧⎪⎪⎨
⎪⎪⎩

xi for 2kM < i ≤ (2k + 1)M
b2kxi−M+b2k+1xi−M/2√

2
for (2k + 1)M < i ≤

(
2k + 3

2

)
M

b2kxi−M+b2k+1xi−3M/2√
2

for
(

2k + 3
2

)
M < i ≤ (2k + 2)M.

(20)

2) Receiver: The receiver is to recover the information bits
and it is shown in Fig. 10. Because a signal may be blurred
by channel noise during transmission, the received signal is
different from the original transmission signal and it can be
described as ri = si + ξi, where ξi is the noise. To recover the
information bits, the received signal ri is multiplied with its
delayed signal ri−M and r∗

i−M . The signal r∗
i−M is obtained by

circularly shifting ri−M for M/2. Then two correlators can be
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Fig. 11. BERs of the RS-DCSK using different chaotic maps under various signal-noise-rates (SNRs) in the (a) AWGN channel and (b) ARN channel.

calculated as [48]

Z2k =
2(k+1)M∑

i=(2k+1)M+1

ri−Mri

= b2k√
2

2(k+1)M∑
i=(2k+1)M+1

x2
i−M + γ (21)

Z2k+1 =
2(k+1)M∑

i=(2k+1)M+1

r∗
i−Mri

= b2k+1√
2

2(k+1)M∑
i=(2k+1)M+1

x2
i−M + η (22)

where γ and η are noise components. As the energy
of noise component is far smaller than the energy
of the transmission signal si, the symbols of Z2k

and Z2k+1 are determined by the information com-
ponents, namely (b2k/

√
2)

∑2(k+1)M
i=(2k+1)M+1 x2

i−M and

(b2k+1/
√

2)
∑2(k+1)M

i=(2k+1)M+1 x2
i−M , respectively. The obtained

Zi is a positive number if the information bit is “1”; and Zi

is a negative number if the information bit is “−1”. Thus,
despite the noise components, the two information bits b2k

and b2k+1 can be recovered by

b̂n =
{

1 for Zn > 0
−1 for Zn ≤ 0.

(23)

B. Simulation Results

When data are transmitted in noisy transmission chan-
nels, the additive white Gaussian noise (AWGN) and additive
random noise (ARN) are frequently encountered. Thus, we
simulate the RS-DCSK in the AWGN and ARN channels
under different lengths of the spread factor. The bit error
rate (BER) between the original data and recovered data is
investigated to demonstrate the ability of resisting noise. The
chaotic generator is selected as the nine chaotic maps of ECM
in Table I and their base and exponent maps, respectively.
The original information in each simulation is a randomly
generated sequence with a 50 000-bit length.

TABLE III
CHAOTIC RANGES AND STEP SIZES FOR DIFFERENT CHAOTIC

MAPS IN OUR EXPERIMENTS

We design two groups of experiments to test the BERs of
RS-DCSK using different chaotic maps as the chaotic gen-
erator. The first group of experiments investigates the BERs
against different levels of noise. The experiments for each
chaotic map are set as follows.

1) Generate ten initial states. The initial value is set as
x0 = 0.2 and the ten control parameters are obtained
from the chaotic range. Specifically, for a chaotic range
(C1, C2) with a step size I, the mth control parameter is
C1 + mI. Table III lists the used chaotic ranges and step
sizes for all the chaotic maps.

2) Set the length of the spread factor M = 40 and then
simulate the RS-DCSK ten times using the ten initial
states, and obtain the BERs in different levels of AWGN
and ARN.

3) Calculate the average BERs of the ten times of exper-
iments. Fig. 11 shows the average BERs of RS-DCSK
using different chaotic maps in different levels of AWGN
and ARN.

The second group of experiments investigates the BERs
against different lengths of the spread factor M. The exper-
iments for each chaotic map are set as follows.

1) Generate ten initial states using the same way as the first
group of experiments.

2) Set the channel noise AWGN and ARN as 18 dB and
then simulate the RS-DCSK ten times using the ten
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Fig. 12. BERs of the RS-DCSK using different chaotic maps under various lengths of the spread factor M in the (a) AWGN channel and (b) ARN channel.

initial states, and obtain the BERs under different lengths
of the spread factor.

3) Calculate the average BERs of the ten times of exper-
iments. Fig. 12 shows the average BERs of RS-DCSK
using different chaotic maps under different lengths of
the spread factor M.

Fig. 11 shows that, with the increment of SNR in both
AWGN and ARN channels, the RS-DCSK using the nine
chaotic maps of ECM can obtain much smaller BERs than
that of using the logistic, sine, and tent maps. Fig. 12 shows
that, under various lengths of the spread factor, the RS-DCSK
using the nine chaotic maps of ECM can always achieve
much smaller BERs than that of using the three existing
chaotic maps. This is because the nine chaotic maps generated
by ECM can output much more uniform-distribution chaotic
signals than the logistic, sine, and tent maps, as shown in
Figs. 1 and 3. The transmission signals can achieve stronger
ability of resisting channel noise if the used chaotic signals
distribute more uniformly. As a result, the chaotic maps of
ECM exhibit high performance in secure communication.

VII. CONCLUSION

Robust chaos is a desired property for many chaos-based
applications. However, existing chaotic systems may not own
this property. To address this issue, this article introduced
an ECM to obtain new 1-D chaotic maps with robust chaos.
Motivated by the nonlinear property of exponential operation
in arithmetic, ECM employs two chaotic maps as base and
exponent maps to produce new chaotic maps. To show the
effectiveness of ECM, we used three existing chaotic maps
as the base and exponent maps to produce nine new chaotic
maps as examples. Theoretical analysis verified that these new
chaotic maps can generate robust chaos. Performance eval-
uations using LE, CD, and CC demonstrated that the nine
chaotic maps of ECM are sensitive to their initial states, and
have robust chaotic behaviors. To show ECM in real applica-
tions, we applied the nine chaotic maps of ECM as chaotic
generators in secure communication. The simulation results
showed that these new chaotic maps exhibit better performance
in resisting channel noise than their base and exponent maps.

Our future work will investigate the robust chaos of high-
dimensional chaotic systems and the application of robust
chaos in pseudo-random number generator.
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