
2642 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

FCDedup: A Two-Level Deduplication System for
Encrypted Data in Fog Computing

Mingyang Song , Zhongyun Hua , Senior Member, IEEE, Yifeng Zheng , Member, IEEE,
Tao Xiang , Senior Member, IEEE, and Xiaohua Jia , Fellow, IEEE

Abstract—Distributed fog computing has received increasing
attention recently and fog-assisted cloud storage can provide a
real-time service to collect and manage large-scale data for the
applications of Internet of Things. Encrypted data deduplication
over cloud storage can significantly save storage space of the
cloud server while protecting the confidentiality of the outsourced
data. Previous encrypted data deduplication schemes are mostly
designed for traditional cloud storage with a two-layer architecture
and cannot be applied to the emerging fog-assisted cloud storage
that has a more complex three-layer architecture (i.e., cloud server,
fog node and endpoint device). In this paper, we design, analyze and
implement FCDedup, a new encrypted data deduplication scheme
for fog-assisted cloud storage. FCDedup is a two-level deduplication
system that enables each fog node to detect duplicated encrypted
data uploaded by different endpoint devices, as well as enables
cloud server to detect duplicated encrypted data from different fog
nodes. By doing so, FCDedup can achieve both intra-deduplication
within a single data owner and inter-deduplication across different
data owners. FCDedup is also designed to prevent cloud server and
fog nodes launching the brute-force attacks, and to guarantee the
reliability of files downloaded from the cloud. Formal analysis is
provided to justify its deduplication correctness and security. Be-
sides, we implement a prototype of FCDedup using Alibaba Cloud
as backend storage. Our evaluations demonstrate that FCDedup
is completely compatible with existing cloud storage systems and
achieves modest performance overhead.

Manuscript received 3 February 2023; revised 2 June 2023; accepted 18
July 2023. Date of publication 25 July 2023; date of current version 4 August
2023. This work was supported in part by the National Key R&D Program
of China under Grant 2022YFB3103500, in part by the National Natural
Science Foundation of China under Grant 62071142, in part by Guangdong
Basic and Applied Basic Research Foundation under Grants 2021A1515110027,
2021A1515011406 and 2023A1515010714, in part by Shenzhen Sci-
ence and Technology Program under Grants RCBS20210609103056041
and JCYJ20220531095416037, in part by the Guangdong Provincial
Key Laboratory of Novel Security Intelligence Technologies under Grant
2022B1212010005, and in part by Shenzhen Science and Technology Program
under Grant ZDSYS20210623091809029. Recommended for acceptance by
V. Cardellini. (Corresponding author: Zhongyun Hua.)

Mingyang Song and Yifeng Zheng are with the School of Computer Science
and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055,
China (e-mail: songmingyang2022@gmail.com; yifeng.zheng@hit.edu.cn).

Zhongyun Hua is with the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, Guangdong 518055, China, and also
with the Guangdong Provincial Key Laboratory of Novel Security Intelligence
Technologies, Shenzhen 518055, China (e-mail: huazhongyun@hit.edu.cn).

Tao Xiang is with the College of Computer Science, Chongqing University,
Chongqing 400044, China (e-mail: txiang@cqu.edu.cn).

Xiaohua Jia is with the Department of Computer Science, City University
of Hong Kong, Kowloon Tong, Hong Kong, and also with the School of
Computer Science and Technology, Harbin Institute of Technology, Shenzhen,
Guangdong 518055, China (e-mail: csjia@cityu.edu.hk).

Digital Object Identifier 10.1109/TPDS.2023.3298684

Index Terms—Brute-force attacks, data reliability, encrypted
data deduplication, fog-assisted cloud storage.

I. INTRODUCTION

IN THE Big Data era, large volumes of digital data are
exponentially produced. To save storage costs, data owners

are more and more willing to outsource their data to cloud
servers for storage. However, many data stored on the cloud
are duplicated [1]. For example, the data duplication rates on
standard file systems are more than 50% [2] and on patient health
records can reach 75% [3], [4]. Thus, data deduplication can
help cloud service providers (CSP) to greatly reduce the storage
costs. Besides, the cloud storage users are concerned about the
confidentiality of their outsourced data, since these data may
contain many private information. Thus, they are willing to
encrypt their outsourced data before uploading them to cloud
server. As a result, data deduplication over encrypted domain is
significant for cloud server to reduce the storage costs and for
data owners to protect the data confidentiality.

Traditional two-layer cloud storage may be inefficient to
handle enormous volumes of data in a timely manner [5], [6] and
thus cannot provide a real-time service for some large-scale data
collection applications of Internet of Things (IoT) [7]. For exam-
ple, in a health monitoring system, the wearable medical sensors
generate medical data that are outsourced to the cloud servers
for storage and the authorized hospitals, doctors or patients can
download these data. Because the wearable medical sensors with
limited performance generate a large amount of medical data
continuously, it will cause heavy computation and bandwidth
costs to these sensors if directly uploading these data to the
cloud server [8], [9]. Fog computing is a distributed computing
infrastructure located between the cloud and endpoint devices,
and it has the advantages of low latency, location awareness, and
etc [10], [11], [12]. With these attractive features, three-layer
fog-assisted cloud storage can provide a real-time service for
collecting large-scale data [13], [14], [15]. In a fog-assisted
cloud storage system, endpoint devices (e.g., IoT devices) are
deployed at the edge of the network to collect data and outsource
the collected data to a cloud server for storage via fog nodes.
Since the fog nodes close to the endpoint devices share the data
processing and management costs for the endpoint devices dur-
ing data storage [13], some fog-assisted cloud storage systems
have been used to collect and manage large-scale data in a timely
manner [16].

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7870-2422
https://orcid.org/0000-0002-3529-0541
https://orcid.org/0000-0001-7852-6051
https://orcid.org/0000-0002-9439-4623
https://orcid.org/0000-0001-8702-8302
mailto:songmingyang2022@gmail.com
mailto:yifeng.zheng@hit.edu.cn
mailto:huazhongyun@hit.edu.cn
mailto:txiang@cqu.edu.cn
mailto:csjia@cityu.edu.hk

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2643

Fig. 1. System model of our proposed FCDedup.

Recently, many encrypted data deduplication schemes have
been developed for traditional cloud storage [17], [18], [19],
[20], [21], [22], [23], [24], [25] and these schemes can be roughly
divided into directly compatible schemes [17], [18], [19], [20]
and key server-assisted schemes [21], [22], [23], [24], [25] based
on whether additional key server is required or not. The first
category encrypts the outsourced data using the message-locked
encryption (MLE) [17], where the encryption key is derived
from the plaintext data itself and different users can encrypt an
identical data block into the same ciphertext for deduplication.
However, the deterministic MLE inherently suffers from the
brute-force attacks (BFA) [21]. To defense BFA, the second
category introduces additional key server(s) to participate in
generating encryption key, and thus can well protect the out-
sourced data. Existing encrypted data deduplicaiton schemes are
mostly designed for traditional cloud storage with a two-layer
architecture. However, fog-assisted cloud storage contains three
layers (i.e., cloud server, fog node and endpoint device) and
its architecture is more complex than traditional cloud storage.
Thus, it requires more ingenious design to perform encrypted
data deduplicaiton on fog-assisted cloud storage than on tra-
ditional cloud storage. It is also almost impossible to deploy
trusted key servers in fog computing since an endpoint device
only communicates with the near fog node in practice. Therefore,
these previous schemes are inapplicable to fog-assisted cloud
storage that has a different system architecture from traditional
cloud storage.

Besides, the data reliability verification should be specifically
designed in fog-assisted cloud storage, which is not considered
in previous encrypted data deduplication schemes. Since data
loss may happen on the cloud due to some objective reasons such
as hardware failure [26], a data owner should have the ability to
verify the consistency between his/her downloaded files with the
original files uploaded to the cloud. In traditional cloud storage, a
data owner can easily verify the data reliability, because he/she
is the data uploader and holds the correct file fingerprints for
verification. However, in fog-assisted cloud storage, the files are
uploaded by endpoint devices and it is difficult for a data owner to
obtain the correct data fingerprints from his/her endpoint devices

due to some practical reasons (e.g., the offline or failure of some
devices). Thus, verifying data reliability in the fog-assisted cloud
storage becomes challenging for the data owner.

To address the aforementioned problems in fog-assisted cloud
storage, we propose FCDedup, a new encrypted data dedupli-
cation scheme over fog-assisted cloud storage. We design a
two-level duplication detection mechanism that enables each
fog node to detect duplicated encrypted data uploaded by the
endpoint devices of the same data owner, and also enables the
cloud server to detect duplicated encrypted data from different
fog nodes belonging to the same or different data owners. By
doing so, FCDedup can achieve both intra-deduplication within
a single data owner and inter-deduplication across different data
owners. We develop a random encryption key sharing mecha-
nism that can allow all the data owners of an identical data block
to recover the random encryption key used by an endpoint device
while providing the ciphertext with a high ability to resist BFA.
Besides, we design a data verification mechanism to verify the
number and content of the downloaded files compared to the
files uploaded by the endpoint devices.

The contributions and novelty of this paper are summarized
as follows.
� We propose FCDedup, the first encrypted data deduplica-

tion scheme to achieve both intra-deduplication and inter-
deduplication on fog-assisted cloud storage. FCDedup can
perform secure deduplication at both fog nodes and cloud
server, and thus can greatly improve storage efficiency and
reduce communication overhead.

� We provide a data verification mechanism that allows a data
owner to verify the file content and file number between the
files downloaded from the cloud with the files uploaded by
the endpoint devices, which can guarantee the reliability
of files downloaded from the cloud.

� We formally prove the correctness of FCDedup and its
security guarantees. FCDedup is designed to be easily com-
patible with existing commercial cloud storage systems,
and we implement and evaluate a prototype of FCDedup
using Alibaba Cloud [27] as backend storage to demon-
strate such advantage.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

2644 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

TABLE I
IMPORTANT NOTATIONS

The remainder of this paper is organized as follows. Section II
describes the system model, threat model, and design goals and
challenges. Section III presents the details of our FCDedup.
Section IV provides the correctness and security proofs of
FCDedup. Section V implements a prototype of FCDedup in
a commercial cloud platform and evaluates its performance.
Section VI reviews some related works. Finally, we conclude
our study in Section VII.

II. PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, our system contains four types of entities:
data owner, endpoint device, fog node, and CSP.
� Data owner: A data owner is an institution or individual

that deploys many endpoint devices to collect data. The
data owner employs the CSP to store these collected data.

� Endpoint device: The endpoint devices are deployed by
data owners to collect data. The collected data are en-
crypted and then uploaded to the CSP via fog nodes.
Different endpoint devices may collect the same data.

� Fog node: The fog nodes are some public network infras-
tructures located at the edge of the network. They receive
encrypted data from the endpoint devices within their
coverage areas and forward the received data to the CSP.
A fog node detects duplicated encrypted data uploaded by
the endpoint devices of the same data owner (i.e., fog-level
deduplication).

� CSP: The CSP provides storage service for data owners.
It receives encrypted data from different fog nodes and
detects duplicated encrypted data belonging to the same or
different data owners (i.e., cloud-level deduplication).

B. Threat Model

The threats in our system are from the aspects of the fog nodes
and CSP, and we describe them as follows.
� Fog node: The fog nodes can honestly execute the prede-

fined protocols but are curious about the private content of
their received encrypted data. Specifically, the fog nodes
may launch BFA to guess the content of the received
ciphertext using the background knowledge of the plaintext
space.

� CSP: The CSP can honestly execute the predefined pro-
tocols but is also curious about the private content of its
received encrypted data. It may guess the private content
of the received ciphertext by launching BFA. Besides, the
encrypted data stored on the cloud may be lost or damaged
due to some objective reasons such as hardware failure. To
maintain its commercial reputation, it may deceive the data
owners (e.g., send the data owners forged data or claim that
the endpoint devices did not upload the data) when the data
are lost or damaged.

C. Design Goals and Challenges

1) Design Goals: Our FCDedup aims to perform encrypted
data deduplication over fog-assisted cloud storage and has the
following design goals.
� Functionality: The scheme supports both fog-level dedu-

plication and cloud-level deduplication. To achieve this,
we design a two-level duplication detection mechanism,
which enables each fog node to detect duplicated encrypted
data uploaded by the endpoint devices of the same data
owner and also enables the cloud server to detect duplicated
encrypted data from different fog nodes belonging to the
same or different data owners. As a result, our scheme can
achieve both intra-deduplication and inter-deduplication.

� Security: The security goals of our scheme include data
confidentiality and data reliability. (1) The data confi-
dentiality indicates that neither the CSP nor fog nodes
can obtain the private content of their received encrypted
data. (2) The data reliability contains file content reliability
and file number reliability, indicating that a data owner
can verify the file content and file number between the
downloaded files with the files uploaded by the endpoint
devices.

2) Design Challenges: To achieve the aforementioned de-
sign goals, the following questions should be considered and
addressed by special designs.
Q1 : How to achieve data deduplication at the fog nodes

and cloud server while ensuring a high data confidentiality?
To reduce the communication and storage costs as much as
possible in fog-assisted cloud storage, data deduplication should
be performed at both the fog nodes and cloud server. Since
the data tags used for duplication detection contain some de-
terministic information of the data (e.g., the deterministic hash
value of plaintext data), the CSP and fog nodes may use the data
tags to launch BFA. Thus, we should design a secure two-level
duplication detection mechanism, in which the used data tags
have the ability to resist BFA.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2645

Q2 : How to securely share an encryption key among an
endpoint device and the valid data owners? To improve data
security against BFA, previous secure deduplication schemes
either introduce additional key servers to participate in gener-
ating the encryption key or use random encryption keys [28].
However, it is almost impossible to deploy trusted key servers
in fog computing since an endpoint device (e.g., biomedical sen-
sors and environment monitoring sensors) only communicates
with the near fog node in practice. Thus, our scheme uses the
random encryption keys generated by the endpoint devices to
resist BFA. However, this causes a new challenging problem
that is securely sharing an encryption key among an endpoint
device and the valid data owners. Therefore, we should design an
encryption key generation and sharing mechanism, which allows
the valid data owners of an identical file to securely recover the
encryption key.
Q3 : How to verify the file number and file content between

the downloaded files with the files uploaded by the endpoint
devices? In fog-assisted cloud storage, the files are encrypted
and uploaded by the endpoint devices and the data owner does
not hold file fingerprints. It is also difficult for the data owners
to obtain the data fingerprints from their endpoint devices due to
some practical reasons (e.g., the offline or failure of some end-
point devices). Thus, a special mechanism should be designed
to allow a data owner to check the file content and file number
to guarantee the data reliability.

III. THE DESIGN OF FCDEDUP

A. Notations and Preliminaries

Suppose that there are δ data owners {Od}(1≤d≤δ) and β fog
nodes {Fb}(1≤b≤β), and a data ownerOd deploysα endpoint de-
vices {Dd,a}(1≤a≤α). Each endpoint device is registered under
a fog node according to its location. Table I lists the important
notations used in this paper.

1) Bilinear Pairing of Composite Order: Given a security
parameter κ, run the composite bilinear parameter generator
Gen(κ) and get (p, q,N,G1,G2, e), where p, q are κ-bit length
primes, N = p · q and e : G1 × G1 → G2 is a bilinear pair-
ing [29] with the following three properties:
� Bilinearity: ∀x, y ∈ G1 and ∀a, b ∈ ZN , e(xa, yb) =
e(x, y)ab.

� Non-degenerate: If g is a generator of G1, then e(g, g) is
a generator of G2.

� Computability: ∀x, y ∈ G1, there exists an efficient algo-
rithm for computing e(x, y) ∈ G2.

Definition 1 (The Computation Diffie-Hellman (CDH) as-
sumption [30]): Given g, gx and g1 ∈ G1, for unknown x ∈
ZN , there is no probabilistic polynomial-time algorithm that
can compute gx1 with non-negligible advantage.

Definition 2 (The Divisible Computation Diffie-Hellman
(DCDH) assumption [31]): Given g, gx and gy ∈ G1, there is
no probabilistic polynomial-time algorithm that can compute
gy/x with non-negligible advantage.

2) Hash Collision: A hash function can map a binary stream
of arbitrary length to a deterministic binary stream with a spec-
ified length. A hash function with long outputs has a stronger

ability to resist hash collision, while with short outputs may have
many collisions. Due to this property, a hash function with long
outputs is usually used to identify data, while with short outputs
is usually used to resist BFA [32].

B. Design Overview

Here, we present how to address the challenges described in
Section II-C2.

1) Two-Level Duplication Detection: A fog node may re-
ceive duplicated encrypted data from different endpoint devices
and the cloud server may also receive duplicated encrypted data
from different fog nodes. These duplicated encrypted data may
belong to the same data owner or different data owners. Thus,
deduplication at the fog nodes and cloud server can reduce the
communication and storage costs. Our system aims to perform
intra-deduplication, but does not perform inter-deduplication at
the fog nodes. This is because designing a secure cross-owner
duplication detection mechanism at the fog nodes may cause
heavy additional computation burden to the endpoint devices.
For practical considerations, the cross-owner duplicated en-
crypted data at each fog node are detected at the cloud server.
Besides, the cloud server further detects the duplicated encrypted
data from different fog nodes. As a result, our system aims to
perform intra-deduplication at the fog nodes and perform both
intra-deduplication and inter-deduplication at the cloud server.

The intra-deduplication at a fog node can be achieved by
designing a special fog-level data tag. Specifically, the fog-level
data tag is designed to involve both a data-related deterministic
value (e.g., the long hash value) and a secret value chosen
by a data owner in the setup process. When some endpoint
devices belonging to the same data owner upload the duplicated
encrypted data to a fog node, the fog node obtains the exactly
same fog-level data tags and thus can detect duplication. Since
the fog-level data tag contains a secret value chosen by the data
owner, it can efficiently prevent the fog node launching BFA.

To achieve both the intra-deduplication and inter-
deduplication at the cloud server, the cloud-level data tag
is designed to contain the signing key of the first fog node that
uploads the encrypted data, an random value and a data-related
deterministic value. The signing key is used to prevent the
cloud server launching BFA, the random value is chosen by the
endpoint device to prevent the fog node launching BFA, while
the data-related deterministic value is computed by the endpoint
device and it is used by the CSP to identify the duplicated
encrypted data.

When uploading a new data block, the endpoint device gener-
ates a short hash value and a base value that contains a random
value and the data-related deterministic value. The fog node
uses the short hash value to find the potential fog nodes that
may have uploaded the same data block by interacting with
the cloud server. A joint public key is computed between every
two fog nodes in the system initialization phase. Thus, when
finding some potential fog nodes, the fog node can compute a
tag for each potential fog node that contains the signing key
of the potential fog node and the base value. After receiving
these data tags, the cloud server compares each received data

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

2646 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

tag and its stored related cloud-level data tag. The duplication is
detected if their data-related deterministic values are the same.
If no duplication is detected, a cloud-level data tag is generated
for the current data block and stored on the cloud server.

2) Encryption Key Sharing: Our system should ensure that
either the cloud server or the fog node cannot derive the encryp-
tion key to prevent them launching BFA. To achieve this effect,
we design a random encryption key that consists of two random
values and the hash value of the plaintext. The first random
value is stored on the cloud server and the second one is stored
on the fog node during the first data uploading. After two-level
duplication detection, the endpoint device can know whether the
same data block has been stored or not. When the data has not
been uploaded, yet, the endpoint device sends the first random
value to the cloud server via the fog node and the second one
to the fog node using a public key cryptosystem. Besides, the
endpoint device encrypts the hash value of the plaintext using
the public key of the data owner and stores the encrypted hash
value on the cloud server via the fog node. The fog node encrypts
its stored random value using the public key of the data owner
and also stores the encrypted random value on the cloud server.

If data duplication has been detected, the subsequent endpoint
device encrypts the hash value of the plaintext using the public
key of the current data owner and stores the encrypted hash
value on the cloud. The system requires that the fog node first
uploading the data block encrypts its stored random value using
the public key of the current data owner and then sends the
generated encrypted random value to the cloud server.

As a result, for each ciphertext, the cloud server stores the
following information for each valid owner: the first random
value, the encrypted second random value and encrypted hash
value that are encrypted using the public key of the data owner.
When a data owner retrieves the data, the cloud server sends
these information to the data owner along with the ciphertext.
Note that the first random value is sent through public key
cryptography. Then the data owner can use his/her secret key
to recover the two random values and the hash value of the
plaintext. Thus, the encryption key can be recovered.

3) Data Reliability Verifying: The data owner should have
the ability to verify the file number and file content between the
files downloaded from the cloud server with the files uploaded
by his/her endpoint devices. A straightforward way is to check
whether the file fingerprints are matched or not. However, since
the files stored on the cloud server are encrypted and uploaded
by the endpoint devices, it is difficult for a data owner to obtain
file fingerprints from its endpoint devices due to some practical
reasons (e.g., the offline or failure of some devices).

To achieve this ability, our system requires an endpoint device
to generate verification auxiliary data for each collected file
using its secret key shared by the data owner in the setup process,
and store it on the cloud server during the data uploading. The
hash value of the plaintext is included in the auxiliary data in
encrypted form and it is used to verify the file content. Since the
cloud cannot obtain the secret key of the endpoint device, the
CSP cannot falsify content verification auxiliary data to deceive
the data owner when the encrypted data is lost. In the data
retrieval process, our scheme also requires the related fog node

to generate verification auxiliary data for the data owner to verify
the file number. The number of files uploaded by each endpoint
device is included in the verification auxiliary data in signature
form, which cannot be falsified by the CSP. Then file number
verification can be achieved.

C. System Initialization

1) Setup of the Cloud and Fog Nodes: The CSP initializes
some public parameters and its secret key using its security
parameter κ as follows.
� Run the composite bilinear parameter generator Gen(κ)

and obtain (p, q,N,G1,G2, e).
� Select a generator g ∈ G1, compute the public keyPKC =
gq , and set the secret key SKC = p.

� Select four hash functions H1 : {0, 1}∗ → ZN , H2 :
{0, 1}∗ → G1, H3 : G1 → {0, 1}λ, and H4 : {0, 1}∗ →
{0, 1}ι, where λ is the bit length of the encryption key
and ι is the bit length of short hash value.

The (PKC , N,G1,G2, g, e,H1, H2, H3, H4) are the public
parameters of the system. The secret key SKC and the prime q
are kept by the CSP.

A fog node Fb randomly chooses a secret key SKFb
∈

Z∗
N and computes its public key PKFb

= g
SK−1

Fb , which
is sent to all the entities. After obtaining the public keys
{PKFb′ }(1≤b′≤β,b �=b′) of the other β − 1 fog nodes, the
fog node Fb computes the joint public keys {UKb′,b =

PK
SKFb

Fb′
}(1≤b′≤β,b �=b′) and publishes {UKb′,b}(1≤b′≤β,b �=b′).

The secret key and joint public keys are used to generate cloud-
level data tags.

2) Setup of Data Owners: A data owner Od deploys some
endpoint devices {Dd,a}(1≤a≤α) in the system as follows.
� Randomly choose a secret key SKOd

∈ Z∗
N and compute

the public key PKOd
= gSKOd .

� Randomly choose a secret value SVOd
∈ Z∗

N .
� For each endpoint device Dd,a, the data owner randomly

chooses a secret key SKDd,a
∈ Z∗

N for it and computes a

registration ticket Rd,a = gSVOd
−SKDd,a .

The secret key SKDd,a
is kept by the endpoint device Dd,a

and the data owner. When the endpoint device is registered with
a fog node Fb, the data owner sends the registration ticket Rd,a

to the fog node Fb.
To better understand the proposed FCDedup, we provide an

example for the storage structure on the cloud and fog nodes in
Fig. 2. For the cloud, there are two index tables and metadata files
for storing data. The encrypted data blocks are stored indepen-
dently, and they are not included in Fig. 2. The index structure
DB(C,1) is used to index data blocks stored on the cloud. For
each data block, the CSP stores its following information in
sequence.
� Short hash: multiple data blocks may have the same short

hash value.
� Fog node: the fog node that first uploads the block.
� Data tag: the cloud-level data tag of the data block.
� Block index: the unique identifier of the block stored on the

cloud.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2647

Fig. 2. Storage structure of the CSP and fog nodes.

� Key share: a partial share of the encryption key that en-
crypts the data block.

The index structure DB(C,2) is used to record the file infor-
mation. For a file including multiple data blocks, the CSP stores
its following information in sequence.
� File order: the unique file order.
� Owner: the owner of the file.
� Fog node: the fog node that uploads the file.
� Device: the endpoint device that uploads the file.
� Metadata file link: each file has a metadata file that records

the verification auxiliary data generated by the endpoint
device, the unique indices of the file’s data blocks, and the
encrypted key shares of the file’s data blocks.

For a fog node, the index structure DB(F,1) is used to record
data blocks. For each data block, the fog node stores its following
information.
� Owner: the owner of the data block.
� Data tag: the fog-level data tag of the data block.
� Block index: the unique identifier of the data block stored

on the cloud.
� Key share: a partial share of the encryption key for the data

block.
Besides, the fog node also records the number of files up-

loaded by every endpoint device under its coverage area in the
index structure DB(F,2).

D. Two-Level Duplication Detection Mechanism

We design a two-level duplication detection mechanism,
which allows an endpoint device to determine whether the data to
be uploaded already exists on the cloud or not. The duplication
detection can be achieved through two phases (i.e., fog-level
duplication detection and cloud-level duplication detection).
Suppose that an endpoint device Dd,a prepares to upload a

file M = m1||m2|| · · · ||mn to the cloud via a fog node Fb,
the fog-level duplication detection and cloud-level duplication
detection are described as follows.

1) Fog-Level Duplication Detection: We present the details
of the fog-level duplication detection process as follows.

Endpoint device Dd,a: For each data block mi of M ,
the endpoint device Dd,a randomly selects ri ∈ ZN , and

computes gri and gSKDd,a
+H1(mi) · PKFb

ri . Then it sends
{gri , gSKDd,a

+H1(mi) · PKFb

ri}(1≤i≤n) to the fog node Fb.
Fog node Fb: For each data block, the fog node Fb computes
the fog-level data tag Tag

(f)
mi using (1). Then it determines

logical indices set Sf of non-duplicated data blocks by checking

whether {Tag(f)mi }(1≤i≤n) exists on the fog node or not. Finally,
the fog node sends the Sf to the endpoint device for further
cloud-level duplication detection

Tag(f)mi
= Rd,a · g

SKDd,a
+H1(mi) · PKFb

ri

g
ri·SK−1

Fb

= gSVOd
+H1(mi) (1)

2) Cloud-Level Duplication Detection: After obtaining the
non-duplicated data block logical indices set Sf , the endpoint
device Dd,a generates a short hash value shmi

= H4(mi) and
a base value bvmi

= H2(mi) · PKC
εi for each mi (i ∈ Sf),

where εi ∈ ZN is a random value. The endpoint device Dd,a

sends the {shmi
, bvmi

}(i∈Sf) to the fog node Fb. Then for each
i ∈ Sf , the fog node Fb interacts with the cloud to perform the
cloud-level duplication detection, which is described as follows.

Fog nodeFb: The fog nodeFb sends the short hash value shmi

to the cloud to find the potential fog nodes, which have uploaded
data owning the same short hash value shmi

.

CSP: The CSP retrieves the cloud-level data tags {Tag(c)mj} =

DB
(C,1)
Tag [shmi

] and the fog nodes {Fb′ } = DB
(C,1)
FN [shmi

] of

the data blocks {mj} from the data structure DB(C,1), and then
sends the potential fog nodes set {Fb′ } to the fog node Fb.

Fog node Fb: For each potential fog node Fb′ ∈ {Fb′ }, the

fog node Fb computes a data tag Tag(c)
mj

i

= e(bv
SKFb
mi , UKb,b′).1

Then the fog node Fb sends all the generated data tags {Tag(c)
mj

i

}
to the CSP.

CSP: For each potential duplicated data mj ∈ {mj}, the CSP

compares the received data tag Tag
(c)

mj
i

with the cloud-level data

tag Tag
(c)
mj using (2). If there is no such Tag

(c)

mj
i

and Tag
(c)
mj

satisfying the (2), mi is a non-duplicated block and the CSP sets
the Res = 0. Otherwise, mi already exists and the CSP sets the
Res = 1. The CSP sends the Res to the fog node Fb

(
Tag

(c)

mj
i

)SKC ?
=

(
Tag(c)mj

)SKC

(2)

If the Res = 0, the fog node Fb adds i into Sn. Finally, the
fog node Fb can obtain a set Sn to indicate non-duplicated data

1If Fb′ and Fb are the same fog node, the fog node Fb computes the data tag

Tag
(c)

m
j
i

= e(bv
SKFb
mi

, g).

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

2648 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

blocks. Then the set Se = Sf − Sn indicates duplicated data
blocks at cloud-level. The fog node Fb sends Se and Sn to the
endpoint device Dd,a.

E. Encryption Key Sharing Mechanism

We design an encryption key sharing mechanism to allow a
data owner to obtain the correct key when he/she downloads the
data. The detailed processes are described as follows.

Key generation: For a data block mi, the endpoint device
Dd,a chooses two random values γi,1, γi,2 ∈ ZN and generates
the encryption key as ski = H3(g

γi,1 · gγi,2 ·H2(mi)). Then it
encrypts mi using an existing symmetric encryption algorithm
(e.g., AES) as ci = Enc(ski,mi).

Key sharing: The endpoint device Dd,a shares the encryption
key of the data block mi as follows.
� The Dd,a selects two random values ε1, ε2 ∈ ZN

and encrypts the gγi,1 , gγi,2 to obtain ck
(c)
i = (gγi,1 ·

PKC
ε1 , gε1) and ck

(f)
i = (gγi,2 · PKFb

ε2 , gε2) using the
public keys of the CSP and fog node Fb, respectively.

� The Dd,a selects a random ε3 ∈ ZN and encrypts H2(mi)

using the public key of the data owner Od as ck
(o1)
i =

(H2(mi) · PKOd

ε3 , gε3).
� The Dd,a sends the ck

(f)
i to the fog node Fb and sends

ck
(o1)
i , ck(c)i to the CSP via the fog node Fb.

� The Fb decrypts the ck
(f)
i as (3) and stores gγi,2

gγi,2 =
gγi,2 · PKFb

ε2

g
ε2·SK−1

Fb

(3)

� TheFb selects a random ε4 ∈ ZN and encrypts the gγi,2 us-
ing the public key ofOd as ck(o2)i = (gγi,2 · PKOd

ε4 , gε4).

It then uploads the ck
(o2)
i to the CSP.

� The CSP decrypts the ck
(c)
i as (4) and then stores gγi,1 ,

ck
(o1)
i , and ck

(o2)
i

gγi,1 =
gγi,1 · PKC

ε1

gε1·q
(4)

Key recovery: When the data owner Od downloads the data,
the CSP selects a random value ε5 ∈ ZN and encrypts the gγi,1

to obtain the ck
(o3)
i = (gγi,1 · PKOd

ε5 , gε5) using the public

key of the data owner Od. Then the CSP sends ck
(o1)
i , ck(o2)i ,

and ck
(o3)
i to the data owner Od, and the data owner Od can

obtain the gγi,1 , gγi,2 and H2(mi) using (5), (6), and (7),
respectively. Finally, the data owner obtains the encryption key
ski = H3(g

γi,1 · gγi,2 ·H2(mi))

gγi,1 =
gγi,1 · PKOd

ε5

gε5·SKOd

(5)

gγi,2 =
gγi,2 · PKOd

ε4

gε4·SKOd

(6)

H2(mi) =
H2(mi) · PKOd

ε3

gε3·SKOd

(7)

The data owner can decrypt the ci using ski and obtain the
plaintext data mi = Dec(ski, ci).

F. Data Reliability Verifying Mechanism

We design the data reliability verification mechanism to allow
a data owner to verify the number and content of the downloaded
files compared to the files uploaded by his/her endpoint devices.

1) Auxiliary Data Generation: When uploading a file M =
m1||m2|| · · · ||mn to the CSP via the fog node Fb, the endpoint

device Dd,a computes the auxiliary data AD
(Dd,a)
M for its data

owner to verify file content as follows.
� The device Dd,a computes adM = H2(Od||Dd,a||ord) ·
H2(M), where the ord indicates the order of file uploaded
by the endpoint device Dd,a.

� The device Dd,a generates the auxiliary data AD
(Dd,a)
M =

(Od||Dd,a||ord, (adM)SKDd,a) and uploads AD(Dd,a)
M to

the CSP via the fog node Fb.
When the data owner accesses the data collected by Dd,a, the

data owner randomly selects δ ∈ ZN and sends (δ,Dd,a, Fb) to
the CSP. The CSP sends the (δ,Od, Dd,a) to the fog node. The
fog node Fb computes the auxiliary data for the data owner to
verify file number as follows.
� The fog node Fb retrieves the number fnDd,a

=

DB
(F,2)
FN [Dd,a] of the files uploaded by the device Dd,a

and computes adDd,a
= H2(Fb||Dd,a||fnDd,a

||δ).
� The fog node Fb generates AD

(Fb)
Dd,a

= (Fb||Dd,a||δ,
(adDd,a

)
SK−1

Fb) and sends AD(Fb)
Dd,a

to the CSP.
2) File Content Verifying: Suppose that the data owner Od

obtains the ciphertext C = c1||c2|| · · · ||cn and AD
(Dd,a)
M gener-

ated by the endpoint deviceDd,a. After decrypting the ciphertext
and obtaining the M ′ = m′

1||m′
2|| · · · ||m′

n, the data owner Od

computes the adM ′ = H2(Od||Dd,a||ord) ·H2(M
′) and veri-

fies the file content by checking whether the (8) holds

e
(
adM ′ , gSKDd,a

)
?
= e

(
(adM)SKDd,a , g

)
(8)

If the verification is valid, the downloaded C is consistent with
the file collected by the device Dd,a.

3) File Number Verifying: Suppose that the data owner Od

obtains fn∗
Dd,a

files uploaded by the endpoint device Dd,a, and

the auxiliary data AD
(Fb)
Dd,a

generated by the Fb from the CSP.
The data owner computes ad∗Dd,a

= H2(Fb||Dd,a||fn∗
Dd,a

||δ)
and verifies whether the (9) holds

e
(
ad∗Dd,a

, PKFb

)
?
= e

((
adDd,a

)SK−1
Fb , g

)
(9)

If the verification is valid, the number of downloaded files is
consistent with the number of files uploaded by the endpoint
device Dd,a.

G. Workflow of FCDedup

1) Workflow of Data Uploading: Suppose that an endpoint
device Dd,a collects a file M = m1||m2|| · · · ||mn and uploads
it to the cloud via the fog node Fb, the data uploading workflow
presents as follows.
� The endpoint device Dd,a, fog node Fb and the CSP per-

form two-level duplication detection as the description of
Section III-D. Then they can obtain a set Se indicating the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2649

logical indices of duplicated blocks at cloud-level and a set
Sn indicating the logical indices of non-duplicated blocks
at cloud-level. The endpoint device Dd,a and fog node Fb

can also obtain a set Sf indicating the logical indices of
non-duplicated blocks at fog-level, and a set Se′ indicating
the logical indices of duplicated blocks at fog-level, where
Se + Sn = Sf , Sf + Se′ = Su, and Su = {1, 2, . . ., n} is
the universe. To enable the CSP to construct the entire file,
for each duplicated block mi (i ∈ Se′) at fog-level, the fog
node Fb sends the unique block index bimi

to the CSP.
� For each non-duplicated block mi (i ∈ Sn), the device
Dd,a performs key generation and key sharing as the
description of Section III-E. The device Dd,a also sends
the data ciphertext to the cloud via the fog node Fb.
Besides, the fog node Fb computes the cloud-level tag

Tag
(c)
mi = e(bv

SKFb
mi , g) and sends it to the cloud.

� For each duplicated block mi (i ∈ Se + Se′), the device
Dd,a only uploads the encrypted data hash value ck

(o1)
i

to the CSP via Fb. The CSP sends the (Od, bimi
) to the

fog node Fb′ that first uploads the data block mi. Then Fb′

encrypts DB
(F,1)
KS [bimi

] using the public key of Od and

sends the ciphertext ck(o2)i to the CSP.
� The endpoint device Dd,a generates the auxiliary data

AD
(Dd,a)
M of the file M as the description of Section III-F

and uploads it to the CSP via the fog node Fb. Finally, the
CSP can generate a metadata file MFM of M by storing
Od, AD(Dd,a)

M , and {bimi
, ck

(o1)
i , ck

(o2)
i }(1≤i≤n) in it. The

metadata file is used by the cloud to reconstruct the entire
ciphertext file and also by the data owner to recover the
plaintext file and verify the file content in data retrieval
process.

2) Workflow of Data Retrieval: Suppose that a data owner
Od retrieves all the files collected by an endpoint device Dd,a

under the fog node Fb, the data retrieval workflow is described
as follows.
� The data owner Od randomly selects δ ∈ ZN and sends δ,
Dd,a and Fb to the CSP.

� For each file collected by the deviceDd,a, the CSP retrieves
the unique block indices {bimi

}(1≤i≤n), encrypted key

shares {ck(o1)i , ck
(o2)
i }(1≤i≤n) and file content verification

auxiliary data AD
(Dd,a)
M from the metadata file MFM ,

and then constructs the ciphertext file C = c1||c2|| · · · ||cn
using the indices {bimi

}(1≤i≤n). The CSP also retrieves

{gγi,1 = DB
(C,1)
KS [bimi

]}(1≤i≤n), and encrypts them to ob-

tain {ck(o3)i }(1≤i≤n) using the public key of the data owner.
Besides, the CSP sends (Od, Dd,a, δ) to the fog node Fb.

� The fog node Fb computes the auxiliary data AD
(Fb)
Dd,a

for
the endpoint device Dd,a as the description of Section II-

I-F1 and sends AD(Fb)
Dd,a

to the CSP.
� For each file collected by the endpoint deviceDd,a, the CSP

sends {ck(o1)i , ck
(o2)
i , ck

(o3)
i }(1≤i≤n), C and AD

(Dd,a)
M to

the data owner Od. Besides, the CSP also sends the auxil-
iary data AD(Fb)

Dd,a
generated by the fog node Fb to the data

owner.

� The data owner can first verify the file number as described
in Section III-F3. For each file C, the data owner can
recover the encryption key and decrypt the ciphertext as
the description of key recovery in Section III-E. Then the
data owner can verify the file content as the description of
Section III-F2.

IV. SCHEME ANALYSIS

A. Correctness

1) Fog-Level Duplication Detection: Suppose that an end-
point device Dd,a of the owner Od has uploaded a data block
mi to the fog node Fb. The endpoint device Dd,a has sent the

(gri , gSKDd,a
+H1(mi) · PKFb

ri) to the fog node Fb. Then the

Fb can obtain the fog-level data tag Tag
(f)
mi = gSVOd

+H1(mi)

using (1). When another endpoint device Dd,a′ of the owner Od

collects the data block m′
i and sends (gri

′
, g

SKD
d,a′ +H1(m

′
i) ·

PKFb

ri
′
) to the fog node Fb to detect duplication, the fog

node Fb can compute the Tag
(f)
m′

i
as (10), where Rd,a′ is the

registration ticket of Dd,a′ received from the owner Od

Tag
(f)
m′

i
=

g
SVOd

−SKD
d,a′ · gSKD

d,a′+H1(m
′
i) · gSK−1

Fb
·ri ′

g
ri ′ ·SK−1

Fb

= gSVOd
+H1(m

′
i) (10)

When the mi and m′
i are the same data, the Tag(f)mi equals to the

Tag
(f)
m′

i
. Then the fog node can detect that the endpoint devices

Dd,a and Dd,a′ upload the identical data block. Thus, the fog
node can detect duplicated data collected by a data owner’s
endpoint devices under its coverage area.

2) Cloud-Level Duplication Detection: Suppose that the fog
node Fb′ is the first fog node that uploads the data block mj

and it has uploaded a cloud-level data tag Tag
(c)
mj to the cloud.

When a fog node Fb uploads a data block mi, it computes a data
tag Tag

(c)

mj
i

, and the CSP detects duplication by comparing the

Tag
(c)
mj and Tag

(c)

mj
i

using (2). The CSP computes the two sides

of (2) as follows:
(
Tag

(c)

mj
i

)SKC

= e (H2(mi), g)
SKF

b′ ·SKC · e(g, g)εi·SKF
b′ ·p·q

= e (H2(mi), g)
SKF

b′ ·SKC

(
Tag(c)mj

)SKC

= e (H2(mj), g)
SKF

b′ ·SKC · e(g, g)εi ′ ·SKF
b′ ·p·q

= e (H2(mj), g)
SKF

b′ ·SKC

Obviously, the two sides of (2) are equal only when mi = mj .
Thus, the CSP can detect duplication through the (2).

B. Security

1) Data Confidentiality: Since the well-known AES-256 is
used to encrypt data and it is semantically secure, the adversary
can only obtain the file content through BFA. Given the plaintext

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

2650 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

space M = {m̂1, . . ., m̂τ}, the adversary of BFA aims to deter-
mine which data m̂t ∈ M corresponds to the targeted ciphertext
ci.

Attacks from CSP: First, we consider the BFA launched by the
CSP using its background knowledge. The ciphertext ci and the
cloud-level data tag Tag

(c)
mi = e((H2(mi) · PKC

εi)SKFb , g)
can be used by the CSP to launch BFA.

We first prove that the cloud-level data tag cannot be used by

the CSP to launch BFA. The CSP can compute (Tag(c)mi)
SKC

to
eliminate the random value and obtain e(H2(mi), g)

SKFb
·SKC .

To compute e(H2(m̂t), g)
SKFb

·SKC and compare it with
e(H2(mi), g)

SKFb
·SKC , the CSP needs to obtain either SKFb

or gSKFb . It is obvious that the CSP cannot obtain the secret
key SKFb

of the fog node. Furthermore, the complexity of

computing gSKFb from g, g
SK−1

F
b′ and g

SKFb
·SK−1

F
b′ equals to

that of solving the DCDH problem. However, according to
Definition 2, there is no probabilistic polynomial-time algorithm
to solve the DCDH problem. Thus, the CSP cannot launch BFA
using the tag.

Then we prove that the ciphertext ci cannot be used by the CSP
to launch BFA. The encryption key is ski = H3(g

γi,1 · gγi,2 ·
H2(mi)). Since the CSP only has gγi,1 , it cannot generate the
encryption key ŝkt = H3(g

γi,1 · gγi,2 ·H2(m̂t)) to encrypt m̂t

and compare the ciphertext ĉt with ci. Thus, the CSP cannot
launch BFA using the ciphertext.

Attacks from fog node: Next, we consider the BFA launched
by the fog node Fb that uploads the ciphertext ci. The fog-
level data tag Tag

(f)
mi = gSVOd

+H1(mi), the base value bvmi
=

H2(mi) · PKC
εi and the ciphertext ci can be used to launch

BFA. Since the fog node cannot obtain the SVOd
, it cannot

compute gSVOd
+H1(m̂t) and compare it with the Tag

(f)
mi . Thus,

the fog node Fb cannot launch BFA using Tag
(f)
mi . Since a

random item gq·εi is involved in bvmi
and the fog node cannot

eliminate the random item, the fog node also cannot launch BFA
using bvmi

. Besides, since the fog node only has gγi,2 , it cannot
generate the encryption key ŝkt = H3(g

γi,1 · gγi,2 ·H2(m̂t)),
and thus cannot encrypt m̂t to compare the ciphertext ĉt with
ci. Thus, the fog node cannot launch BFA using its known
information.

2) File Content Reliability: Assume that an endpoint device
Dd,a has uploaded a file M to the CSP via the fog node, and
the data owner Od obtains M ′ by decrypting the downloaded
ciphertext. As described in Section III-F, the data owner can get
the auxiliary data AD

(Dd,a)
M = (Od||Dd,a||ord, (adM)SKDd,a)

generated by the device Dd,a. We first prove that the auxiliary
data cannot be falsified by the CSP.

Theorem 1: If the CDH problem is hard in bilinear groups, no
adversary can falsify the auxiliary data generated by the endpoint
device.

Proof: The adversary can obtain the following infor-
mation: (adM)SKDd,a , Od, Dd,a and ord, where adM =
H2(Od||Dd,a||ord) ·H2(M). It aims to generate forged

AD
(Dd,a)
M ′ = (Od||Dd,a||ord, (adM ′)SKDd,a), where adM ′ =

H2(Od||Dd,a||ord) ·H2(M
′). For convenience, we use g1 and

g0 to replace adM ′ and adM , respectively. The complexity

of computing g1
SKDd,a from g0

SKDd,a and g1 equals to the
complexity of solving the CDH problem.

According to Definition 1, there is no probability polynomial-
time algorithm to solve the CDH problem. Thus, the adversary
cannot falsify the auxiliary data generated by the endpoint
device.

Then we prove that the data owner can verify file content
using the auxiliary data AD

(Dd,a)
M . The data owner verifies

the content reliability by checking whether (8) holds. The data
owner computes the two sides of (8) as follows:

e
(
adM ′ , gSKDd,a

)

= e (H2(Od||Dd,a||ord) ·H2(M
′), g)SKDd,a

e
(
(adM)SKDd,a , g

)

= e (H2(Od||Dd,a||ord) ·H2(M), g)SKDd,a

When M �= M ′, the two sides of (8) are not equal. Thus, the
data owner can verify the content reliability.

3) File Number Reliability: Assume that an endpoint device
Dd,a of the data owner Od has uploaded fnDd,a

files and the
CSP returns fn∗

Dd,a
files to Od in the retrieval process. As

described in Section III-F, the Od can get the auxiliary data

AD
(Fb)
Dd,a

= (Fb||Dd,a||δ, (adDd,a
)
SK−1

Fb) generated by the fog
node Fb. We first prove that the CSP cannot falsify the auxiliary
data.

Theorem 2: If the CDH problem is hard in bilinear groups,
no adversary can falsify the auxiliary data generated by the fog
node.

Proof: The adversary has the PKFb
= g

SK−1
Fb , Fb, Dd,a,

δ and fn∗
Dd,a

. It aims to generate the forged AD
(Fb)
Dd,a

∗
=

(Fb||Dd,a||δ, (ad∗Dd,a
)
SK−1

Fb) to pass the verification of the (9),
where ad∗Dd,a

= H2(Fb||Dd,a||fn∗
Dd,a

||δ). The complexity of

computing (ad∗Dd,a
)
SK−1

Fb from g
SK−1

Fb , g and ad∗Dd,a
equals to

that of solving the CDH problem.
According to Definition 1, there is no probability polynomial-

time algorithm to solve the CDH problem. Thus, the adversary
cannot falsify the auxiliary data.

Then we prove that the data owner can verify file number
using the auxiliary data AD

(Fb)
Dd,a

. The data owner verifies the
file number reliability by checking whether (9) holds. The data
owner computes the two sides of (9) as follows:

e
(
ad∗Dd,a

, PKFb

)
=e

(
H2

(
Fb||Dd,a||fn∗

Dd,a
||δ

)
, g
)SK−1

Fb

e
((

adDd,a

)SK−1
Fb , g

)
= e

(
H2

(
Fb||Dd,a||fnDd,a

||δ) , g)SK−1
Fb

When fn∗
Dd,a

�= fnDd,a
, the two sides of (9) are not equal.

Thus, a data owner can verify the file number reliability in our
FCDedup.

C. Discussion

Our FCDedup can be applied to many application scenarios
such as health monitoring shown in Fig. 3. In a health monitoring

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2651

Fig. 3. Health monitoring application scenario.

system, the wearable medical sensors (i.e., endpoint devices)
generate and send medical data to the cloud for storage through
fog nodes. The wearable medical sensors encrypt the collected
medical data to protect data confidentiality before uploading.
The data owners (e.g., the authorized hospitals or doctors) can
download these encrypted medical data and recover the original
content. Our FCDedup can offer benefits to this scenario in
terms of communication cost and storage cost. By performing
two-level duplication detection, both the fog nodes and cloud
can detect duplicated data blocks using the data tags before
uploading. For duplicated data blocks, the endpoint devices
or the fog nodes only need to transmit auxiliary information
instead of the entire block. Since medical data such as computed
tomography often contain many duplicated data blocks, our
FCDedup can significantly reduce the storage cost of the cloud
server and the bandwidth cost of the system.

Note that the number of fog nodes is not a bottleneck affecting
the efficiency of our system. Because only the generation of joint
public keys involves the pairwise communication between each
couple of fog nodes, which is only executed once at the system
initialization process. Once the joint public keys are generated,
they can be used directly in duplication detection without further
pairwise communication. Thus, our FCDedup can be applied to
a fog-assisted storage system with any number of fog nodes.

V. PERFORMANCE EVALUATION

A. Complexity Analysis

1) Computation Cost: Let hbp, henc, hdec, hm∗ , hh, he, hd,
ha, and heq denote the computation costs for a bilinear pairing
operation, one-time AES-256 encryption operation, one-time
AES-256 decryption operation, a multiplication operation over
G1, a hash operation, an exponentiation operation, a division
operation over G1, an addition operation over ZN , and an equal-
ity detection operation over two elements of G2, respectively.
Data uploading: The fog-level duplication detection causes
3he + hm∗ + hh + ha and hm∗ + he + hd computation cost to
the endpoint device and fog node, respectively. The cloud-level
duplication detection causes 2hh + hm∗ + he, he +Nocnhbp

and Nocn(2he + heq) computation cost to the endpoint device,

fog node and CSP, respectively, where Nocn is the number of
data blocks that have the same short hash value with the data
block to be uploaded. If the data block is duplicated, the endpoint
device only needs to encrypt the data hash value, which has a cost
of hh + 2he + hm∗ . If the data is non-duplicated, the endpoint
device needs to perform the key generation, encryption and key
sharing with a total cost of 2hh + 8he + 5hm∗ + henc. The fog
node retrieves its key share with a cost of hd + he and encrypts
the key share with a cost of 2he + hm∗ . The CSP also retrieves
its key share with a computation cost of hd + he.

Thus, for a duplicated block at fog-level, it causes 5he +
2hm∗ + 2hh + ha and hm∗ + he + hd computation cost to the
endpoint device and fog node, respectively. For a duplicated
block at cloud-level, it causes 6he + 3hm∗ + 4hh + ha, 2he +
hm∗ + hd +Nocnhbp, and Nocn(heq + 2he) computation cost
to the endpoint device, fog node, and CSP, respectively. For
a non-duplicated block, it causes 12he + 7hm∗ + 5hh + ha +
henc, 5he + 2hm∗ + 2hd +Nocnhbp, and Nocn(heq + 2he) +
he + hd computation cost to the endpoint device, fog node, and
CSP, respectively.

Data retrieval: we assume that a data owner retrieves Nof
files (each file has n data blocks) collected by an endpoint
device and analyze the computation cost. The CSP encrypts its
Nof · n key shares with a cost of Nof · n(2he + hm∗). The
fog node generates auxiliary data with a cost of hh + he. The
data owner checks the file number, recovers the decryption
keys, decrypts the Nof files, and checks the file content,
which causes Nof · n(3he + 3hd + 2hm∗ + hh + hdec) +
(Nof + 1)(2hbp + heq) + (2Nof + 1)hh +Nofhm∗ + he

computation cost to the data owner.
2) Communication Overhead: Data uploading: During the

fog-level duplication detection, the communication overhead
between the endpoint device and fog node is 2|G1| bits. During
the cloud-level duplication detection, the communication costs
of the endpoint device, fog node, and CSP are ι+ |G1| bits,
Nocn(|G2|+ |F |) + 2ι+ |G1| bits, andNocn(|F |+ |G2|) + ι
bits, respectively. For a non-duplicated data block, the sys-
tem should transfer two encrypted key shares, encrypted data
hash value, ciphertext and data owner information. This causes
6|G1|+ |c| bits, 12|G1|+ 2|c|+ |O| bits, and 6|G1|+ |c|+
|O| bits communication cost to the endpoint device, fog node,
and CSP, respectively. The CSP also needs to send a unique block
index with |bi| bits to the fog node. For a duplicated data block,
the system only transfers the encrypted data hash value and data
owner information. This causes 2|G1| bits, 4|G1|+ |O| bits, and
2|G1|+ |O| bits communication cost to the endpoint device, fog
node, and CSP, respectively. The CSP also needs to retrieve an
encrypted key share from the first fog node that uploads the data
block, which has a communication cost of |bi|+ |O|+ 2|G1|
bits. Besides, if the data block is duplicated at fog-level, the fog
node needs to send the block index with |bi| bits to the CSP.

Thus, for a duplicated data block at fog-level, the commu-
nication costs for the endpoint device, fog node and the CSP
are 4|G1| bits, 6|G1|+ |bi|+ |O| bits, and 4|G1|+ 2|bi|+ 2|O|
bits, respectively. For a duplicated data block at cloud-level,
the communication costs for the endpoint device, fog node and
CSP are 5|G1|+ ι bits, Nocn(|G2|+ |F |) + |O|+ 2ι+ 7|G1|

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

2652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

bits, and Nocn(|F |+ |G2|) + 4|G1|+ ι+ |bi|+ 2|O| bits, re-
spectively. For a non-duplicated data block, the communica-
tion costs for the endpoint device, the fog node and the CSP
are 9|G1|+ |c|+ ι bits,Nocn(|G2|+ |F |) + |O|+ |bi|+ 2ι+
15|G1|+ 2|c|bits, andNocn(|F |+ |G2|) + ι+ 6|G1|+ |bi|+
|O|+ |c| bits, respectively.

Data retrieval: We assume that a data owner retrieves Nof
files (each file hasn data blocks) collected by an endpoint device
and analyze the communication overhead. Transferring the data
downloading request and the file number verification auxil-
iary data causes |ZN |+ |D|+ |F |+ |ADD|bits, |ZN |+ |O|+
|D|+ |ADD| bits and 2|ZN |+ 2|D|+ |F |+ |O|+ 2|ADD|
bits communication costs to the data owner, the fog node and
the CSP, respectively. Transferring the ciphertext, key shares and
file content verification auxiliary data causes n ·Nof |c|+ 6n ·
Nof |G1|+Nof |ADM | bits communication cost to the data
owner and the CSP. Thus, data retrieval causes Nof (|ADM |+
n|c|+ 6n|G1|) + |ADD|+ |ZN |+ |D|+ |F | bits, |ADD|+
|ZN |+ |O|+ |D| bits, and Nof (|ADM |+ n|c|+ 6n|G1|) +
2(|ADD|+ |ZN |+ |D|) + |F |+ |O| bits communication cost
to the data owner, fog node, and CSP, respectively.

3) Storage Cost: We present the additional storage costs
of both the fog nodes and CSP, excluding the cost of data
ciphertexts. For a file with n blocks, the fog node stores the
fog-level tags, block indices, encryption key shares, and data
owner information, which causes 2n|G1|+ n|bi|+ n|O| bits
storage cost. The CSP stores the short hash values, upload-
ers information, block indices, encryption key shares, cloud-
level tags, owner information, link of metadata file and meta-
data file, which causes n(ι+ 2|bi|+ |G2|) + 5n|G1|+ (n+
1)|F |+ 2|O|+ |D|+ |Link|+ |ADM | bits storage cost. Com-
pared to the scheme in [33], FCDedup causes n(|G1|+ |bi|)
bits additional storage cost to the fog node and n · ι+ 5n|G1|+
|Link|+ |ADM | bits additional storage cost to the cloud. How-
ever, these additional storage costs are negligible compared to
the cost of ciphertexts. FCDedup achieves inter-deduplication
across different data owners, and thus has a lower overall storage
cost than the scheme in [33], which is illustrated in Section V-B2.

B. Simulation Evaluation

1) Prototype Implementation: We implement a prototype of
FCDedup using Alibaba cloud object storage service (Alibaba-
Cloud OSS) [27] as an implementation example.2 Our imple-
mentation relies on the OpenSSL Library [34], GNU Multiple
Precision Arithmetic (GMP) Library [35] and Pairing Based
Cryptography (PBC) Library [36]. Since other commercial
cloud storage systems such as Dropbox [37], Google Drive [38]
provide APIs similar to the AlibabaCloud OSS, our FCDedup
can also be compatible with them.

Fig. 4 shows the deploying structure of FCDedup and we use
the AlibabaCloud OSS as the cloud storage backend. The cloud
plugin program calls the APIs of AlibabaCloud OSS to perform
the storage and retrieval of ciphertexts and metadata files. We

2The experimental result data and source code of FCDedup prototype are
avaliable at https://github.com/MYSong6/FCDedup.

Fig. 4. Implementation of FCDedup using Alibaba cloud object storage ser-
vice (AlibabaCloud OSS).

utilize a windows laptop with 4 cores Intel Core i7-7560 U
processor (1.80 GHz) and 8 GB of memory to perform the
cloud plugin program. The fog plugins of FCDedup fog nodes
are implemented in a windows laptop with 4 cores Intel Core
i5-6200 processor and 8 GB of memory. The index structures
of the cloud and fog nodes are constructed using MySQL
database [39]. The programs of the endpoint devices and data
owners are implemented in a MacOS laptop with 2.00 GHz Intel
Core i5-1038NG7 processor and 16 GB of memory. All the
laptops are deployed in the same wireless LAN with 20 Mbps
bandwidth.

We set the bit length κ of the secure parameter as 128, the
bit length λ of the encryption key as 256, and the bit length ι
of the short hash value as 10. The block size is set as 64 KB.
The ID numbers of the fog nodes, endpoint devices, and data
owners are encoded using 20 bits. The block indices in the CSP
and fog nodes are encoded using 128 bits. Besides, we use the
AES-256 to encrypt data. Although, many secure deduplication
schemes have been developed for traditional cloud storage with
a two-layer architecture, they are inapplicable to the fog-assisted
cloud storage with three layers (i.e., cloud server, fog node and
endpoint device). We compare our scheme with the scheme
in [33] in experimental analysis, since only this scheme focuses
on secure deduplication in fog-assisted cloud storage, which
aligns with the context of our work. For easily presenting, we
simply refer to the scheme of Zhang et al. [33] as Zhang22 in
the subsequent description.

To evaluate the efficiency of our FCDedup at different dedu-
plciaton rates, We conduct experiments using five datasets (i.e.,
DB1-DB5) derived from LCTSC [40]. The DB1-DB5 datasets
were created by replicating the files in LCTSC dataset 1-5
times. Table II lists the key attributes of these datasets. In our
simulation, we consider four data owners and four fog nodes,
with each data owner deploying four endpoint devices under
each fog node. In the following experiments, each dataset is
sequentially divided into four subsets, ensuring an equal number
of files in each subset. Each subset is assigned to a specific data
owner and further divided into 16 parts, with each part containing

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/MYSong6/FCDedup

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2653

Fig. 5. Comparisons of actual time cost. (a) The average time cost per endpoint device during the data uploading process; (b) the average time cost per fog node
during the data uploading process; (c) the time cost of the cloud during the data uploading process; (d) the average time cost per data owner during the data retrieval
process.

TABLE II
EVALUATION DATASETS

the same number of files. Each part is uploaded by an endpoint
device belonging to the corresponding data owner.

2) Simulation Results: We evaluate the actual performance
of our implemented prototype.

Overall time cost: We evaluate the average time cost of the
FCDedup from the perspectives of the endpoint device, fog node,
CSP, and data owner.

We first measure the average time cost of the endpoint devices
during the data uploading process and Fig. 5(a) shows the
results. The FCDedup has a lower time cost than Zhang22 in
the five datasets. This is because FCDedup supports both intra-
deduplication within a single data owner and inter-deduplication
across different data owners, and the scheme Zhang22 supports
only intra-deduplication. Then the duplicated data blocks across
four data owners do not need to be encrypted and uploaded in
our FCDedup.

We then test the average time cost of the fog nodes during
the data uploading process and Fig. 5(b) shows the results.
Our FCDedup requires more computation time to achieve inter-
deduplication across different data owners compared to the
scheme Zhang22. However, it requires less communication time
since the duplicated blocks across four data owners do not need
to be uploaded. Besides, our FCDedup has a lower total time
cost than the scheme Zhang22.

Fig. 5(c) shows the time cost of the CSP during the data
uploading process. Our FCDedup has a very similar computation
time and a lower communication time compared to the scheme
Zhang22. Because the duplicated blocks across four data owners
do not need to be uploaded.

Finally, we test the average time cost of the data owners
during the data retrieval process, and Fig. 5(d) shows the results.
Our FCDedup has a slightly higher time cost than the scheme

Zhang22. This is because our FCDedup includes a data relia-
bility verification mechanism for the data owner, which is not
considered in the scheme Zhang22. The data owner in FCDedup
needs to download additional auxiliary data and verify data
reliability using these data, which causes additional time cost.

Bandwidth cost: We evaluate the bandwidth cost of our
FCDedup from the perspectives of the endpoint device, fog
node, and CSP, and Fig. 6 shows the results during the data
uploading process. The duplication detection and transmission
of ciphertexts and other auxiliary data cause bandwidth cost.
Compared to the scheme Zhang22, our FCDedup achieves much
lower bandwidth costs. This is due to the fact that our FCDedup
supports both intra-deduplication and inter-deduplication, while
the scheme Zhang22 only supports intra-deduplication. As a
result, duplicated data blocks across different data owners do
not need to be uploaded to the cloud in our FCDedup.

Storage cost: We evaluate the storage efficiency from the
perspectives of the fog nodes and CSP. As shown in Fig. 7(b),
FCDedup has a significantly lower cloud storage overhead
than the scheme Zhang22. Because FCDedup supports inter-
deduplication across different data owners and duplicate blocks
across four data owners do not need to be stored. As shown in
Figs. 7(a) and (b), both our FCDedup and the scheme Zhang22
require additional storage to achieve deduplication in both the
fog nodes and CSP. Our FCDedup has a slightly higher storage
cost for the additional data compared to the scheme Zhang22,
because the CSP and fog nodes store some specific data to
achieve data reliability verification, which is not considered
in the scheme Zhang22. However, the additional storage is
acceptable, since it only takes a small part of storage space
compared to the storage cost of ciphertexts.

VI. RELATED WORK

Secure data deduplication aims to improve cloud storage
efficiency while protecting data confidentiality through dedu-
plication over encrypted data. Existing standard symmetric en-
cryption algorithms cannot be used in secure deduplication,
since they encrypt an identical file into different ciphertexts by
users with different secret keys. To address this issue, Douceur
et al. [41] first proposed the principle of convergent encryption

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

2654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 6. Comparisons of bandwidth cost during the data uploading process. (a) The average bandwidth cost per endpoint device; (b) the average bandwidth cost
per fog node; (c) the bandwidth cost of the cloud.

Fig. 7. Comparisons of storage cost. (a) The actual storage cost per fog node;
(b) the actual storage cost of the cloud.

(CE), which derives the encryption key from the plaintext itself.
Then different users can encrypt an identical file to the same
ciphertexts for deduplication. After that, Bellare et al. [17]
formalized CE as the MLE that has been widely used in many
secure deduplication schemes [18], [19], [20], [42], [43], [44],
[45], [46]. However, the deterministic MLE inherently suffers
from offline BFA [21]. To improve the data confidentiality,
Bellare et al. [21] proposed DupLESS, which uses a key server to
participate in generating the encryption key. Then the cloud can-
not launch offline BFA. Later, some subsequent schemes [23],
[24], [25] use multiple key servers to mitigate the issues of a
single point of failure and efficiency bottleneck in single key
server system. Besides, the schemes in [2], [22] develop a new
multi-domain deduplication architecture over encrypted data.
The users under the same agent have the same secret parameters
and an agent first detects duplicated encrypted data among
users under the same domain. Then the CSP detects duplicated
encrypted data across multiple agents.

Most previous secure deduplicaiton schemes are designed for
traditional two-layer cloud storage and cannot be applied to the
emerging fog-assisted cloud storage with a three-layer architec-
ture. It is also almost impossible to deploy trusted key servers
in fog computing since an endpoint device only communicates
with the near fog node in practice. The schemes in [2], [22]
perform secure deduplication on multiple domains and can be
regarded as three-layer deduplicaiton schemes. However, they

TABLE III
FUNCTIONALITY COMPARISONS

are also designed for traditional cloud storage and all the users
in the same domain use a same secret parameter. In fog-assisted
cloud storage, the endpoint devices under the same fog node may
belong to different data owners and thus use different secret
parameters. Thus, these previous schemes are inapplicable to
fog-assisted cloud storage that has a different system architec-
ture from traditional cloud storage.

Recently, Zhang et al. [33] proposed the first secure dedupli-
cation scheme for fog-assisted cloud storage. This scheme can
achieve intra-deduplication within a single data owner at both
the fog node and cloud levels. However, there exists consid-
erable duplicated data across multiple data owners in practical
applications [1] and this scheme cannot perform deduplication
across different data owners. Table III summarizes the func-
tionalities of our FCDedup and the scheme Zhang22 in [33].
Our FCDedup is the first secure deduplication scheme that
supports both intra-deduplication and inter-deduplication while
providing encrypted data with the ability to resist BFA. Besides,
FCDedup is also designed to allow a data owner to verify the
file content and file number of the files downloaded from the
cloud and thus can guarantee the data reliability, which is not
considered in the scheme [33].

VII. CONCLUSION

In this paper, we propose the FCDedup to enable encrypted
data deduplication in fog-assisted cloud storage. A two-level
duplication detection mechanism is designed to enable each
fog node to detect duplicated encrypted data uploaded by the
endpoint devices of the same data owner and also enable cloud
server to detect duplicated encrypted data belonging to the same

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: FCDEDUP: A TWO-LEVEL DEDUPLICATION SYSTEM FOR ENCRYPTED DATA IN FOG COMPUTING 2655

or different data owners. Thus, FCDedup can achieve both intra-
deduplication within a single data owner and inter-deduplication
across different data owners. During the data storage, FCDedup
can provide the encrypted data with a high ability to resist BFA
launched by the fog node and CSP. Besides, a data verification
mechanism is provided to allow a data owner to verify the file
content and file number between the downloaded files with the
files uploaded by endpoint devices, which ensures the reliability
of the downloaded files. We theoretically prove the deduplication
correctness and security of FCDedup. Besides, we implement
a prototype of FCDedup using AlibabaCloud OSS as backend
cloud storage and the comprehensive evaluation results demon-
strate the efficiency of our design. Since it is common for the
endpoint devices of a data owner to upload a large number of
files to the cloud, it is time-consuming and inconvenient for the
data owner to verify these files individually, Our future work
aims to extend the functionality of our scheme by implementing
batch verification capabilities for the data owner.

REFERENCES

[1] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,” ACM
Trans. Storage, vol. 7, no. 4, pp. 1–20, 2012.

[2] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani, “Achieving
efficient and privacy-preserving multi-domain Big Data deduplication
in cloud,” IEEE Trans. Serv. Comput., vol. 14, no. 5, pp. 1292–1305,
Sep./Oct. 2021.

[3] Y. Fu, N. Xiao, T. Chen, and J. Wang, “Fog-to-multicloud cooperative
eHealth data management with application-aware secure deduplication,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 5, pp. 3136–3148,
Sep./Oct. 2022, doi: 10.1109/TDSC.2021.3086089.

[4] “Medical data,” 2020. [Online]. Available: https://academictorrents.com/
collection/medical

[5] I. Stojmenovic, “Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks,” in Proc. IEEE Australas.
Telecommun. Netw. Appl. Conf., 2014, pp. 117–122.

[6] D. Koo and J. Hur, “Privacy-preserving deduplication of encrypted data
with dynamic ownership management in fog computing,” Future Gener.
Comput. Syst., vol. 78, pp. 739–752, 2018.

[7] C. Zhu et al., “Folo: Latency and quality optimized task allocation
in vehicular fog computing,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4150–4161, Jun. 2019.

[8] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H.
Tenhunen, “Fog computing in healthcare Internet of Things: A case study
on ECG feature extraction,” in Proc. IEEE Int. Conf. Comput. Inf. Technol.;
Ubiquitous Comput. Commun.; Dependable, Autonomic Secure Comput.;
Pervasive Intell. Comput., 2015, pp. 356–363.

[9] H. Dubey, J. Yang, N. Constant, A. M. Amiri, Q. Yang, and K. Makodiya,
“Fog data: Enhancing telehealth Big Data through fog computing,” in Proc.
ASE Big Data Soc. Inform., 2015, pp. 1–6.

[10] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios and
security issues,” in Proc. IEEE Federated Conf. Comput. Sci. Inf. Syst.,
2014, pp. 1–8.

[11] S. Jiang, J. Liu, Y. Zhou, and Y. Fang, “FVC-Dedup: A secure report
deduplication scheme in a fog-assisted vehicular crowdsensing system,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2727–2740,
Jul./Aug. 2022, doi: 10.1109/TDSC.2021.3069944.

[12] A. Yang, J. Weng, K. Yang, C. Huang, and X. Shen, “Delegating authen-
tication to edge: A decentralized authentication architecture for vehicular
networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 1284–1298,
Feb. 2022.

[13] J.-S. Fu, Y. Liu, H.-C. Chao, B. K. Bhargava, and Z.-J. Zhang, “Secure
data storage and searching for industrial IoT by integrating fog comput-
ing and cloud computing,” IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4519–4528, Oct. 2018.

[14] S. He, B. Cheng, H. Wang, X. Xiao, Y. Cao, and J. Chen, “Data security
storage model for fog computing in large-scale IoT application,” in Proc.
IEEE Conf. Comput. Commun. Workshops, 2018, pp. 39–44.

[15] T. Wang, J. Zhou, X. Chen, G. Wang, A. Liu, and Y. Liu, “A three-layer
privacy preserving cloud storage scheme based on computational intel-
ligence in fog computing,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 3–12, Feb. 2018.

[16] T. S. Nikoui, A. M. Rahmani, and H. Tabarsaied, “Data management in
fog computing,” in Fog and Edge Computing: Principles and Paradigms,
Hoboken, NJ, USA: Wiley, 2019, pp. 171–190.

[17] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryp-
tion and secure deduplication,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptographic Techn., Springer, 2013, pp. 296–312.

[18] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure and
efficient cloud data deduplication with randomized tag,” IEEE Trans. Inf.
Forensics Secur., vol. 12, no. 3, pp. 532–543, Mar. 2017.

[19] S. Jiang, T. Jiang, and L. Wang, “Secure and efficient cloud data dedupli-
cation with ownership management,” IEEE Trans. Serv. Comput., vol. 13,
no. 6, pp. 1152–1165, Nov./Dec. 2020.

[20] L. Liu, Y. Zhang, and X. Li, “KeyD: Secure key-deduplication with
identity-based broadcast encryption,” IEEE Trans. Cloud Comput., vol. 9,
no. 2, pp. 670–681, Second Quarter 2021.

[21] S. Keelveedhi, M. Bellare, and T. Ristenpart, “DupLESS: Server-aided
encryption for deduplicated storage,” in Proc. 22nd USENIX Secur. Symp.,
2013, pp. 179–194.

[22] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-aided encryption
for secure deduplication in cloud storage,” IEEE Trans. Serv. Comput.,
vol. 13, no. 6, pp. 1021–1033, Nov./Dec. 2020.

[23] Y. Duan, “Distributed key generation for encrypted deduplication: Achiev-
ing the strongest privacy,” in Proc. 6th Ed. ACM Workshop Cloud Comput.
Secur., 2014, pp. 57–68.

[24] Y. Zhang, C. Xu, N. Cheng, and X. Shen, “Secure password-
protected encryption key for deduplicated cloud storage systems,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2789–2806,
Jul./Aug. 2022.

[25] M. Miao, J. Wang, H. Li, and X. Chen, “Secure multi-server-aided data
deduplication in cloud computing,” Pervasive Mobile Comput., vol. 24,
pp. 129–137, 2015.

[26] G. Anthoine et al., “Dynamic proofs of retrievability with low server
storage,” in Proc. 30th USENIX Secur. Symp., 2021, pp. 537–554.

[27] “Alicloud,” 2019. [Online]. Available: https://www.aliyun.com/product/
oss

[28] Y. Shin, D. Koo, and J. Hur, “A survey of secure data deduplication
schemes for cloud storage systems,” ACM Comput. Surveys, vol. 49, no. 4,
pp. 1–38, 2017.

[29] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of Cryptography Conference. Springer, 2007,
pp. 535–554.

[30] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” J. cryptol., vol. 17, no. 4, pp. 297–319, 2004.

[31] F. Bao, R. H. Deng, and H. Zhu, “Variations of Diffie-Hellman problem,”
in Proc. Int. Conf. Inf. Commun. Secur., Springer, 2003, pp. 301–312.

[32] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted data
without additional independent servers,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., 2015, pp. 874–885.

[33] C. Zhang, Y. Miao, Q. Xie, Y. Guo, H. Du, and X. Jia, “Privacy-preserving
deduplication of sensor compressed data in distributed fog computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4176–4191,
Dec. 2022, doi: 10.1109/TPDS.2022.3179992.

[34] “OpenSSL,” 2019. [Online]. Available: https://www/openssl.org/
[35] T. Granlund, “GNU multiple precision arithmetic library,” 2010. [Online].

Available: http://gmplib.org/
[36] “PBC library,” 2010. [Online]. Available: https://crypto.stanford.edu/pbc/
[37] “Dropbox,” 2007. [Online]. Available: https://www.dropbox.com
[38] “Google drive,” 2014. [Online]. Available: http://drive.google.com
[39] “Mysql,” 2008. [Online]. Available: https://dev.mysql.com
[40] “LCTSC dataset,” 2017. [Online]. Available: https://academictorrents.

com/details/0a3611528c9172383656cb1b6a07cfb7f095eb82
[41] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,

“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proc. IEEE 22nd Int. Conf. Distrib. Comput. Syst., 2002,
pp. 617–624.

[42] G. Tian et al., “Blockchain-based secure deduplication and shared
auditing in decentralized storage,” IEEE Trans. Dependable Se-
cure Comput., vol. 19, no. 6, pp. 3941–3954, Nov./Dec. 2022,
doi: 10.1109/TDSC.2021.3114160.

[43] X. Liu, W. Sun, W. Lou, Q. Pei, and Y. Zhang, “One-tag checker: Message-
locked integrity auditing on encrypted cloud deduplication storage,” in
Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TDSC.2021.3086089
https://academictorrents.com/collection/medical
https://academictorrents.com/collection/medical
https://dx.doi.org/10.1109/TDSC.2021.3069944
https://www.aliyun.com/product/oss
https://www.aliyun.com/product/oss
https://dx.doi.org/10.1109/TPDS.2022.3179992
https://www/openssl.org/
http://gmplib.org/
https://crypto.stanford.edu/pbc/
https://www.dropbox.com
http://drive.google.com
https://dev.mysql.com
https://academictorrents.com/details/0a3611528c9172383656cb1b6a07cfb7f095eb82
https://academictorrents.com/details/0a3611528c9172383656cb1b6a07cfb7f095eb82
https://dx.doi.org/10.1109/TDSC.2021.3114160

2656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

[44] J. Li, Y. K. Li, X. Chen, P. P. Lee, and W. Lou, “A hybrid cloud approach
for secure authorized deduplication,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 5, pp. 1206–1216, May 2015.

[45] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo, “Blockchain-
based public auditing and secure deduplication with fair arbitration,” Inf.
Sci., vol. 541, pp. 409–425, 2020.

[46] J. Li, J. Li, D. Xie, and Z. Cai, “Secure auditing and deduplicating data in
cloud,” IEEE Trans. Comput., vol. 65, no. 8, pp. 2386–2396, Aug. 2016.

Mingyang Song received the BE and ME degrees
in software engineering from Sun Yat-sen University,
Guangzhou, China, in 2019 and 2021, respectively.
He is currently working toward the EngD degree with
the Department of Electronic Information, Harbin
Institute of Technology, Shenzhen. His research in-
terests include security and privacy related to cloud
computing, applied cryptography, and blockchain.

Zhongyun Hua (Senior Member, IEEE) received the
BS degree in software engineering from Chongqing
University, Chongqing, China, in 2011, and the MS
and PhD degrees in software engineering from the
University of Macau, Macau, China, in 2013 and
2016, respectively. He is currently an associate pro-
fessor with the School of Computer Science and Tech-
nology, Harbin Institute of Technology, Shenzhen,
China. His works have appeared in prestigious venues
such as IEEE Transactions on Dependable and Secure
Computing, IEEE Transactions on Image Processing,

IEEE Transactions on Signal Processing, IEEE Transactions on Multimedia,
and ACM Multimedia. He has been recognized as a ’Highly Cited researcher
2022’. His current research interests are focused on chaotic system, multimedia
security, and secure cloud computing. He has published about seventy papers
on the subject, receiving more than 5300 citations.

Yifeng Zheng (Member, IEEE) received the PhD
degree in computer science from the City Univer-
sity of Hong Kong, Hong Kong, in 2019. He is an
assistant professor with the School of Computer Sci-
ence and Technology, Harbin Institute of Technology,
Shenzhen, China. He worked as a postdoc with the
Commonwealth Scientific and Industrial Research
Organization (CSIRO), Australia and City University
of Hong Kong. His work has appeared in prestigious
venues such as ESORICS, DSN, ACM AsiaCCS,
IEEE INFOCOM, IEEE ICDCS, IEEE Transactions

on Dependable and Secure Computing, IEEE Transactions on Information
Forensics and Security, and IEEE Transactions on Services Computing. He
received the Best Paper Award in the European Symposium on Research in
Computer Security (ESORICS) 2021. His current research interests are focused
on security and privacy related to cloud computing, IoT, machine learning, and
multimedia.

Tao Xiang (Senior Member, IEEE) received the
BEng, MS and PhD degrees in computer science from
Chongqing University, China, in 2003, 2005, and
2008, respectively. He is currently a professor with the
College of Computer Science, Chongqing University.
His research interests include multimedia security,
cloud security, data privacy and cryptography. He
has published more than 150 papers on international
journals and conferences. He also served as a referee
for numerous international journals and conferences.

Xiaohua Jia (Fellow, IEEE) received the BSc and
MEng degrees from the University of Science and
Technology of China, in 1984 and 1987, respectively,
and the DSc degree in information science from the
University of Tokyo, in 1991. He is currently the chair
professor with the Department of Computer Science,
City University of Hong Kong. He is an adjunct
in Harbin Institute of Technology, Shenzhen while
performing this work. His research interests include
cloud computing and distributed systems, computer
networks and mobile wireless networks. He is the

general chair of ACM MobiHoc 2008, area-chair of IEEE INFOCOM 2010, TPC
co-chair of IEEE GlobeCom 2010-Ad Hoc and Sensor Networking Symposium,
and Panel co-chair of IEEE INFOCOM 2011. He is an editor of the Journal of
World Wide Web, IEEE Transactions on Computers, etc.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:30:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

