Received November 30, 2018, accepted December 19, 2018, date of publication January 1, 2019, date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890116

Image Encryption Using Josephus Problem
and Filtering Diffusion

ZHONGYUN HUA", (Member, IEEE), BINXUAN XU, FAN JIN,
AND HEJIAO HUANG ", (Member, IEEE)

School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
Corresponding author: Hejiao Huang (huanghejiao@hit.edu.cn)
This work was supported in part by the National Key Research and Development Program of China under Grant 2016 YFB0800804 and

Grant 2017YFB0803002, in part by the National Natural Science Foundation of China under Grant 61701137, and in part by the
Shenzhen Science and Technology Plan under Grant JCYJ20170307150704051 and Grant JCYJ20170811160212033.

ABSTRACT Image encryption is an efficient visual technology to protect private images. This paper
develops an image encryption algorithm utilizing the principles of the Josephus problem and the filtering
technology. The encryption algorithm follows the classical diffusion and confusion structure. The principle of
Josephus problem is used to shuffle the image pixels to different positions to achieve the confusion property.
Using a randomly generated filter, the filtering technology can spread slight changes of the original image
to all pixels of the cipher image to obtain diffusion property. The simulation results show that the developed
image encryption algorithm is able to encrypt different kinds of images into cipher images with uniform
distribution. The security analysis demonstrates that it has an extremely sensitive secret key, can resist various
security attacks, and has a better performance than several advanced image encryption algorithms.

INDEX TERMS Cryptography, image encryption, image filtering, multimedia security, security analysis.

I. INTRODUCTION
In recent decades, an increasing number of digital data are
generated and transmitted in all kinds of networks. Among
all these digital data, the digital image is one most commonly
used data format, because a digital image carries information
using a straightforward way so that it contains much potential
information. For example, a man’s photo may not only tell
how he looks like, but also contain the information about his
age, health conditions, his location, and so on. As a result,
with the same data capability, a digital image may contain
much more information than many other data formats such
as text data. Thus, it is very important to protect the secret
digital images [2]-[4]. Recently, researchers have devel-
oped many image security technologies such as information
hiding [5], digital watermarking [6] and image encryp-
tion [7]-[10]. Among these technologies of protecting image,
the image encryption is a visual and efficient technology that
encrypts a meaningful image to be an unrecognized cipher-
image [11]-[13]. Only using the correct key, one can recover
the original image.

One practicable image encryption method is to treat a
digital image as a binary data sequence, and then uses the

traditional data encryption technologies (e.g. Advanced
Encryption Standard [14]) to encrypt the data sequence. How-
ever, each pixel in a digital image is usually presented using
8 or even more bits so that high information redundancy
may exist between adjacent pixels. Encrypting an image
as a data sequence doesn’t consider the property of image
pixel, and thus may result in low encryption efficiency. As a
consequence, considering the image properties, many image
encryption algorithms have been developed using various
technologies such as chaos theory [15]-[18], quantum the-
ory [19], [20], compressive sensing [21], [22] and DNA cod-
ing [23]-[25]. Because chaos has many inner properties such
as initial condition sensitivity, unpredictability and ergodic-
ity, and these properties are similar to the principles of image
encryption [26], chaotic systems are widely used for image
encryption. For example, Li et al. [27] proposed a novel
encryption scheme based on chaotic tent map, which can
generate chaotic key stream to encrypt images. Liu et al. [28]
proposed a new 2D-SIMM map using close-loop modula-
tion coupling model, and then further designed an image
encryption algorithm using 2D-SIMM. In [29], a new
two-point diffusion strategy based on Hénon map is proposed
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and it can significantly accelerate the diffusion process. The
authors in [30] developed a mixed chaotic system for image
encryption. The chaotic system can generate new chaotic
maps according to parametric switching.

However, when chaotic systems are implemented in finite
precision platforms, the chaos degradation will happen and
the chaotic behaviors may be degraded to be periodic behav-
iors [31]. If the chaos of a chaotic system is lost, its related
image encryption algorithms will have weak security perfor-
mance [32], [33]. Recently, many reports have shown that
image encryption algorithms using chaos can be successfully
broken [34]-[36]. Besides the chaos theory, many other tech-
nologies are also widely used in designing image encryp-
tion algorithm. Wu et al. [37] proposed a new Latin square
image encryption algorithm that embeds random noise into
the least significant bit-plane of images. Enayatifar e al. [38]
proposed an image encryption algorithms that first converts
the two-dimensional plain-image to one-dimensional pixel
sequence, and then does permutation and diffusion operations
to the one-dimensional pixel sequence in the same time.
Wang et al. [39] developed a fast image algorithm and it
can simultaneously encrypt the pixels from a row or a col-
umn. Besides, some bit-level image encryption algorithms
have also been proposed [40]-[42]. These encryption algo-
rithms encrypt images in the bit level instead of the pixel
level.

In this paper, we propose an image encryption scheme uti-
lizing Josephus problem and filtering diffusion (IES-JPFD).
A Josephus scrambling is developed using the Josephus prob-
lem [1] and it can randomly permutate image pixels to various
columns and rows to obtain the confusion property. The fil-
tering technology has wide applications in image processing
such as image smoothing and image denoising. However,
using an irregular filter, the image filtering can randomly
change pixel values and spread little change of a pixel to
all its adjacent pixels. The secret key of IES-JPFD is used
to generate the variables of the Josephus scrambling and the
filters of the filtering diffusion. Two rounds of the Josephus
scrambling and filtering diffusion can ensure a high security
level of the encrypted results. The simulation results show
that IES-JPFD is able to encrypt a meaningful plain-image to
be an unrecognized cipher-image with random distribution.
The security analysis is performed in terms of the secret
key analysis, ability of defending differential attack, adja-
cent pixel correlation, local Shannon entropy and deviation
from uniform histogram. The analysis results demonstrate
that IES-JPFD can obtain a high security level and can
achieve better performance than several image encryption
algorithms.

The remainder of this paper is organized as follows.
Section II introduces the Josephus problem and image filter-
ing, and proves their ability in image encryption. Section III
presents the proposed IES-JPFD and Section IV simulates
IES-JPFD in the MATLAB environment. Section V analyzes
the security performance of IES-JPFD using different mea-
sures and Section VI concludes this work.

VOLUME 7, 2019

=

‘ |

) OEmO)!
O] ONNO)

Plain-image

Cipher-image

(b)

FIGURE 1. An example of Josephus sequence and its usage in image
permutation. (a) Generation of Josephus sequence; (b) Image
permutation using the Josephus sequence.

Il. PRELIMINARIES

This section introduces the Josephus problem and the
image filtering, and illuminates their availability in image
encryption.

A. JOSEPHUS PROBLEM

The Josephus problem is an interesting ancient mathematics
problem [1]. In the Roman-Jewish War, Josephus and his
companions were trapped in a cave. To better survive, they
decided to stand in a circle and kill every third man until the
last one. To avoid being killed, Josephus correctly counted
the position and became the last survivor. Generally, we can
describe the Josephus problem like this. For a certain num-
ber of elements being placed in a circle, one starts from a
specified element and remove it from the circle, and then
circularly shift a fixed number of elements to figure out the
current element. The next iteration starts from the current one.
Repeat this action until the last element. Finally, according to
the order of elements to be removed from the circle, we can
obtain a sequence, namely Josephus sequence. Mathemati-
cally, the Josephus sequence can be described as

q=JS(n,s, k), (1)

where 7 is the total number of elements, s represents the start-
ing position, k is the shifting number and q is the produced
Josephus sequence.

To better explain the Josephus sequence, we give a numer-
ical example with n = 6, s = 3 and k = 3 in Eq. (1).
Fig. 1(a) shows the generation procedure of the Josephus
sequence. As the starting position is 3, then we remove the
element numbered 3 and place it in q, namely q; = 3.
Next, circularly shift 3 elements and the current one is the
element numbered 6, then we remove the element and place
the number 6 in q, namely q» = 6. Repeating this opera-
tion until the last element and we obtain the final Josephus
sequence q = {3, 6,4, 2,5, 1}. The Josephus sequence has
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the properties of ergodicity and invertibility, and these prop-
erties are quite similar to the concept of the permutation in
image encryption. Thus, the Josephus sequence can be used
to design image permutation algorithm. In the permutation,
the secret key is to generate the parameters in Eq. (1), and
the generated Josephus sequence is used to scramble images
pixels. Fig. 1(b) demonstrates an example of the image per-
mutation using the Josephus sequence generated in Fig. 1(a),
namely q = {3, 6,4, 2,5, 1}. We first number the pixels of

plain-image with 1,2, --- , 6, and then rearrange the pixels
to different positions according to q.
Recently, researchers have developed some pixel

permutation schemes using the concept of the Josephus
problem [42]-[45]. These schemes perform the image pixel
permutation in one-dimensional (1D) sequences, as demon-
strated in Fig. 1(b). For example, Guo er al. [42] and
Wang et al. [43] used 1D Josephus sequences to shuffle image
pixels and can only shuffle the row or column positions of
image pixels in one time shuffling. As a digital image is a two-
dimensional (2D) data matrix, encrypting it as a 1D sequence
doesn’t consider the property of 2D matrix, which may result
in low encryption efficiency. Besides, these previous works
directly use the concept of Josephus traveling to shuffle image
pixels and this may not obtain good shuffling effect [42], [43].
To address these weaknesses, we extend the Josephus per-
mutation from 1D to 2D. Using a 2D Josephus sequence
to shuffle the image pixels, the row and column posi-
tions of a pixel can be simultaneously shuffled. Thus,
encrypting images as 2D matrices can achieve much
higher efficiency than encrypting them as 1D sequences.
The detailed 2D Josephus permutation will be presented
in Section III-A.

B. IMAGE FILTERING TECHNOLOGY

The image filtering is a kind of image processing technology
that applies convolution to an image block using a filter.
A filter is a small 1D or 2D matrix that applies to each
image pixel and its neighbor pixels. The center element of
the filter is usually aligned with the current pixel and other
elements correspond to the neighbor pixels. The filtering
result is the additions of all the multiplications of the filter
elements and image pixels. The image filtering technology
has wide applications in many aspects such as edge detection,
image restoration, and feature extraction. Fig. 2 demonstrates
the image filtering operation. One can see that X is an image
block, X> » is the pixel to be processed, and F is a filter. The
center element of F is multiplied with X> » and other elements
are multiplied with the neighbor pixels. The sum of all the
products is the filtering result. Specifically, assume that the
filter F has the size (2a + 1) x (2b + 1), the image filtering
for each pixel of X is calculated as

2a+12b+1

X'(x,y) = Z ZF(i,j)X(x—H—a—1,y+j—b—1).
i=1 j=1

@
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FIGURE 2. Demonstration of convolution operation.

Utilizing an appropriate filter, the image filtering can
remove the noise of an image. However, using an
improper or irregular filter, the image filtering can also blur an
image. As a consequence, we can use the filtering technology
to achieve the diffusion property in image encryption. The
diffusion property indicates that tiny changes in original
image can affect all pixels of the encrypted result.

All the traditional usage of image filtering don’t need to
restore the original pixel values. However, when filtering
technology is used in image encryption, it must be reversible,
as image encryption needs to recover the original image. This
issue can be addressed by setting the center element of the
filter as one and setting other elements as integers, namely
F(a+1, b+1) = 1 and other elements in F are integers. When
doing image filtering to the image pixel I(x, y), a matrix T
with size (2a + 1) x (2b + 1) is obtained as follows,

I'x—a,y—0b)---T(x—a,y) ---TI'(x—a,y+b)

T = I/(x,).; —b) I(x., y) I(x, y + b)

I(x+a.,y—b) I(x+.a,y) I(x+a.,y+b)
(3)

and then the image pixel I(x, y) can be filtered using Eq. (4),
as shown at the bottom of the next page, where F is the
grayscale level of I. As can be seen from the matrix T,
the used left and upper adjacent pixels have been processed,
while the used right and lower adjacent pixels are the original
pixels that haven’t been processed. When doing the reverse
operation to the current pixel, the elements of matrix T are
in the same states with the forward process. Thus, Eq. (4) is
reversible and its reverse operation can be obtained as Eq. (5),
as shown at the bottom of the next page. Using the Egs. (4)
and (5), we can design image encryption algorithm.

For many existing diffusion techniques, they usually use
one or two previous pixels from the same row or column to
change the current pixel. However, the filtering technology
uses the surrounding pixels from different rows and columns
to change the current pixel. Thus, the filtering technology
can faster spread slight change of one pixel to all the pixels
and can show better performance in defending the differential
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FIGURE 3. The structure of the proposed IES-JPFD.

attack, compare with many other diffusion techniques. This
will be verified by the experiment results in Section V-B.

Ill. NEW IMAGE ENCRYPTION ALGORITHM

According to the principles of the Josephus problem and the
filtering diffusion, this section develops an image encryption
scheme called IES-JPFD. The IES-JPFD follows the classical
confusion and diffusion structure. This structure consists of
two parts. One is used to achieve the diffusion property and
the other is used to achieve the confusion property. As the
Josephus scrambling can simultaneously shuffle the pixel row
and column positions to obtain the confusion property, and
the filtering technology can achieve good diffusion property,
they are combined to design IES-JPFD. Fig. 3 shows the
structure of IES-JPFD. As can be observed, the secret key is to
obtain the scrambling parameters of the Josephus scrambling
and obtain the coefficients of the filter for filtering diffusion.
Two rounds of scrambling and filtering diffusion operations
can ensure that a meaningful plain-image can be encrypted to
be an unrecognized cipher-image with a high security level.
The decryption process is the reverse operation of each step

TABLE 1. Descriptions of some important notations.

Notation Description

k the secret key with length of 256 bits
k™ the sub-key of the first round of image encryption
k® the sub-key of the second round of image encryption
g the sub-key of 24 bits used in Josephus scrambling
d the sub-key of 96 bits used in filtering diffusion
(0} the position index matrix for pixel permutation
ri the Josephus sequence used to produce O
ci the Josephus sequence used to produce O
F the filter
e the integer vector converted from d
v the index vector generated by sorting e
KD K@

gi | d | & ]| &
o= —————

k| Kk | ko |k3||:>
| S — ——

120 bits 120 bits 16 bits 24 bits 96 bits 24 bits 96 bits

FIGURE 4. The structure of the secret key.

in IES-JPFD. To make the presentation of IES-JPFD more
clear, we describe some important notations in Table 1.

The length of secret key k is set as 256 bits and it includes
three parts kj, ko and k3, which can be seen in the left
of Fig. 4. The k; and k; are 120 bits length and the pertur-
bation parameter k3 is of size 16 bits. Using ki, ky and k3,
we can obtain two sub-key k() and k® for two encryption
rounds. Suppose ¢ is the decimal integer converted from ks
and #' = ¢ mod 120, then the sub-key k() can be obtained
as follows: 1) cyclically shift ky ¢ bits by right direction
to obtain k}; 2) kD = k; & K, @ k3, where @ represents
the XOR operation. The sub-key k® can be obtained as
follows: 1) cyclically shift k; ' bits by right direction to
obtain k|; 2) k® = k| @k, @ks. Each sub-key has two parts,
g and d, which can be seen in the right of Fig. 4. The
component g is to obtain the parameters for the Josephus
scrambling and d is to produce the coefficients of filter for
the filtering diffusion.

2a+12b+1
Iy =Y > FG.j)TG,) | mod F
i=1 j=1
= |Fa+1,b+DT@+1,b+ 1)+ > F(, )TG, j) | mod F
(. j)ell,2a+11x[1,2b+11NG j)£(a+1,b+1)
= |1 + > F(i, )TG, j) | mod F )
@@.)ell,2a+11x[1,2b+1]1N(,j) #(a+1,b+1)
’ . . .
I,y) = | Ty — > F(i, )TG, ) | mod F (5)
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A. JOSEPHUS SCRAMBLING

An image encryption algorithm should decorrelate the high
correlations of image. As discussed in Section II-A that the
Josephus sequence can randomly change the positions of a
1D array. However, a digital image is a 2D matrix. Consider-
ing the properties of 2D matrix, we design the 2D Josephus
scrambling that can shuffle the row and column positions
simultaneously. First, generate a series of parameters from
the sub-key. Then, obtain several Josephus sequences using
the parameters to perform row and column permutations.

1) PARAMETER GENERATION

Suppose the plain-image to be encrypted has the size
of M x N, four parameters are generated from the
component g of a sub-key,

MP = (bi2de(g(1 : 8)) mod M)+ 1
NP = (bi2de(g(9 : 16)) mod N) + 1
MStep = bi2de(g(17 : 20)) + 1
NStep = bi2de(g(21 : 24)) + 1 6)

where bi2de(.) is a function to convert a binary sequence
to a decimal number, MP denotes the starting row position,
MStep shows the row shifting step, NP indicates the initial
column position, and NStep is the column shifting step.

2) SCRAMBLING USING PARAMETERS

Using the parameters generated from the sub-key, we can
design the Josephus scrambling. For the image of size
M x N, the whole processing of the Josephus scrambling are
as follows,

Step 1:Produce a Josephus sequence ri of M length as
follows: 1) initialize a vectora = 1 : M; 2) set
ri(1) = MP and remove ri(1) from a; 3) start from
the previously removed position, circularly shift
MStep cells in a and allocate the next value to ri(2);
4) MStep = MStep + 1; 5) repeat the operations 3)
and 4) till all the M values in a have been allocated
to ri;

Step 2:Set row index i = 1;

Step 3:Generate a Josephus sequence ci of N length as
follows: 1) initialize a vector b = 1 : N; 2) set
ci(1) = NP and remove ci(l) from b; 3) start
from the previously removed value, circularly shift
NStep cells in b and allocate the next value to ci(2);
4) NStep = NStep + 1; 5) repeat the operations 3)
and 4) till all the N values in b have been allocated
to ci; 6) update NP using ci(N);

Step 4:For these pixels in i-th row of the image, per-
mute them into the positions {(ri(ci(1)) + i, ci(1)),
(ri(ci(2))+1i, ci(2)), - - -, (ri(ci(N))+1, ci(N))}. Note
that if ri(ci(k)) + i (k = 1 ~ N) is larger than M,
its modulus result to M is used to replace it;

Step 5:Repeat Step 2 to Step 4 fori =2 ~ M.

It is noticed that to obtain more random sequences, we mod-
ify the generation procedures of Josephus sequence in
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our scrambling. Specifically, we add one to the shifting steps
MStep and NStep in each iteration, and update the NP using
the last selected value when generating the next ci.

To better explain the Josephus scrambling, Fig. 5 provides
a numerical example using the image of size 4 x 4 and the
parameters MP = 3, NP = 2, MStep = 1, and NStep = 2.
Fig. 5(a) demonstrates the generation of a position matrix O.
The Josephus sequence ri is generated using MP and MStep,
and four Josephus sequences cis are generated using NP and
NStep. In each iteration, we add the shifting steps MStep and
NStep to one. When generating the next ci, we update the NP
using the last selected value. The position matrix O of size
4 x 4 is constructed using the ri and four cis. When obtaining
the i-th row of O, we use the ri(ci) + i as their row posi-
tions and directly use the corresponding ci as their column
positions. It is noticed that if ri(ci) 4 i is larger than 4, its
modulus to 4 is used to replace it. The detailed generation of
the position matrix O is described as,

e Asri = {3,4,2,1} and the 1-st ci = {2, 4, 1, 3}, the 1-
st row of O is {(ri(2) + 1, 2), ((ri(4) + 1, 4), ((ri(1) +
LD, (ri3)+1,3)} = {(5,2), 2,4, (4, 1), (3, 3)} <=
{(1,2),2,4), 4, 1),3,3)}

e Asri = {3,4,2, 1} and the 2-nd ci = {3, 2, 4, 1}, the
2-nd row of O is {(ri(3) 42, 3), ((ri(2) 4+ 2, 2), ((ri(4) +
2,4), ((ri(D+2, D} = {(4,3),(6,2),3,4), 5, D} <=
{4,3),(2,2),3,4), (1, D};

e Asri = {3,4,2, 1} and the 3-rd ci = {1, 2, 3, 4}, the
3-rd row of O is {(ri(1) + 3, 1), ((ri(2) + 3, 2), ((ri(3) +
3,3), ((ri(4)+3,4)} = {(6,1),(7,2),(5,3), 4,4}
{2,1),3,2),1,3), 4 D}

e Asri = {3,4,2,1} and the 4-th ci = {4, 2,3, 1}, the
4-th row of O is {(ri(4) + 4, 4), ((ri(2) + 4, 2), ((ri(3) +
4,3), ((ri(1)+4, D} ={(5,4), 8, 2),(6,3), (7, 1)}
{(1,4),(4,2),(2,3),3, D}

Using the positions specified by O, we can permute the pixels
of P, which is shown in Fig. 5(b).

Algorithm 1 demonstrates the pseudo-code of the Josephus

scrambling.

B. FILTERING DIFFUSION

An encryption scheme should achieve the diffusion property,
which indicates that tiny changes in plaintext can affect the
whole ciphertext. Our proposed IES-JPFD uses the filtering
diffusion operation to achieve the diffusion property.

1) FILTER GENERATION

As discussed in Section II-B that when image filtering is
used to do image encryption, the weight corresponding to the
current pixel should equal to one and other weights should
be integers. To obtain better diffusion effect, our operation
sets the filter size as 2 x 2, and corresponds the lower-right
weight to the current pixel, namely F(2,2) = 1. The other
3 weights are generated using the component d of a sub-
key as follows: 1) divide the 96-bit d into three sequences
with 32 bits and convert them into integers e = (eq, e2, €3);
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FIGURE 5. An example of the Josephus scrambling. (a) The procedure of generating position matrix O; (b) pixel

permutation using O.

Algorithm 1 The Josephus Scrambling

Input: The plain-image P of size M x N, and four parameters
MP, NP, MStep, and NStep obtained by Eq. (6).
Output: The scrambling result I.
1: Initializea=1:M;
2: Setrie N>M M1 = MP;
3: fork =1toM do
ri(k) = a(MI);
aMl) =1[1;
MI = (MI — 2 + MStep) mod (M — k) + 1;
MStep = MStep + 1;
end for
9: Setci e NN NI = NP,
10: fori=1to M do
11:  Setb=1:N;
122 forj=1toN do
13: ci(j) = b(NI);
14: row = (ri((ci(j)—1) mod M+1)+i—1) mod M+
I;

A

15: column = ci(j);

16: b(NP) =[1];

17: NI = (NI — 2 + NStep) mod (N —j)+1;
18: NStep = NStep + 1;

19: I(row, column) = P(i, j);

20:  end for
21: NI = ci(N);
22: end for

VOLUME 7, 2019

2) sort e and obtain an index vector v = (vi, vz, v3); 3)
disturb the three integers using vector v and obtain ¢ =
(e1 + vi1, e2 + v2, e3 + v3). Then, the obtained filter can be

written as
_(fentvi ex+w
F_<63+V3 | ) @)

2) FILTERING DIFFUSION USING FILTER

The filtering diffusion is performed utilizing the filter shown
in Eq. (7). First, initialize the filtering diffusion result C using
the scrambling result. Then, update each pixel value of C
using the filtering operation as

C'.y) =0+ Y Flj)Cr+i=2.y+j—2) mod F,
ije{l,2}

®)

where C'(x, y) represents the pixel that has been processed,
F indicates the grayscale level of the cipher-image, e.g.
F = 256 if each pixel is presented using 8 bits. Notice that
we add y in each operation, as this can avoid the failure of
filtering diffusion in some special conditions, e.g. all pixel
values of the image are zero.

Because the weight F(2, 2) = 1, Eq. (8) can be rewritten
as Eq. (9), as shown at the bottom of the next page. When
encrypting the current pixel, the three left and upper adjacent
pixels have been encrypted. When decrypting the current
pixel, the used three left and upper adjacent pixels haven’t be
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FIGURE 6. Demonstration of extending image.

decrypted, yet. Thus, Eq. (9) can be reversible and the original
pixel C(x, y) can be recovered using the same filter F in the
decryption process. The inverse operation of Eq. (9) is written
as Eq. (10), as shown at the bottom of this page.

For the border pixels in the top row and left column, they
have insufficient adjacent pixels. To deal with this situation,
we use the border pixels in the opposite direction to extend
the image when handling these pixels. Fig. 6 demonstrates
this mechanism. As these extended pixels don’t need to be
stored, the size of encrypted image won’t be enlarged.

Fig. 7 demonstrates the efficiency of the filtering diffusion
using an image of size 256 x 256. Fig. 7(b) shows one-
time filtering diffusion result to the image Pj. It indicates
that the filtering diffusion can randomly change image pixels.
Fig. 7(c) demonstrates the difference between two filtering
diffusion results, where the two original images have one bit
difference in position (50,60). As can be observed that their
pixels behind the position (50,60) are totally different. This
means that the filtering diffusion can spread little change of a
pixel to all the pixels behind it. After two rounds of filtering
diffusion, the tiny changes of a pixel could spread to the whole
image, which can be seen from Fig. 7(d). Thus, the designed
IES-JPIE can achieve high diffusion performance.

IV. SIMULATION RESULTS AND PROPERTY DISCUSSION
A. SIMULATIONS RESULTS

A universal image encryption algorithm should have the
ability to encrypt various kinds of images into random-like

800 300 800 800
600 600 600
400 400 400

200 200

0 100 200 0 100 200 100 200 0 100 200

() (b) (© (@)

FIGURE 7. Demonstration of the filtering diffusion result.

(a) Plain-image P;; (b) One-time filtering diffusion result of P;; (c) The
difference between (b) and another one-time filtering result of P,, where
P, has one bit difference in position(50,60) with P;; (d) The difference
between P; and P, after two rounds of filtering diffusion.

cipher-images with high security levels. This section imple-
ments IES-JPFD in the MATLAB R2015b environment and
analyzes its properties. The test images are from the BSDS!
and CVonline” image databases.

Fig. 8 shows the simulation results of IES-JPFD for dif-
ferent images. All the test images are the pattern images that
are hard to process, which can be seen from their histograms
in Fig. 8(b). However, all the cipher-images are random-like
and their pixels distribute very uniformly. Attackers can’t
get any valuable information by analyzing their distributions.
With the correct key, one can totally recover the original
images, which can be seen from Fig. 8(e).

B. PROPERTY DISCUSSION

The proposed IES-JPFD adopts the well-known confusion-
diffusion architecture, the used Josephus scrambling can efti-
ciently permutate pixels to various columns and rows, and
the filtering diffusion has high efficiency of spreading tiny
changes of plain-image to the whole cipher-image. Thus,
IES-JPFD can achieve the following advantages: 1) It has
high performance of confusion and diffusion; 2) It can
achieve strong ability of resisting some security risks, such as
the exhaustive attack and differential attack. We will experi-
mentally verify this in Section V.

1 http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/index.
html

2http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.html

C'x,y)=|y+Cx,»F2,2) + Z F(i,)C'(x+i—2,y+j—2)| mod F
ijel1.2)NG)A2.2)
=|y+Ckx, y)+ > FGi, )C'(x +i—2,y+j—2)| mod F ©)
ije{1.2)N(1)#(2.2)
Cx,y) = |Cx,y)—y— Z Fi,)C'(x+i—2,y+j—2) | mod F (10)

i,je{l,2)NGN#(2,2)

8666

VOLUME 7, 2019



Z. Hua et al.: Image Encryption Using Josephus Problem and Filtering Diffusion

X
<,

54 - N
o o= o
| I

X
=)
N

E

1000

800

600

400

200

o

100 200

1000

800

4

100 200

1500

b
i

100 200

[
"

100 200

(b) (©

o O - n
X
ouv

=3

% C

=)

100 200

0 100 200

=)

100 200

200

100

=)

100 200

(d

FIGURE 8. The experiment results of IES-JPFD. (a) The plain-images including binary, grayscale and color images; (b) The histograms of (a);
(c) The cipher-images; (d) The histograms of (c); (e) The decrypted images.

The digital images may lose data or be blurred by noise
when they are transmitted in networks. The proposed IES-
JPFD has strong ability of defending data loss or noise. In the
encryption process, the filtering diffusion can spread slight
changes in the plain-image to the whole cipher-image. This
makes IES-JPFD achieve good diffusion property. However,
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in the decryption process, the inverse filtering diffusion can
only spread the change of one pixel to several pixels. Thus,
IES-JPFD has strong reliability of defending data loss and
noise.

To quantitatively show the ability of IES-JPFD in defend-
ing data loss and noise, we use the peak signal-to-noise
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() (b) (c)

FIGURE 9. The demonstration of IES-JPFD in defending data loss and
noise. The first row shows the cipher-images with different kinds of data
loss and noise, while the second row shows their decrypted images.

(a) 5% data loss; (b) 10% data loss; (c) 1% salt and pepper noise.

TABLE 2. The MSEs and PSNRs between the original image and the
decrypted images that their related cipher-images have different
percentages of data loss or noise.

Data loss and noise attack MSE PSNR
5% data loss 21.172 34.873
10% data loss 40.398 32.067
1% salt and pepper noise 15.941 36.105

ratio (PSNR) and mean square error (MSE) to test the differ-
ence between the original images and the decrypted images.
The PSNR is defined as

(11)

@ -1y
PSNR =10 x logigy——=1 >

MSE

where F' represents the grayscale level of the image, and MSE
is the difference between the decrypted image D and original
image P and it is defined as

1 M N
MSE =~ Z Z(D,»,j — P>, (12)
i=1 j=1
where [M, N] is the image size. A higher PSNR and lower
MSE indicate the less difference between the decrypted
image and the original image.

Fig. 9 demonstrates the experiment results of IES-JPFD in
defending data loss and noise and Table 2 shows the PSNR
and MSE experiment results for different percentages of data
loss and noise. One can see that when the cipher-images
lose some data or are blurred by some noise, the decryption
process can still recover the original images with high visual
effect.

V. SECURITY ANALYSIS

An efficient encryption algorithm should be able to defense
the commonly used and unknown security risks. This section
measures the security level of the IES-JPFD from different
aspects and compares it with several typical image encryption
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FIGURE 10. Key sensitivity analysis. (a) Plain-image P; (b) Cipher-image
C; = En(P, K;); (c) Cipher-image C, = En(P, K,); (d) The difference
between C; and C,, |C; — C,|; (e) Decrypted image D; = De(C;, K;);

(f) Decrypted image D, = De(C,;, K;); (g) Decrypted image

D3 = De(Cq, K3); (h) The difference between D, and D5, D, — Ds|.

schemes: PSHM [29], LICM [40], PWLCM [41], CST [28],
RCS [39], NSIE [37], PSCS [30], JHCM [42] and JTMC [43].
The test images are selected from the CVG-UGR? image
database.

A. SECRET KEY ANALYSIS

The secret key is the most important component of an encryp-
tion scheme. The key security includes two aspects: the key
space and the key sensitivity. On one hand, the key space
should be large enough to resist brute-force attack. The brute-
force attack is to break a ciphertext by exhaustively search-
ing all possible keys. According to the discussions in [46],
the secret key has a sufficient security level against the brute-
force attack if the key space is bigger than 2%, Consider-
ing the fast development of computer ability, the length of
the secret key in IES-JPFD is 256 bit. Then the key space
is 2256, which has high performance of resisting the brute-
force attack.

On the other hand, the secret key must be extremely sen-
sitive. Only using the correct key, one can correctly decrypt
the original image. Fig. 10 demonstrates the key sensitivity
experimental results in encryption and decryption processes.
The encryption and decryption processes are denoted as
C = EnP,K) and D = De(C, K), respectively. First,
randomly generate a secret key K,

K| = 97157A6FC8E4BBE432C40D35F 2716092
EBAO2E379817D636A144551DF49ADE37,

and then randomly change one bit of K to obtain two
other secret keys, K> and K3. When encrypting an identical
image using K; and Kj, the obtained two cipher-images
are completely different (see Fig. 10(d)). The original image
can be recovered using the correct key (see Fig. 10(e)).
Using secret keys with one bit difference to recover an iden-
tical cipher-image, the decrypted results are noise images
(see Figs. 10(f) and (g)), and also completely different

3 http://decsai.ugr.es/cvg/dbimagenes
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FIGURE 11. The key sensitivity analysis results. (a) The NBCR between two
cipher-images encrypted from an identical image with two secret keys

owning one bit difference, (b) NBCR between two decrypted images from
an identical cipher-image with two secret keys owning one bit difference.

(see Fig. 10(h)). As aresult, the proposed IES-JPFD has quite
sensitive secret key.

To test the sensitivity of the secret key in each bit, we test
each of the 256 bits in K; as follows: 1) change the bit of
K to obtain another secret key K’; 2) encrypt an identical
plain-image using K; and K’ to obtain two cipher-images
and calculate their difference; 3) decrypt an identical cipher-
image using K; and K’ to obtain two decrypted results and
calculate their difference; 4) repeat these operations until all
the 256 bits in the secret key are tested. The difference of
two images is calculated using the number of bit change rate
(NBCR), which is defined as

Hm([B, B2]

NBCR = x 100%, (13)

where Hm/[-] represents the function to calculate the Ham-
ming distance between two bit streams, and By and B are
two bit streams with length S. If the two bit streams B; and
B> have weak correlation, their NBCR closes to 50%. Fig. 11
shows the key sensitivity analysis results. When changing any
one bit of the secret key, the obtained two cipher-images in
encryption process and two decrypted images in decryption
process can achieve NBCR scores that approach to 50%. This
means that the obtained two cipher-images and two decrypted
images are completely different, indicating that each bit of the
secret key in IES-JPFD is sensitive.

B. ABILITY OF DEFENDING DIFFERENTIAL ATTACK

The differential attack is an efficient and commonly used
security attack. By tracing how the difference in plaintexts
can affect the ciphertexts, the attackers try to establish the
connections between plaintexts and ciphertexts, and use the
established connections to reconstruct the original informa-
tion without secret key. An encryption system with diffusion
property has high performance of defending this attack. The
diffusion property indicates that any slight difference in plain-
text can cause change in the whole ciphertext. Fig. 12 demon-
strates the diffusion property of the proposed IES-JPFD. One
can see that when utilizing a same secret key to encrypt two
images owning one bit difference, the generated encrypted
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(a) (b)

(d) (e) ®

FIGURE 12. The demonstration of diffusion property. (a) Plain-image P;;
(b) Plain-image P,, which has one bit difference with P, in position

(50, 50); () Difference between P; and P,, |P; — P, [; (d) Encrypted image
C; = En(Py, K;); (e) Encrypted image C, = En(P,, K; ); (f) Difference
between C; and C,, |C; — C;|.

images are completely different, which can be observed from
their difference in Fig. 12(f). This indicates that IES-JPFD
has diffusion property.

To quantitatively test the ability of IES-JPFD in defend-
ing the differential attack, we calculate the number of pixel
change rate (NPCR) and unified averaged changed intensity
(UACI) of different encryption schemes. Suppose C; and C,
are two encrypted images obtained from two plain-images
with one-bit difference using a same secret key, the NPCR
of C; and C; is defined as

NPCR(C1,C) =Y " G’J % 100%,  (14)
i=1 j=1

where [M, N] indicates the image size, G is the number of
pixels of an image, and W denotes the differences between
C; and C,, and it is defined as

0, if Ci(i,)) = Ca(i, ))s
1, if Ci(G,)) # Ca(i, ).
The UACI of C; and C; is defined as

WG, j) = {

M N
IC1G. ) — Cali I

UACI(Cy, C,) = ZZ e x 100%,

i=1 j=1
where T is the largest allowed pixel value in the image.

The NPCR and UACI critical values were developed
in [47]. For NPCR test, an interval (U™, U:) related to
a significance level « is calculated and the algorithm can
pass the test if the obtained NPCR fails into the interval.
For the UACI test, a threshold N; is calculated and the
algorithm is considered to pass the test if the obtained UACI
is bigger than N}. Wu ez al. [47] have calculated out the
critical U, Us" and N} when the significance level «
equals to 0.05, 0.01 and 0.001. As the significance level « is
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TABLE 3. The NPCR scores of different image encryption schemes using different sizes of images (significance level « = 0.05).

NPCR (%)
Image size  File name TES-JPFD PSHM [29] LICM [40] PWLCM [41] CST [28] RCS [39] NSIE [37] PSCS [30] JHCM [42] JTMC [43]
natl 99.6459  99.6276 _ 99.5986 995574 994644 993911 99.6048  99.5880  99.6292  99.6231
nat2 99.6520  99.6048  99.6322 99.6139  99.4506 99.5071 99.6139  99.6200  99.6002  99.6017
256 x 256 nat3 99.6078  99.6460  99.6368 99.5971  99.4583 99.5010 99.5498  99.6444  99.6459  99.2309
natd 99.6444  99.6017  99.5895 99.6124  99.4751 99.4308 99.8123  99.6139  99.6322  99.6231
>99.5693  natS 99.6414  99.6200  99.6170 99.5437  99.4262 99.2065 99.5544  99.6032  99.6109  99.5803
naté 99.6017  99.6353  99.6109 99.6139  99.4613 99.4918 99.7573  99.6353  99.6871  99.6002
nat7 99.5925  99.6170  99.6414 99.6109  99.4415 99.3804 99.6856  99.6048  99.5910  99.6353
61b 99.5986  99.6238 995838  99.6135  99.5758 99.0764 99.8081  99.6311  99.6284  99.6021
66b 99.6128  99.5876  99.6238 99.5990  99.5735 99.5483  99.6822  99.5979  99.6009  99.6128
si2x 5o 67D 99.6189  99.6223  99.6406 99.6231  99.5437 99.5193 99.8065 99.6181  99.5933  99.6009
69b 99.6120  99.6070  99.5899 99.6151  99.5555 99.4751 99.6013  99.5979  99.6135  99.5883
- 995895 70D 99.6074  99.6055  99.5956 99.5967  99.5677 99.4884 99.7036  99.6208  99.6139  99.5971
< 71b 99.5914  99.6013  99.6166 99.6212  99.5796 99.5788 99.7116  99.6124  99.6196  99.6780
73b 99.6017  99.6036  99.6246 99.6131  99.5868 99.5201 99.7184  99.6185  99.6173  99.6143
75b 99.5948  99.6170  99.6181 99.6109  99.5632 99.6063 99.8035  99.6135  99.5967  99.5887
3.2.25 99.6041  99.6103  99.6191 99.6152  99.6027 99.5611 99.6530  99.5989  99.6079  99.6030
1024 x 1024 5.3.01 99.6033  99.6092  99.6109 99.6032  99.5976 99.5368 99.7048  99.6153  99.6138  99.6118
5.3.02 99.6073  99.6105  99.6139 99.6109  99.5868 99.5720  99.4133  99.6089  99.6170  99.6094
>99.5994  7.2.01 99.6173  99.6227  99.6142 99.6083  99.5959 99.5867 99.7136  99.6105  99.6107  99.6176
testpat.1k  99.5995  99.6151  99.5953  99.6044  99.5868 99.5878 99.5144  99.6091  99.5788  99.6050
Pass rate 20720 19720 18720 18720 1720 1720 16720 20720 19720 16720

the test strength, a higher significance level indicates a stricter
standard. To provide a convinced and strict comparison, our
experiment uses the strictest NPCR and UACI critical values,
namely o = 0.05. Then according to the calculation in [47], i ® t ;
NF =99.5693% and (U, UXT) = (33.2824%, 33.6447%) N
for the size of 256 x256. N} = 99.5893% and (U ~, UiH) = :
(33.3730%, 33.5541%) for the size of 512x512. N} =
99.5994% and (U, UXT) = (33.4183%, 33.5088%) for the
size of 1024 x1024.

Table 3 and Table 4 show the obtained NPCR and UACI
scores of different encryption algorithms for images with dif- ()
ferent sizes. One can observe that IES-JPFD and PSCS [30]
can pass all the NPCR tests and IES-JPFD, PSHM [29], and
LICM [40] can pass all the UACI tests. Only the proposed
IES-JPFD can pass all the NPCR and UACI tests. This means
that it has a strong ability of defending the differential attack.

¥

0 S0 10 150 200 250
X

FIGURE 13. Adjacent pixel pairs of (a) the plain-image and cipher-image
along the (b) horizontal, (c) vertical, and (d) diagonal directions.

to 0 means the weak correlation between pixel sequences X
and Y, while a CC score closing to —1 or 1 indicates the high
correlation of X and Y.

C. ADJACENT PIXEL CORRELATION Table 5 lists the CC scores of the “Cameraman” image

A natural image may have strong correlations between its
adjacent pixels, and these strong correlations can expose
much information about the original image. Thus, an image
encryption scheme should have the ability to break the corre-
lations between adjacent pixels. The correlation coefficient
(CC) provides a quantitative description about the correla-
tions of adjacent pixel and it is defined as

E[(X — ux)(Y — py)]
Ox0Oy ’

CCX,Y) = (15)

where X is a pixel sequence of the image and Y is another
pixel sequence, in which each pixel is the adjacent pixel of X
along one of the horizontal, vertical, and diagonal directions,
E[-] indicates the mathematical expectation, u is the mean
value and o is the standard derivation. A CC score closing
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and its cipher-images encrypted by several image encryption
schemes. One can see that the cipher-image generated by
IES-JPFD can achieve smallest absolute CC scores in both
the horizontal and diagonal directions. This means that the
proposed IES-JPFD can generate cipher-image with weak
adjacent pixel correlations.

Fig. 13 plots the adjacent pixel pairs of the ‘“Cameraman’
image and its cipher-image encrypted by IES-JPFD. In each
figure, 4000 pixel pairs are randomly selected with the hor-
izontal, vertical, or diagonal directions. One can see that the
pixel pairs of the plain-image mostly distribute on or nearby
the diagonal line of the phase plane. This means that strong
correlations exist between adjacent pixels in the original
image. However, the pixel pairs of the cipher-image randomly
distribute in the entire phase plane, which indicates that a
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TABLE 4. The UACI scores of different image encryption schemes using different sizes of images (significance level o = 0.05).

UACI (%)
Image size File name IES-JPFD PSHM [29] LICM [40] PWLCM [41] CST [28] RCS [39] NSIE [37] PSCS [30] JHCM [42] JTMC [43]
natl 33.3797  33.6179 33.5226 33.3830 33.4018 33.9229 344944  33.5220 33.5053 33.6413
nat2 33.4393  33.5607 33.5419 33.3936 33.3871 33.0890 33.3223  33.3932 33.4533 34.1214
256 x 256  nat3 335112 334304  33.4905 33.3743 33.4571 33.4472 334875 33.3988  33.2852 36.3348
nat4 33.4276  33.4335 33.4883 33.5272 33.6263 33.3890 32.8442  33.2704  33.3203 33.5050
33.2824/33.6447 nat5 33.3430  33.5626 33.3369 33.2476 33.3033  33.8291 32.5726 33.3602 33.3742 33.5976
nat6 33.3357  33.5775 33.5136 33.5775 33.4601 33.5481 34.4506 33.3169 33.6177 33.4639
nat7 33.5037  33.4456 33.5821 33.2387 33.5489 33.3592 33.6113  33.2664  33.3554 33.4901
61b 33.4340  33.5293 33.4274 33.4165 33.4606 33.0445 32.6308  33.3893 33.4496 33.5432
66b 33.3653  33.3767 33.5070 33.4830 33.3235 33.3987 33.3685  33.4459 33.4984 33.4550
512 x 512 97b 33.4932  33.5052  33.4830 33.4524 33.4520 337916 33.7081 33.4274  33.4606 33.4578
69b 33.4649  33.4984 33.4710 33.4183 33.4338 33.6068 33.7005  33.5155 33.5226 33.5548
33.3730/33.5541 70b 33.4771 33.4326 33.3984 33.4187 33.4570 33.4365 33.9800 33.3967 33.4694 33.4175
e 71b 335115  33.5132  33.4616 33.4363 33.4201 33.4176 33.0447 334112  33.4599 33.4696
73b 33.4666  33.5736 33.4206 33.4611 33.4919 33.2537 33.0395 33.2934  33.4989 33.4951
75b 33.3928  33.4481 33.5279 33.5568 33.5123 334359 32.8966 33.5336 33.4083 33.4567
3.2.25 33.4572  33.4688 33.5085 33.4836 33.4653 33.1989 33.4482  33.2480  33.4268 33.4811
1024 x 1024 5.3.01 33.4765  33.4741 33.4651 33.3834 33.4468 33.1820 33.4149  33.4190 33.4761 33.4638
5.3.02 33.4740  33.4341 33.4630 33.4180 33.4174 33.3483  33.0908  33.2921 33.4807 33.4777
33.4183/33.5088 7.2.01 33.4909  33.4746 33.4755 33.4712 33.4725 33.5075 33.2945 33.5449  33.4540 33.4690
testpat.1k  33.4367  33.4354  33.4240 33.4240 33.4601 33.4453 33.0628 33.4760  34.6524  33.5124
Pass rate 20/20 20/20 20/20 16/20 19720 10/20 4/20 14/20 19/20 16/20
TABLE 5. The CC scores of the “Cameraman” image and its cipher-images encrypted by several image encryption schemes.
CC scores
Image encryption algorithms Horizontal Vertical Diagonal
Plain-image 0.957001 0.931323 0.906305
IES-JPFD 0.000378 0.003031 -0.002976
PSHM [29] 0.008046 0.005859 0.020418
LICM [40] -0.006003 -0.013350 -0.006758
PWLCM [41] -0.021060 -0.017249 -0.010720
CST [28] 0.031091 0.030072 0.011433
RCS [39] -0.028592 0.008530 -0.017066
NSIE [37] -0.012077 0.000483 -0.015427
PSCS [30] -0.019817 -0.016730 -0.016106
JHCM [42] -0.007440 0.006913 -0.019123
JTMC [43] 0.007048 -0.001375 0.009184

pixel has weak correlation with its adjacent pixels in the
cipher-image. Thus, the proposed IES-JPFD can efficiently
decorrelate the strong correlations of the adjacent pixels in
natural images.

D. LOCAL SHANNON ENTROPY

To resist various attacks, an expected cipher-image should
have uniform-distributed pixels. Among many randomness
test standards, the local Shannon entropy can quantitatively
describe the randomness of an image from local view [48].
Mathematically, the local Shannon entropy can be written as

LHS)

. (16)

Hk,TB =

i=1

where k is the total number of used block, Tg indicates the
number of pixel in each block, §1 ~ S denote the k£ chosen
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image blocks, and H(S;) is the information entropy of S;,
which can be calculated as

L
H(S;) = — Z Pr(j)log, Pr(j), (17)

j=1

where L is the grayscale level and Pr(j) denotes the probabil-
ity of the j-th possible pixel.

Based on the setting in [48], we set the parameters
k = 30, Tp = 1936 and the significance level « = 0.05.
Then an 8-bit image can pass the test if the obtained local
Shannon entropy falls into the interval (h;;ﬁ, hfight)
(7.9019013, 7.9030373). Table 6 shows the local Shan-
non entropy results of the cipher-images encrypted using
different encryption algorithms. One can observe that
11 cipher-images encrypted by IES-JPFD can pass the test
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TABLE 6. The local Shannon entropy values of the cipher-images encrypted by several image encryption schemes (x = 0.05, k = 30, Tg = 1936).

Local Shannon entropy values

File names IES-JPFD PSHM [29] LICM [40] PWLCM [41] CST [28]

RCS [39] NSIE [37] PSCS [30] JHCM [42] JTMC [43]

natl 7.9045137 7.9025073 7.9003463  7.9005481 7.9039709 7.8991822 7.9055808 7.9019334 7.9011959 7.9013392
nat2 7.9030149 7.9020267 7.9011749 7.9021302 7.9007544 7.9018166 7.8988972 7.9046644 7.9041959 7.8519147
nat3 7.9015089 7.9026121 7.9045564 7.9026779 7.9016867 7.9029027 7.9002384 7.9036739 7.9012995 7.8519146
nat4 7.9023721 7.9010911 7.9014124 7.9014612 7.9017630 7.9017223 7.9054139 7.9036860 7.9040828 7.9028722
nat5 7.9024613 7.9008055 7.9020546 7.9045483 7.9035597 7.9009318 7.9028063 7.8992271 7.9044027 7.9012584
nat6 7.9022007 7.9032197 7.9014608 7.9015224 7.9013071 7.8991331 7.9019211 7.9025826 7.9044627 7.9007016
nat7 7.9033595 7.9012648 7.8992418 7.9037053  7.9046493 7.9000667 7.9006150 7.9019790 7.9037452 7.9044096
61b 7.9030273 7.9034822 7.9051410 7.9057800  7.9003507 7.9000156 7.9039646 7.9014409 7.9016076 7.9025263
66b 7.9025563 7.9023263 7.9051059  7.8992979 7.9006968 7.8995499 7.9011833 7.9032068 7.9016324 7.9021888
67b 7.9026735 7.9023983 7.9042299 7.9057464 7.9014118 7.9001948 7.9040076 7.9037526 7.9025750 7.9020789
69b 7.9023903 7.9004082 7.9017849  7.9032164 7.9040141 7.8970821 7.9005158 7.9012652 7.9007100 7.9021980
70b 7.9015474 7.8977740 7.9035768  7.9016904 7.9024496 7.8988024 7.9034211 7.8996038 7.9025893 7.9034663
71b 7.9047979 7.9049649 7.9027366 7.9038349 7.9031210 7.8997981 7.9032420 7.9042243 7.9019434 7.8992216
73b 7.9013718 7.9022842 7.9022730 7.9016250 7.9048264 7.8998642 7.9022534 7.9017677 7.9017094 7.9020398
75b 7.9027924 7.9047071 7.9017525 7.9010514 7.9018115 7.9000315 7.9009619 7.9010060 7.9031991 7.9049766
3.2.25 7.9022964 7.9032253 7.9024714  7.9021433  7.9006095 7.9000524 7.9005640 7.9034174 7.9025129 7.9036922
5.3.01 7.9031988 7.9011992 7.9034736  7.9006874 7.9033306 7.8995328 7.9023049 7.9010272 7.9037935 7.9041326
5.3.02 7.9039236 7.9041866 7.9037980  7.9048203 7.9006572 7.8954109 7.9017226 7.9018753 7.9009639 7.9024531
7.2.01 7.9042409 7.9037162 7.9025919 7.8996649 7.8993959 7.9002487 7.9034049 7.9031182 7.9003341 7.9003529
testpat.1k  7.9025530 7.9004960 7.9021649 7.9001138 7.9029108 7.9001344 7.9046440 7.9009145 7.8592195 7.8678365
Pass rate 11/20 6/20 6/20 7/20 8/20 3/20 720 8/20 4/20 7120
o ] ) It is obvious that if the obtained Dy value is smaller,
Deviation from uniform histogram . . . . .
003991 the actual cipher-image is more close to the ideal cipher-
0.04 0.03851 image. For different image encryption algorithms, Fig. 14
oo shows their average Dy values of 20 cipher-images. As can be
D0 0ORT00510.03 00003063 0.02071003176 seen that the proposed IES-JPFD has the smallest Dy value.
003 This means that IES-JPFD can encrypt images into cipher-
o images that are most similar with the ideal cipher-image.
o022
&\Q« Q%st »\§ @V(J@ && q.,c—) &\& Q%(;—) &\o \\b&\ VI. CONCLUSION

<

FIGURE 14. The average DUH values of different image encryption
algorithms.

and its pass rate is the largest. Thus, our proposed IES-JPFD
can encrypt images with better randomness.

E. DEVIATION FROM UNIFORM HISTOGRAM

Different from the local Shannon entropy that can test the
randomness of an image from the local view, the deviation
from uniform histogram (DUH) can measure the randomness
of an image in the global view [49]. For a cipher-image C of
size M x N, the DUH is defined as

Zle |H; _HC§|
M x N
where F represents the grayscale level, Hc, is the histogram
of the i-th possible value of C, the image C’ is an ideal cipher-
image with absolutely uniform distribution, and H¢ is the
histogram of the i-th possible value in C" and it is defined as

Dy = , (18)

MxN
Ho =1 F .
i 0, otherwise.

. I <i<F;

(19)
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This paper introduced an image encryption scheme utiliz-
ing the principles of the Josephus problem and the filtering
technology, called IES-JPFD. The Josephus scrambling is
derived from the Josephus problem and it can generate ran-
dom sequences to fast separate the image pixels. The image
filtering is commonly used to smooth an image. However,
with an improper mask, it can also blur an image. Using
this principle, the filtering diffusion can randomly change
pixel values and spread tiny changes of original image to
the whole encrypted result. The simulation results showed
that IES-JPFD is able to encrypt different types of images
into unrecognized cipher-images with random distribution.
To prove the efficiency of IES-JPFD, we analyzed its security
performance in terms of the secret key sensitivity, ability of
defending differential attack, adjacent pixel correlation, local
Shannon entropy and deviation from uniform histogram. The
analysis results showed that IES-JPFD can achieve higher
security performance than several classical image encryption
algorithms.

REFERENCES
[1] L. Halbeisen and N. Hungerbiihler, ““The Josephus problem,” J. Théorie
Nuombres Bordeaux, vol. 9, no. 2, pp. 303-318, 1997.
[2] C.Li,D.Lin,J.Li, and F. Hao, “Cryptanalyzing an image encryption algo-

rithm based on autoblocking and electrocardiography,” IEEE Multimedia,
to be published, doi: 10.1109/MMUL.2018.2873472.

VOLUME 7, 2019


http://dx.doi.org/10.1109/MMUL.2018.2873472

Z. Hua et al.: Image Encryption Using Josephus Problem and Filtering Diffusion

[3]

[4]

[5]

[6

[71
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

C.Li, D. Lin, and J. Lii, “Cryptanalyzing an image-scrambling encryption
algorithm of pixel bits,” IEEE Multimedia, vol. 24, no. 3, pp. 64-71,
Aug. 2017.

X. Chai, X. Fu, Z. Gan, Y. Lu, and Y. Chen, ““A color image cryptosystem
based on dynamic DNA encryption and chaos,” Signal Process., vol. 155,
pp. 44-62, Feb. 2019.

S. Yi, Y. Zhou, and Z. Hua, “Reversible data hiding in encrypted images
using adaptive block-level prediction-error expansion,” Signal Process.,
Image Commun., vol. 64, pp. 78-88, May 2018.

F. Y. Shih, Digital Watermarking and Steganography: Fundamentals and
Techniques. Boca Raton, FL, USA: CRC Press, 2017.

Z. Hua and Y. Zhou, “Design of image cipher using block-based scram-
bling and image filtering,” Inf. Sci., vol. 396, pp. 97-113, Aug. 2017.

A. A. A. El-Latif, B. Abd-El-Atty, and M. Talha, ‘“Robust encryption of
quantum medical images,” IEEE Access, vol. 6, pp. 1073-1081, 2018.

X. Huang and G. Ye, “An efficient self-adaptive model for chaotic image
encryption algorithm,” Commun. Nonlinear Sci. Numer. Simul., vol. 19,
no. 12, pp. 4094-4104, 2014.

Z. Hua, S. Yi, and Y. Zhou, “Medical image encryption using high-
speed scrambling and pixel adaptive diffusion,” Signal Process., vol. 144,
pp. 134-144, Mar. 2018.

M. H. Annaby, M. A. Rushdi, and E. A. Nehary, “Image encryption via
discrete fractional Fourier-type transforms generated by random matrices,”
Signal Process., Image Commun., vol. 49, pp. 25—46, Nov. 2016.

Y.-Q. Zhang and X.-Y. Wang, “A new image encryption algorithm based
on non-adjacent coupled map lattices,” Appl. Soft. Comput., vol. 26,
pp. 10-20, Jan. 2015.

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral
imaging reconstruction and encryption using an improved sr reconstruction
algorithm,” Opt. Lasers Eng., vol. 112, pp. 162-169, Sep. 2019.
Advanced Encryption Standard (AES), FIPS PUB 197, Gaithersburg, MD,
USA, 2001.

Z. Hua, B. Zhou, and Y. Zhou, ““Sine chaotification model for enhancing
chaos and its hardware implementation,” IEEE Trans. Ind. Electron.,
vol. 66, no. 2, pp. 1273-1284, Feb. 2019.

X. Huang and G. Ye, “An image encryption algorithm based on hyper-
chaos and DNA sequence,” Multimedia Tools Appl., vol. 72, no. 1,
pp. 57-70, 2014.

Y.-Q. Zhang and X.-Y. Wang, “A symmetric image encryption algorithm
based on mixed linear—nonlinear coupled map lattice,” Inf. Sci., vol. 273,
pp. 329-351, Jul. 2014.

Z. Hua, F. Jin, B. Xu, and H. Huang, “2D logistic-sine-coupling map for
image encryption,” Signal Process., vol. 149, pp. 148-161, Aug. 2018.
D. Jiang, Y. Chen, X. Gu, L. Xie, and L. Chen, “Efficient and universal
quantum key distribution based on chaos and middleware,” Int. J. Mod.
Phys. B, vol. 31, no. 2, p. 1650264, 2017.

N. Zhou, Y. Hu, L. Gong, and G. Li, “Quantum image encryption scheme
with iterative generalized Arnold transforms and quantum image cycle
shift operations,” Quantum Inf. Process., vol. 16, no. 6, p. 164, 2017.

N. Zhou, S. Pan, S. Cheng, and Z. Zhou, ‘“Image compression—encryption
scheme based on hyper-chaotic system and 2D compressive sensing,” Opt.
Laser Technol., vol. 82, pp. 121-133, Aug. 2016.

X. Chai, Z. Gan, Y. Chen, and Y. Zhang, “A visually secure image encryp-
tion scheme based on compressive sensing,” Signal Process., vol. 134,
pp. 35-51, May 2017.

R. Enayatifar, H. J. Sadaei, A. H. Abdullah, M. Lee, and I. F. Isnin,
“A novel chaotic based image encryption using a hybrid model of
deoxyribonucleic acid and cellular automata,” Opt. Lasers Eng., vol. 71,
pp. 33-41, Aug. 2015.

X. Chai, Y. Chen, and L. Broyde, ‘A novel chaos-based image encryption
algorithm using dna sequence operations,” Opt. Lasers Eng., vol. 88,
pp. 197-213, Jan. 2017.

J. Chen, Z.-L. Zhu, L.-B. Zhang, Y. Zhang, and B.-Q. Yang, “Exploiting
self-adaptive permutation—diffusion and DNA random encoding for secure
and efficient image encryption,” Signal Process., vol. 142, pp. 340-353,
Jan. 2018.

Z. Hua, B. Zhou, and Y. Zhou, “Sine-transform-based chaotic system
with FPGA implementation,” IEEE Trans. Ind. Electron., vol. 65, no. 3,
pp. 2557-2566, Mar. 2018.

C. Li, G. Luo, K. Qin, and C. Li, “An image encryption scheme based on
chaotic tent map,” Nonlinear Dyn., vol. 87, no. 1, pp. 127-133, 2017.

W. Liu, K. Sun, and C. Zhu, “A fast image encryption algorithm based on
chaotic map,” Opt. Lasers Eng., vol. 84, pp. 26-36, Sep. 2016.

VOLUME 7, 2019

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

P. Ping, F. Xu, Y. Mao, and Z. Wang, “‘Designing permutation—substitution
image encryption networks with Henon map,” Neurocomputing, vol. 283,
pp. 53-63, Mar. 2017.

Y. Zhou, L. Bao, and C. L. P. Chen, “Image encryption using a new
parametric switching chaotic system,” Signal Process., vol. 93, no. 11,
pp- 3039-3052, 2013.

C.Li, S. Li, M. Asim, J. Nunez, G. Alvarez, and G. Chen, ““On the security
defects of an image encryption scheme,” Image Vis. Comput.,vol.27,n0.9,
pp. 1371-1381, 2009.

D. Arroyo, R. Rhouma, G. Alvarez, S. Li, and V. Fernandez, “On the
security of a new image encryption scheme based on chaotic map lattices,”
Chaos, Interdiscipl. J. Nonlinear Sci., vol. 18, no. 3, p. 033112, 2008.

X. Wu, B.Zhu, Y. Hu, and Y. Ran, ““A novel color image encryption scheme
using rectangular transform-enhanced chaotic tent maps,” IEEE Access,
vol. 5, pp. 6429-6436, 2017.

C.Li, Y. Liu, T. Xie, and M. Z. Q. Chen, ““Breaking a novel image encryp-
tion scheme based on improved hyperchaotic sequences,” Nonlinear Dyn.,
vol. 73, no. 3, pp. 2083-2089, 2013.

E. Y. Xie, C. Li, S. Yu, and J. Lii, “On the cryptanalysis of Fridrich’s
chaotic image encryption scheme,” Signal Process., vol. 132, pp. 150-154,
Mar. 2017.

C. Zhu and K. Sun, “Cryptanalyzing and improving a novel color image
encryption algorithm using RT-enhanced chaotic tent maps,” IEEE Access,
vol. 6, pp. 18759-18770, 2018.

Y. Wu, Y. Zhou, J. P. Noonan, and S. Agaian, “Design of image cipher
using latin squares,” Inf. Sci., vol. 264, pp. 317-339, Apr. 2014.

R. Enayatifar, A. H. Abdullah, I. F. Isnin, A. Altameem, and M. Lee,
“Image encryption using a synchronous permutation-diffusion technique,”
Opt. Lasers Eng., vol. 90, pp. 146—154, Mar. 2017.

X. Wang, Q. Wang, and Y. Zhang, A fast image algorithm based on rows
and columns switch,” Nonlinear Dyn, vol. 79, no. 2, pp. 1141-1149, 2015.
C. Cao, K. Sun, and W. Liu, “A novel bit-level image encryption algo-
rithm based on 2D-LICM hyperchaotic map,” Signal Process., vol. 143,
pp. 122-133, Feb. 2018.

L. Xu, Z. Li, J. Li, and W. Hua, “A novel bit-level image encryption
algorithm based on chaotic maps,” Opt. Lasers Eng., vol. 78, pp. 17-25,
Mar. 2016.

Y. Guo, L.-P. Shao, and L. Yang, “Bit-level image encryption algorithm
based on Josephus and henon chaotic map,” Appl. Res. Comput., vol. 32,
no. 4, pp. 1131-1137, 2015.

X. Wang, X. Zhu, and Y. Zhang, “An image encryption algorithm based
on Josephus traversing and mixed chaotic map,” IEEE Access, vol. 6,
pp. 23733-23746, 2018.

G. Yang, H. Jin, and N. Bai, “Image encryption using the chaotic Josephus
matrix,” Math. Problems Eng., vol. 2014, Mar. 2014, Art. no. 632060.

J. Wu and L. Tu, “An image encryption algorithm based on Josephus
traversing and position disordering,” in Proc. Int. Conf. Cybern. Inform.
New York, NY, USA: Springer, 2014, pp. 1941-1946.

G. Alvarez and S. Li, “Some basic cryptographic requirements for
chaos-based cryptosystems,” Int. J. Bifurcation Chaos, vol. 16, no. 8,
pp. 2129-2151, 2006.

Y. Wu, J. P. Noonan, and S. Agaian, “NPCR and UACI randomness tests
for image encryption,” Cyber J., Multidisciplinary J. Sci. Technol., J. Sel.
Areas Telecommun., vol. 1, no. 2, pp. 31-38, 2011.

Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and P. Natarajan,
“Local Shannon entropy measure with statistical tests for image random-
ness,” Inf. Sci., vol. 222, pp. 323-342, Feb. 2013.

I. F Elashry, O. S. Faragallah, A. M. Abbas, S. El-Rabaie, and
F.E. Abd El-Samie, “A new method for encrypting images with few details
using Rijndael and RC6 block ciphers in the electronic code book mode,”
Inf. Secur. J., Global Perspective, vol. 21, no. 4, pp. 193-205, 2012.

ZHONGYUN HUA (S’14-M’16) received the
B.S. degree from Chongqing University,
Chongqing, China, in 2011, and the M.S. and
Ph.D. degrees from the University of Macau,
Macau, China, in 2013 and 2016, respectively, all
in software engineering.

He is currently an Associate Professor with
the School of Computer Science and Technol-
ogy, Harbin Institute of Technology (Shenzhen),
Shenzhen, China. His research interests include

chaotic system, chaos-based applications, and multimedia security.

8673



Z. Hua et al.: Image Encryption Using Josephus Problem and Filtering Diffusion

8674

BINXUAN XU received the B.S. degree in soft-
ware engineering from the University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2016. He is currently pursuing the mas-
ter’s degree with the School of Computer Science
and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen, China. His research inter-
ests include image security and reversible data
hiding.

FAN JIN received the B.S. degree in software engi-
neering from the Harbin Institute of Technology,
Harbin, China, in 2016. He is currently pursuing
the master’s degree with the School of Computer
Science and Technology, Harbin Institute of Tech-
nology (Shenzhen), Shenzhen, China. His research
interests include chaotic systems and image
encryption.

HEJIAO HUANG received the Ph.D. degree in
computer science from the City University of
Hong Kong, in 2004. She was an Invited Pro-
fessor with INRIA, France. She is currently a
Professor with the Harbin Institute of Technology
(Shenzhen), Shenzhen, China. Her research inter-
ests include cloud computing, trustworthy com-
puting, formal methods for system design, and
wireless networks.

VOLUME 7, 2019



	INTRODUCTION
	PRELIMINARIES
	JOSEPHUS PROBLEM
	IMAGE FILTERING TECHNOLOGY

	NEW IMAGE ENCRYPTION ALGORITHM
	JOSEPHUS SCRAMBLING
	PARAMETER GENERATION
	SCRAMBLING USING PARAMETERS

	FILTERING DIFFUSION
	FILTER GENERATION
	FILTERING DIFFUSION USING FILTER


	SIMULATION RESULTS AND PROPERTY DISCUSSION
	SIMULATIONS RESULTS
	PROPERTY DISCUSSION

	SECURITY ANALYSIS
	SECRET KEY ANALYSIS 
	ABILITY OF DEFENDING DIFFERENTIAL ATTACK
	ADJACENT PIXEL CORRELATION
	LOCAL SHANNON ENTROPY
	DEVIATION FROM UNIFORM HISTOGRAM

	CONCLUSION
	REFERENCES
	Biographies
	ZHONGYUN HUA
	BINXUAN XU
	FAN JIN
	HEJIAO HUANG


