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Abstract—This paper introduces a 2D chaotic sys-
tem, called 2D-LSM. It is derived from the Logistic
and Sine maps. Using 2D-LSM, a new image encryp-
tion algorithm based on the image content is also pro-
posed. It can encrypt different kinds of images in-
to random-like ones. Simulation results and security
analysis show that the proposed image encryption al-
gorithm can encrypt images with a high security level.

1. Introduction

Image encryption attracts more and more attentions
in the past few decides [1–3]. Because there are many
similar properties between the chaotic systems and im-
age encryption, the chaotic systems are widely used
in image encryption. Many chaos-based image en-
cryption algorithms have been developed [4–6]. When
chaotic systems are used in image encryption, their
chaos performance usually partly determines the secu-
rity level. For some 1D chaotic systems, they usually
have simple structures and poor chaos performance
that make their behaviors easily to be predicted [7].

In this paper, we first introduce a new 2D chaotic
system, which is derived from the Logistic and Sine
maps. Using the proposed 2D chaotic system, we fur-
ther propose an image encryption algorithm. The im-
age content is used as a portion of security key to
generate the initial conditions of 2D chaotic system.
Simulation results and security analysis show that the
proposed algorithm has high encryption performance.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a new 2D chaotic system; Section 3
proposes an image encryption algorithm; Section 4
simulates the image encryption algorithm and analyzes
its performance and Section 5 gets a conclusion.

2. The 2D Logistic-Sine map

Firstly, we give the definition of the 2D Logistic-Sine
map (2D-LSM).{

xi+1 = a(3 sin(πyi) + 1)xi(1− xi)
yi+1 = a(3 sin(πxi+1) + 1)yi(1− yi)

(1)

where a is the control parameter within the range of
[0, 1]. From its definition, we can see that the 2D-LSM
is derived from the Logistic and Sine maps. It first uses
the output of Sine map to control the parameter of
Logistic map, and then extends the phase plane from
1D to 2D. Fig. 1 shows the distribution of its attractors
in the 2D phase plane.

Figure 1: The distribution of attractors of 2D-LSM.

3. Image encryption using 2D-LSM

This section proposes an image encryption algorith-
m using 2D-LSM introduced in the previous section.
Its structure diagram is depicted in Fig. 2. As can

Figure 2: The structure diagram of the proposed image encryp-
tion algorithm.

be seen, P is the original image that to be encrypted
and C is the encrypted result. P is first hashed to
get a fixed length bit-stream. The bit-stream is com-
bined with the encryption key to generate initial con-
ditions for 2D-LSM. For 2D-LSM, its output chaotic
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sequence {xi|i = 1, 2, · · · } is used to do the row trans-
form and diffusion and its another output sequence
{yi|i = 1, 2, · · · } is used to do the column transform
and diffusion. After 4 times of these operations, the
original image P can be encrypted into a random-like
encrypted image C. The decryption is the inverse op-
erations of the encryption and the decryption key is
generated by appending the hash result of P to the
end of the encryption key. The encryption procedure
is represented as C = En(P,Ke) and the decryption
procedure is represented as D = De(C,Kd).

3.1. Security key schedule

The encryption key is combined with the hash result
of the original image to generate the initial conditions
for 2D-LSM. Here, a 128-bit stream H will be gen-
erated by the hash operation and the encryption key
Ke = {x0, y0, a0}. Firstly, transform H into a float
number T and an integer vector P = {p1, p2, p3, p4}.
Then the detailed operations to generate initial condi-
tions for 2D-LSM in each iteration are defined as

xi0 = (x0 + T × P (i)) mod 1

yi0 = (y0 + T × P (i)) mod 1

ai0 = ((a0 + T × P (i)) mod 0.1) + 0.9

(2)

where i = 1, 2, 3, 4. From Eq. (2), we can get that the
initial values (xi

0, y
i
0) are into the range of [0, 1] and the

control parameter ai0 falls into the range of [0.9, 1] to
make 2D-LSM achieve good chaos performance. Total
4 groups of initial conditions {xi

0, y
i
0, a

i
0} (i = 1, 2, 3, 4)

can be generated. They will be used for 2D-LSM to
generate chaotic sequences X = {xi|i = 1, 2, · · · } and
Y = {yi|i = 1, 2, · · · } in each encryption/decryption
iteration.

3.2. Transformation

The transformation is to randomly change the pixel
positions within the image. Here, we randomly change
the pixel positions horizontally and vertically. The row
transformation is to shuffle the pixel positions in each
row while the column transformation shuffles the pixel
positions in each column, which are similar with the
operations proposed in [5].

3.2.1. Row transformation

Suppose the original image is with size of M × N ,
a chaotic sequence S1 = {x1, x2, · · · , xN} is generated
by 2D-LSM. Sort S1 to get the index vector I and the
sorted sequence S1. Then

S1(i) = S1(I(i)) for i = 1, 2, · · · , N (3)

Using the index vector I, a row transformation ma-
trix W1 can be generated

W1(i, j) =

{
1 if I(i) = j

0 otherwise
(4)

where i, j ∈ [1, N ]. Then the row transformation is
defined as C = PW1.

In the decryption procedure, the inverse row trans-
formation is defined as P = CW−1

1 .

3.2.2. Column transformation

A chaotic sequence S2 = {y1, y2, · · · , yM} is gener-
ated by 2D-LSM. Sort S2 to get the index vector R
and the sorted sequences S2. Then

S2(i) = S2(R(i)) for i = 1, 2, · · · ,M (5)

Using the index vector R, a column transformation
matrix W2 can be obtained

W2(i, j) =

{
1 if R(j) = i

0 otherwise
(6)

where i, j ∈ [1,M ]. Then the column transformation
is defined as C = W2P .

In the decryption procedure, the inverse column
transformation is defined as P = W−1

2 C.

3.3. Diffusion

The diffusion operation is to make the little change
in the original image spread over all the pixels in the
encrypted image. In our algorithm, we do the diffusion
operations in the finite field (GF (28)).

3.3.1. Row diffusion

When doing row diffusion, a chaotic sequence S3 =
{x1, x2, · · · , xN×N} is generated by 2D-LSM. Firstly,
rearrange S3 with the size of N ×N and then convert
its elements into the range of [0, 255] by S3 = bS3×220c
mod 256.

Convert the values in the original image P and S3

into the finite field GF (28), and then the row diffusion
is defined as C = PS3.

The inverse operation of row diffusion is defined as
P = CS−1

3 .

3.3.2. Column diffusion

In the procedure of column diffusion, a chaotic se-
quence S4 = {y1, y2, · · · , yM×M} is generated by 2D-
LSM. We first rearrange S4 with the size of M ×M
and then convert its elements into the range of [0, 255]
by S4 = bS4 × 220c mod 256.

Convert the values in the original image P and S4

into the finite field GF (28), and then the column dif-
fusion is defined as C = S4P .

The inverse operation of column diffusion is defined
as P = S−1

4 C.

4. Simulation results and security analysis

This section simulates the proposed image encryp-
tion algorithm and analyzes its security performance.
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4.1. Simulation results

The proposed image encryption algorithm can en-
crypt different kinds of images into random-like ones
with a high security level. Fig. 3 shows the simulation
procedures of the grayscale and color images. As can
be seen, the original images are all with some pattern-
s, especially the text image in Fig. 3(a), but their en-
crypted images are all randomly distributed. Attack-
ers can not obtain any useful information by analyzing
their pixel statistic distributions.

(a) (b) (c)

Figure 3: Simulation results of different types of images. (1)
The text image; (b) the natural image and (c) the color image.

4.2. Security analysis

For a good encryption algorithm, it should have high
security level. This sub-section analyzes the security
level of the proposed image encryption algorithm.

4.2.1. Key sensitivity

The encryption algorithm should be very sensitive
with its key’s change. This means that when the en-
cryption/decryption key has little changes, the encryp-
tion/decryption results should be totally different.

For the proposed image encryption algorithm, we
randomly generate two encryption keys Ke1 and Ke2,
which have one bit difference. Kd1 is the correspond-
ing decryption key of Ke1. Kd2 and Kd3 are two de-
cryption keys that have one bit difference with Kd1 and

they are also different with each other. Fig. 4 shows
the analysis results of key sensitivity. As can be seen,
when encrypting the original image with Ke1 and Ke2,
the two encryption results are totally different, which
can be verified by Fig. 4(d). When decrypting the en-
crypted image C1 with Kd1, Kd2 and Kd3, respectively,
only the decryption result D1 can successfully recon-
struct the original image. Using other decryption keys
that only have one bit difference result in random-like
images (Figs. 4(f) and (g)), which are also different
with each other (Fig. 4(h)).

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 4: Key sensitivity analysis. (a) The original image P ;
(b) the encrypted image C1 = En(P,Ke1); (c) the encrypted
image C2 = En(P,Ke2); (d) the difference between C1 and
C2, |C1 − C2|; (e) the decrypted image D1 = De(C1,Kd1);
(f) the decrypted image D2 = De(C1,Kd2); (g) the decrypted
image D3 = De(C1,Kd3); (h) the difference between D2 and
D3, |D2 −D3|.

4.2.2. Adjacent pixels correlation

Natural images usually have high data redundan-
cy, and thus their pixels are highly related with the
adjacent pixels. A secure image encryption algorithm
should have the ability to break up the high correla-
tions between adjacent pixels.

(a) (b) (c)

Figure 5: Pixel correlation analysis results. The first and second
rows plot the distributions of adjacent pixel pairs of the original
and its encrypted images along with the (a) horizontal, (b) ver-
tical and (c) diagonal directions. The original and its encrypted
images are from Figs. 4(a) and (b), respectively.
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In our experimental, we randomly select 2000 pix-
els in the original and its encrypted images, and then
plot these pixels with their adjacent pixels along with
the horizontal, vertical and diagonal directions. The
original and its encrypted images are from Figs. 4(a)
and (b), respectively. Fig. 5 plots the results. As can
be seen, for the original image (Fig. 4(a)), the pixel
pairs of the randomly selected pixels with their adja-
cent pixels are mostly distributed on or nearby the di-
agonal line, which means that the pixels in the original
image have high correlation with their adjacent pixels.
For its encrypted image (Fig. 4(b)), the pixel pairs are
randomly distributed in the whole data range, which
means the pixels are highly independent and they have
no relationship with their adjacent pixels.

4.2.3. Differential attack

The differential attack is one of the commonly used
chosen-plaintext attacks. By encrypting little differ-
ent original images with the same key, the attackers
attempt to find the regular connections between the
encrypted results.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 6: Differential attack analysis results. (a) The original
image P1; (b) the original image P2 that has one pixel difference
with P1; (c) the difference between P1 and P2, |P1 − P2|; (d)
the encrypted image C1 = En(P1,Ke); (e) the encrypted image
C2 = En(P2,Ke); (f) the difference between C1 and C2, |C1 −
C2|.

We simulate the procedure of the differential attack
in our experiment and Fig. 6 shows the simulation re-
sults. As can be seen, by randomly changing one pixel
of an original image to obtain another original image,
and then encrypt the two original images using the
same encryption key, the two encrypted images are
random-like and totally independent. They have no
relationship with each other, which can be seen from
their difference in Fig. 6(f).

5. Conclusion

In this paper, we have introduced a new 2D chaotic
system, which is derived from the Logistic and Sine
maps. Using this new 2D chaotic system, we have fur-
ther propose an image encryption algorithm. It can
encrypt digital images into noise-like ones. Simulation
results and security analysis have shown that the pro-
posed image encryption algorithm can encrypt images
with a high security level.
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