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a b s t r a c t

With complex properties of ergodicity, unpredictability and sensitivity to initial states,

chaotic systems are widely used in cryptography. This paper proposes a two-dimensional

Logistic-adjusted-Sine map (2D-LASM). Performance evaluations show that it has better er-

godicity and unpredictability, and a wider chaotic range than many existing chaotic maps.

Using the proposed map, this paper further designs a 2D-LASM-based image encryption

scheme (LAS-IES). The principle of diffusion and confusion are strictly fulfilled, and a

mechanism of adding random values to plain-image is designed to enhance the security

level of cipher-image. Simulation results and security analysis show that LAS-IES can effi-

ciently encrypt different kinds of images into random-like ones that have strong ability of

resisting various security attacks.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

With the fast development of digital technologies and communication networks, more and more digital data carrying all

kinds of information are generated and transmitted over the networks. Among these data, digital images are a typical type

of two-dimensional (2D) data, which contain a large amount of information. Two examples are as follows: a warship photo

may tell not only its size and weapon configurations, but also its rough location and military mission; a personal photo

may not only display what he/she looks like, but also his/her rough age and health condition. Because a digital image may

contain much inferable information, image security attracts more and more attention. Among all kinds of image security

technologies, image encryption is a visualized way by transforming a meaningful original image into an unrecognizable and

noise-like cipher- image [29,47,48].

The most direct strategy of image encryption is to treat a digital image as a binary stream, and encrypt it with the devel-

oped data encryption schemes, such as the Data Encryption Standard and Advanced Encryption Standard [9,10]. However, a

pixel is commonly represented by 8 or more bits and strong correlation may exist between adjacent pixels. When encrypt-

ing a digital image as a binary stream without considering the property of pixels, the strong correlation may still remain

and the encryption efficiency may be quite low. Therefore, considering the special properties of digital images, many image

encryption schemes were proposed using different kinds of methods, such as chaotic maps [17,26,49], wave perturbations

[40], wavelet transform [3,35], and magic cube [7,19].

As many studies have pointed out that many properties of chaotic systems are similar to the counterparts in cryptography

since the early 1990s [11,16,36,45,52], chaotic systems are quite suitable for cryptography and have been widely used in

image encryption [19,50,51]. When chaotic systems are used in image encryption, the security levels of image encryption

schemes are highly dependent on performance of the used chaotic systems. For some one-dimensional (1D) chaotic systems,
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Fig. 1. Logistic map’s (a) bifurcation and (b) iteration function diagrams; Sine map’s (c) bifurcation and (d) iteration function diagrams.
their chaotic orbits are quite simple and may be predicted easily. Once some information is extracted [2,18,31], their initial

states may be estimated using some techniques [6,25,28,37]. Using a chaotic system with a simple chaotic behavior, the

corresponding image encryption scheme may be easily attacked [2,20,21,34]. The high-dimensional chaotic systems have

complex chaotic behaviors and their chaotic orbits are difficult to be predicted. However, they also have some weaknesses,

such as complex performance analysis and high implementation costs [44].

This paper first proposes a new 2D chaotic map, called the 2D Logistic-adjusted-Sine map (2D-LASM). It uses the Logistic

map to adjust the input of the Sine map and then extends its phase plane from 1D to 2D. Performance evaluations show

that 2D-LASM has a wider chaotic range, better ergodicity and unpredictability than several existing chaotic maps. Using 2D-

LASM, this paper further designs a 2D-LASM-based image encryption scheme (LAS-IES). It performs confusion and diffusion

operations in the bit level. An additional mechanism of adding random values to the plain-image is designed to ensure that

each encrypted result is different. Simulation results and security analysis show that LAS-IES can encrypt different kinds of

digital images into random-like ones, and it has strong capability against various attacks.

The rest of this paper is organized as follows. Section 2 reviews two traditional 1D chaotic maps. Section 3 proposes

2D-LASM and analyzes its properties. Section 4 introduces LAS-IES using 2D-LASM. Section 5 provides simulation results

of LAS-IES and discusses its properties. Section 6 evaluates the security performance of LAS-IES and Section 7 reaches a

conclusion.

2. Preliminary knowledge of existing chaotic maps

This section reviews two 1D existing chaotic maps, the Logistic and Sine maps, which are the basic components of

generating 2D-LASM.

2.1. Logistic map

The Logistic map is a discrete-time analog of the logistic equation for population growing [27]. Mathematically, the Lo-

gistic map is defined as

xi+1 = 4pxi(1 − xi), (1)

where parameter p is within the range of [0, 1]. When p ∈ [0.89, 1], Logistic map is chaotic.

Bifurcation diagram shows the output distribution of a chaotic map along its control parameter, while iteration function

describes the output distributions along its inputs. Fig. 1(a) and (b) show the bifurcation and several iteration function

diagrams of Logistic map, respectively. It is noticed that the outputs of Logistic map distribute in a larger area when p

approaches to 1.

2.2. Sine map

When sine function has inputs within the range of [0, π ], its outputs fall into the range of [0, 1]. Sine map is derived

from sine function by transforming its inputs into [0, 1]. It is defined as

xi+1 = s sin(πxi), (2)

where parameter s ∈ [0, 1]. Sine map is chaotic when s ∈ [0.87, 1].

The bifurcation and few iteration function diagrams of Sine map are depicted in Fig. 1(c) and (d), respectively. Although

Logistic and Sine maps have totally different mathematical definitions, their chaotic behaviors are quite similar, which can

be seen from their bifurcation diagrams shown in Fig. 1(a) and (c).
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Fig. 2. Trajectories of different 2D chaotic maps: (a) 2D Logistic map with parameter r = 1.19; (b) 2D-SLMM with parameters α = 1, β = 3; (c) Hénon map

with parameter a = 1.4, b = 0.3; (d) 2D-LASM with parameter μ = 0.9.
3. 2D Logistic-adjusted-Sine map

We give the mathematical definition of 2D-LASM,{
xi+1 = sin(πμ( yi + 3)xi(1 − xi)),

yi+1 = sin(πμ(xi+1 + 3)yi(1 − yi)),
(3)

where parameter μ ∈ [0, 1]. 2D-LASM is derived from Sine and Logistic maps. The logistic equation xi(1 − xi) is first scaled

by a factor of μ, and fed into the input of Sine map. The phase plane is then extended from 1D to 2D. In 2D-LASM, two

inputs are interactively influenced and the output pairs (xi+1, yi+1) distribute into the 2D phase plane. Compared with Sine

and Logistic maps, it has a more complicated structure and its outputs are more difficult to be predicted.

3.1. Trajectory

For a dynamical system, a trajectory shows the movement path of its outputs. Fig. 2 shows the trajectories of different

2D chaotic maps. The 2D Logistic map is defined as{
xi+1 = r(3yi + 1)xi(1 − xi),

yi+1 = r(3xi+1 + 1)yi(1 − yi),

where r is the control parameter [39]. The 2D Sine Logistic modulation map (2D-SLMM) is defined as{
xi+1 = α(sin(πyi) + β)xi(1 − xi),

yi+1 = α(sin(πxi+1) + β)yi(1 − yi),

where α and β are parameters, α ∈ [0, 1] and β is usually fixed as 3 [19]. The Hénon map is defined as{
xi+1 = 1 − ax2

i
+ yi,

yi+1 = bxi,

where a and b are parameters [14]. When generating these trajectories presented in Fig. 2, all initial values are set as (0.1,

0.2) and all parameters are set as the values that make the outputs of corresponding chaotic maps distribute in the area

as large as possible. From the figures, we can see that output pairs (xi+1, yi+1) of 2D-LASM distribute in the whole data

range of the 2D phase plane. They have a much larger distribution area than outputs of other 2D chaotic maps. Therefore,

2D-LASM has better ergodicity and its outputs are more random.

3.2. Lyapunov exponent

The chaos phenomenon can be described as unpredictability and sensitivity to initial states. The Lyapunov exponent

(LE) is a widely accepted indictor to measure chaotic behavior of a dynamical system [32,33]. For two close trajectories

of a dynamical system, LE describes their degree of divergence. A positive LE means that no matter how close the two

trajectories are, their difference divergently increase in each iteration to make them totally different eventually. Therefore,

a dynamical system with a positive LE is chaotic. A multi-dimensional dynamical system may have more than one LE. If

it has more than one positive LE, its close trajectories exponentially diverge in several dimensions. This phenomenon is

called hyperchaotic behavior. A dynamical system with hyperchaotic behavior has extremely good chaos performance and

its outputs are difficult to be predicted.

A 2D discrete chaotic map has two LEs. For the 2D Logistic map, 2D-SLMM, Hénon map and 2D-LASM, Fig. 3 presents

how their LE values, λ1 and λ2, change with respect to the corresponding control parameters. We can observe the fol-

lowing phenomena: 2D Logistic map has chaotic behavior when its parameter r ∈ [1.11, 1.15] ∪ [1.18, 1.19]; 2D-SLMM has
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a b c d

Fig. 3. LEs of different 2D chaotic maps: (a) 2D Logistic map; (b) 2D-SLMM with parameter β = 3; (c) Hénon map with parameter b = 0.3; 2D-LASM.

Fig. 4. KEs of different chaotic maps, where parameter θ denotes μ, α, r − 0.2, a − 0.4, p and s for 2D-LASM, 2D-SLMM, 2D Logistic map, Hénon map,

Logistic map and Sine map, respectively.
chaotic behavior when β = 3 and α ∈ [0.87, 1]; Hénon map has chaotic behavior when its parameters b = 0.3 and a ∈ [1.06,

1.22] ∪ [1.27, 1.29] ∪ [1.31, 1.42]; 2D-LASM has chaotic behavior when μ ∈ [0.37, 0.38] ∪ [0.4, 0.42] ∪ [0.44, 0.93] ∪ {1}. There-

fore, 2D-LASM has a much wider chaotic range than other three 2D chaotic maps. In addition, 2D-LASM and 2D-SLMM have

hyerchaotic behaviors when their corresponding parameters α ∈ [0.905, 1] and μ ∈ [0.44, 0.93]. The hyperchaotic range of

2D-LASM is much larger than that of 2D-SLMM.

3.3. Kolmogorov entropy

Kolmogorov entropy (KE) is a kind of entropy that provides a quantitative explication of randomness of a signal [8]. It

can be used to measure how much extra information is needed to predict trajectory of a dynamical system. Its mathematical

definition is given as

KE = lim
τ→0

τ−1 lim
ε→0

lim
m→∞ Km,τ (ε), (4)

where m is the embedding dimension,

Km,τ (ε) = −
∑

i1,i2,...,im�n(ε)

p(i1, i2, . . . , im) log p(i1, i2, . . . , im),

where p(i1, i2, . . . , im) representees the joint probability of correctly predicting the trajectory in partition φi1
at time τ , in

partition φi2
at time 2τ ,…, in partition φim at time mτ , and φi1

, φi2
, . . . , φim are m nonoverlapping partitions in the phase

plane.

A positive KE means that extra information is needed to predict the trajectory of a dynamical system. Thus, if a dynamical

system has a positive KE, its outputs will be unpredictable, and a larger KE indicates better unpredictability. Our experiment

uses the method proposed in [15] to calculate KEs. Fig. 4 depicts the KEs of different chaotic maps along their control

parameters. To provide a visualized comparison, we shift the parameters of 2D Logistic map and Hénon map into the range
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Fig. 5. The structure of LAS-IES.
of [0, 1]. Compared with other chaotic maps, 2D-LASM has a much wider chaotic range with positive KEs, and its positive

KEs are much larger under most control parameters. Thus, the outputs of 2D-LASM are more unpredictable.

4. 2D-LASM-based image encryption scheme

Using 2D-LASM, this section further designs a new image encryption scheme, LAS-IES, whose secret key is used to set

the initial states of 2D-LASM to generate chaotic matrices S1 and S2. Random values are first added to surroundings of the

plain-image. Confusion and diffusion operations are then designed to randomly shuffle the pixel positions and change the

pixel values, respectively. After two rounds of confusion and diffusion operations, a plain-image can be encrypted into an

unrecognizable random-like cipher-image with a high security level. The overall structure of LAS-IES is shown in Fig. 5.

4.1. Secret key generation

To resist the brute-force attack, key space of a chaos-based encryption scheme should be larger than 2100 [1]. To satisfy

this requirement and adapt to the structure of LAS-IES, we set the secret key as 232 bits, K = {x0, y0,μ, w, γ1, γ2}. It consists

of six parts, where γ 1, γ 2 are two interference strengths, (x0, y0, μ) are the original values, and w is the interference

parameter. The generation procedures of initial states for 2D-LASM are shown in Algorithm 1, from which two groups of
Algorithm 1 The generation of initial states for 2D-LASM.

Input: Secret key K with length of 232 bits.

Output: Initial states (x1
0, y1

0,μ1) and (x2
0, y2

0,μ2).

1: x0 = (
∑52

i=1 K[i] × 2i−1)/252 ;

2: y0 = (
∑104

i=53 K[i] × 2i−53)/252 ;

3: μ = (
∑156

i=105 K[i] × 2i−105)/252 ;

4: w = (
∑208

i=157 K[i] × 2i−157)/252 ;

5: γ1 = ∑220
i=209 K[i] × 2i−209 ;

6: γ2 = ∑232
i=221 K[i] × 2i−221 ;

7: for i = 1 to 2 do

8: xi
0

= (x0 + w × γi) mod 1;

9: yi
0

= ( y0 + w × γi) mod 1;

10: μi = ((μ + w × γi) mod 0.4) + 0.5;

11: if xi
0

= 0 then

12: xi
0

= 0.4;

13: end if

14: if yi
0

= 0 then

15: yi
0

= 0.4;

16: end if

17: end for
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Fig. 6. An example of adding surrounding pixels: (a) plain-image P; (b) operation result.
initial states (x1
0, y1

0,μ1) and (x2
0, y2

0,μ2) are generated. For example, a randomly generated 232-bit secret key is shown as

K = AFE16E25A23D9D178D059526D0B5C63471429DB435794F8A359004B490.

According to Algorithm 1, we can obtain that (x0, y0,μ) = (0.60846485, 0.04450474, 0.85772949), w = 0.03778565,

and (γ1, γ2) = (3360, 146). Then the two groups of initial states can be generated, namely, (x1
0, y1

0,μ1) = (0.56823603,

0.00427592, 0.71750067) and (x2
0
, y2

0
,μ2) = (0.1251692, 0.56120908, 0.87443383).

Using the two groups of initial states, two chaotic matrices S1 and S2 can be generated by 2D-LASM. They are used

to perform confusion and diffusion in the subsequent processes. It is noticed that elements of chaotic matrices S1 and S2

have the same representation format as the pixels in plain-image P and that the confusion and diffusion operations are

manipulated in the bit level. The encrypted results always have the same representation format as the original images.

Thus, LAS-IES can be applied to digital images of any representation format.

4.2. Adding surrounding pixels

Some random values are generated and added to surroundings of the plain-image. These values can influence all the

pixels after the confusion and diffusion operations. Because these values are randomly generated and different in each

encryption round, to encrypt a plain-image several times with the same secret key, the generated cipher-images are different

from each other. With this significant property, LAS-IES can achieve good performance of resisting common security attacks,

such as the chosen-plaintext and brute-force attacks.

If the plain-image P is with size M × N, two random matrices, RI of size 2 × (N + 2) and CI of size M × 2, are generated

using a pseudo-random number generator. The elements of RI and CI have the same representation format as the pixels of P.

Fig. 6 shows a numerical example of adding surrounding pixels for the 8-bit grayscale image, where

RI =
(

14 136 200 · · · 240 34 146

212 138 21 · · · 114 28 247

)
2×(N+2)

,

CI =
(

121 87 · · · 22 234

4 42 · · · 59 40

)T

2×M

.

Fig. 6(b) shows the operation result. As can be seen, the underlined values come from RI and the values of bold typeface

belong to CI.

4.3. Bit manipulation confusion

The confusion property indicates that the distribution of outputs should be sensitively dependent on the secret key [43].

The bit manipulation confusion randomly shuffles the pixel positions within the image according to the chaotic matrix

generated by 2D-LASM.

Suppose P is the adding surrounding pixel result and S is the generated chaotic matrix. Each of their elements is repre-

sented by p bits. The bit manipulation confusion is defined by

T = B(P, S). (5)

Algorithm 2 describes the detailed processes of bit manipulation confusion and Fig. 7 shows a numerical example.

As can be seen in Fig. 7, I is the index matrix, whose elements are the index numbers of the corresponding pixels in

P. S is the chaotic matrix generated by 2D-LASM. Its elements have the same representation format as the pixels in P. The
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Algorithm 2 Bit manipulation confusion T = B(P, S).

Input: Image P and chaotic matrix S. They are of size Q × W and their elements are represented by p bits.

Output: Bit manipulation confusion result T .

1: Initial a matrix R of size Q × W ;

2: q = �log2(QW )�;

3: for i = 1 to Q do

4: for j = 1 to W do

5: t = (i − 1)W + j;

6: tb = Bin(t, q); {Bin(x, n) transforms the integer number x into n bits.}

7: Ri, j = Joint(Si, j, tb, Pi, j); {Joint(x1, x2, x3) joints the 3 binary sequences x1, x2, x3 into one binary sequence by order.}

8: end for

9: end for

10: R = SortR(R); {SortR(X ) sorts the matrix X along horizontal direction.}

11: R = SortC(R); {SortC(X ) sorts the matrix X along vertical direction.}

12: T = FetEnd(R1:Q,1:W , p); {FetEnd(x, n) fetches the last n bits from the binary sequence x.}

Fig. 7. A numerical example of bit manipulation confusion.
binary streams from S are placed in the most significant bit positions. Thus, S dominates the change of positions. In the bit

manipulation confusion, a pixel can be permutated to any position of the image. From Fig. 7, we can observe that the pixels

in the operation result are sufficiently shuffled after one-time bit manipulation confusion.

4.4. Bit manipulation diffusion

The diffusion property demonstrates that the ciphertext should be extremely sensitive to change of the plaintext, which

means that one bit change in the plaintext can cause each bit in the ciphertext be changed with a probability of 50% [43].

LAS-IES uses the previous pixel and an element of the chaotic matrix S to change the current pixel. After two rounds of op-

erations, the change in one pixel can be spread all over the entire image. Suppose the chaotic matrix S and bit manipulation
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confusion result T are of size Q × W, the bit manipulation diffusion is defined as

Oi, j =

⎧⎪⎨
⎪⎩

Ti, j ⊕ TQ,W ⊕ Si, j, for i = 1, j = 1;
Ti, j ⊕ Oi−1,W ⊕ Si, j, for i 
= 1, j = 1;
Ti, j ⊕ Oi, j−1 ⊕ Si, j, for j 
= 1,

(6)

where O is the bit manipulation diffusion result, ⊕ is the bitwise XOR operation. The decryption process of this part is to

do the inverse operation, which is defined as

Ti, j =

⎧⎪⎨
⎪⎩

Oi, j ⊕ Oi, j−1 ⊕ Si, j, for j 
= 1;
Oi, j ⊕ Oi−1,W ⊕ Si, j, for i 
= 1, j = 1;
Oi, j ⊕ TQ,W ⊕ Si, j, for i = 1, j = 1.

(7)

After performing two rounds of bit manipulation confusion and diffusion using two different chaotic matrices, a plain-

image can be encrypted into an unrecognizable cipher-image.

4.5. Discussion

Because 2D-LASM has complex chaotic behavior, random values are added to surroundings of the plain-image, and the

principle of confusion and diffusion are strictly followed, LAS-IES has the following advantages:

(1) It can efficiently resist the common security attacks, including chosen-plaintext attack, differential attack, and statistic

attack. This is because, using the same secret key to encrypt a plain-image several times, the obtained cipher-images

are random-like and totally different from each other.

(2) It can achieve good diffusion and confusion properties since the principle of diffusion and confusion are fulfilled.

(3) It can achieve a fast encryption/decryption speed, as LAS-IES uses only two rounds of confusion and diffusion opera-

tions in the bit level.

(4) It has good reliability of resisting noise or data loss attack. When a cipher-image has noise or losses some data,

LAS-IES can still recover the original image with a high visual quality.

5. Simulation results and reliability

An image encryption scheme should have ability to encrypt different kinds of digital images into random-like cipher-

images. Only with the correct key, a cipher-image can be correctly decrypted. This section provides the simulation results

of LAS-IES and discusses its reliability.

5.1. Simulation results

Here, we use Python programming language to implement LAS-IES and apply it to different types of digital images. Fig. 8

shows the simulation results of one binary image and one grayscale image. Fig. 9 presents the simulation results of an RGB

color image. From Fig. 8, we can see that LAS-IES can encrypt images into random-like cipher-images with a uniform distri-

bution. Using the correct key, it can also completely reconstruct the original images. As shown in Fig. 9, the histograms of

the original color image have many patterns in every color channel, but the histograms of cipher-image distribute randomly.

Attackers have difficulty to obtain any information by statistical methods.

When simulating LAS-IES in the computer with Intel(R) Core(TM)i7-4770 CPU @ 3.4 GHz, the actual average encryp-

tion time is 0.8342 ± 0.050733s for 6 grayscale images of size 256 × 256. Thus, the encryption speed of LAS-IES is about

0.5994 Mb/s (Megabit/second). As each operation in the encryption process has the same time complexity for different

secret keys, LAS-IES is robust against the timing attack.

5.2. Reliability of resisting noise and data loss

When digital images are transmitted through networks, analog-to-digital convert errors or bit errors may happen. These

may change values of some image pixels and blur them [4]. Besides, digital images may also loss data if they are corrupted

due to intrusion. Because the bit manipulation diffusion operation is asymmetric, LAS-IES has the ability of resisting noise or

data loss. This means that when a cipher-image is blurred or losses some data, LAS-IES can still recover the original image

without significantly decreasing its visual quality. In the encryption process, random values are added to surroundings of

the plain-image in each encryption and these values can be spread over all the cipher-image after two rounds of operations.

However, in the decryption process, the change of one pixel in the cipher-image can affect only two pixels, and can further

affect at most four pixels after two rounds of operations. By this principle, if a portion of pixels in the cipher-image are

lost, the original image can still be reconstructed with a high visual quality. Fig. 10 shows the straightforward asymmetry of

the bit manipulation diffusion in Eq. (6) and its inverse operation in Eq. (7), where S is the chaotic sequence, T denotes the

input and output, and Q represents the output and input in the bit manipulation diffusion its inverse operation.
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Fig. 8. Simulation results of LAS-IES. The top and bottom rows are the simulation procedures of binary and grayscale images, respectively: (a) plain-images;

(b) histograms of (a); (c) cipher-images; (d) histograms of (c); (e) decrypted results.

Fig. 9. Simulation results of LAS-IES for color image: (a) color image and its encrypted one; (b)–(d) histograms of (a) the red, green and blue components,

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11 shows the experimental results of noise and data loss attacks to the cipher-images. When the cipher-images suffer

from different kinds of data loss and the numbers of changed pixels are approximately the same, the decrypted images have

similar visual quality, which can be seen from Fig. 11(b)–(d). When the data loss happened in the frequency domain, the

changes can spread over to more pixels in the corresponding spatial domain. Then, the decrypted image has a lot of noise

with a quite low visual quality, which can be observed from Fig. 11(e). If a large portion of pixels in the cipher-image are

lost, e.g., 90.1% pixels are lost, the decrypted image is noise-like, which can be seen from Fig. 11(f).

6. Security analysis

To study the security level of LAS-IES, this section analyzes performance of its secret key and investigates its abil-

ity of resisting some common security attacks. The test binary images are selected from the MPEG7 CE Shape-1 Part B

image dataset and the test grayscale images are obtained from the USC-SIPI ‘Miscellaneous’ image dataset. To show the
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Fig. 10. The straightforward asymmetry of bit manipulation diffusion: (a) the bit manipulation diffusion in Eq. (6); (b) the inverse bit manipulation diffu-

sion in Eq. (7).

Fig. 11. Reliability analysis results of LAS-IES. The first row shows the cipher-images with noise and different kinds of data loss, and the second row

shows their corresponding decrypted images: (a) 5% Saltand Pepper noise; (b) 13.56% data loss; (c) 13.56% data loss with a white square; (d) 13.56% data

modification with a rotated square; (e) 13.56% data loss in the frequency domain; (f) 90.1% data loss.
advantages of LAS-IES, we also compare it with several state-of-the-art image encryption schemes. Among the reference pa-

pers [5,13,19,24,38,39,41,50], some reported simulation results and some provided source codes. To provide a relatively fair

comparison, we use the following rules:

(1) If the simulation results were reported, we directly referenced the results;

(2) If the simulation results were not reported and the source codes were provided, we directly ran their source codes

on the test images;

(3) If neither the simulation results nor the source codes are available, we implemented the schemes to obtain the test

results.

6.1. Secret key

First, the secret key should have a large enough key space to resist brute-force attack. As discussed in Section 4.1, the

secret key of 232 bits is large enough to satisfy the size requirement of key space. On the other hand, the secret key should

be sensitive in the encryption and decryption processes. This means that even one bit difference of two secret keys result in

totally different cipher-images in the encryption process and generate totally different decrypted images in the decryption

process.

Figs. 12 and 13 show the key sensitivity analysis in the encryption and decryption processes, respectively. K2 and K3 are

two secret keys that have one bit difference with K1, where

K1 = AFE16E25A23D9D178D059526D0B5C63471429DB435794F8A359004B490,

K2 = AFE16E25A23D9D178D059526D0B5C63471429DB435794F8A359004B491,

K3 = AFE16E25A23D9D178D059526D0B5C63471429DB435794F8A359004B492.

As shown in Fig. 12, when the plain-image is encrypted with K1, K2 and K3, respectively, the obtained cipher-images are

totally different. Fig. 13 demonstrates that the cipher-image can be completely reconstructed only by the correct secret key,
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Fig. 12. Key sensitivity analysis in the encryption process: (a) plain-image P; (b) C1 = Enc(P, K1); (c) C2 = Enc(P, K2); (d) C3 = Enc(P, K3); (e) |C1 − C2|; (f)

|C1 − C3|; (g) |C2 − C3|.

Fig. 13. Key sensitivity analysis in the decryption process: (a) D1 = Dec(C1, K1); (b) D2 = Dec(C1, K2); (c) D3 = Dec(C1, K3); (d) |D2 − D3|, where C1 is the

cipher-image in Fig. 12(b).
little difference in the secret keys yields totally different decrypted images, which can be seen from Fig. 13(d). Thus, LAS-IES

is highly sensitive to change of its secret key.

6.2. Ability of resisting chosen-plaintext and chosen-ciphtertext attacks

The chosen-plaintext and chosen-ciphertext attacks are two efficient and widely used security attack models in crypt-

analysis. The former assumes that the attackers have the ability to choose arbitrary plaintexts and obtain the corresponding

ciphertexts, while the latter indicates that the attackers can choose any ciphertext and obtain its decrypted result thought

some ways [46]. By choosing the known plaintexts to encrypt and analyzing the corresponding ciphertexts in the chosen-

plaintext attack, or collecting the interested ciphertexts and obtaining the corresponding decrypted results in the chosen-

ciphertext attack, the attackers can disclose the relation between the plaintexts and ciphertexts, and even deduce the secret

key if the encryption structure is not sufficiently secure. Many successful cryptanalysis cases using the chosen-plaintext or

chosen-ciphertext attack were reported in [22,23,30].

In LAS-IES, special structures are designed to resist the chosen-plaintext and chosen-ciphertext attacks: (1) random val-

ues are added to surroundings of the plain-images. As a result, the obtained cipher-images are totally different from each

other even using the same secret key to encrypt a plain-image several times; (2) the principle of confusion and diffusion

introduced by Shannon in [31] are fulfilled. A pixel in the plain-image can be permuted to any position and a small change

can be spread over all pixels in the cipher-image.
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Table 1

NPCR/UACI results of binary images for LAS-IES.

File name NPCR/UACI (%) File name NPCR/UACI (%)

Bone-16 50.0938 horse-1 50.0336

camel-11 50.0660 horse-10 50.1875

classic-1 49.8290 Misk-1 50.1791

cup-11 50.1729 octopus-1 49.6079

device4-20 49.9429 Mean 50.0008

hammer-20 49.8948 Std 0.001852
6.3. Ability of resisting differential attack

The differential attack is to study how the difference in inputs can affect that of the corresponding outputs [41]. It is

a general form of cryptanalysis and a secure encryption scheme should have strong ability of resisting this attack. For an

image encryption scheme, its ability of resisting differential attack can be measured by the number of pixel changing rate

(NPCR) and unified average changed intensity (UACI). For a plain-image P, randomly change one bit of a pixel and obtaining

another plaintext image P2. Let C1 and C2 denote two cipher-images encrypted from P and P2, respectively. Then, NPCR and

UACI are defined by

NPCR(C1,C2) =
∑
i, j

A(i, j)

G
× 100%, (8)

and

UACI(C1,C2) =
∑
i, j

|C1(i, j) − C2(i, j)|
(L − 1) × G

× 100%, (9)

respectively, where G denotes the total number of pixels, L is the grayscale level of the image, and

A(i, j) =
{

0, ifC1(i, j) = C2(i, j),

1, ifC1(i, j) 
= C2(i, j).

Recently, the expected NPCR and UACI scores of resisting differential attack were provided in [12], which are given by

NPCRexpected =
(

1 − 1

2log
L
2

)
× 100%, (10)

and

UACIexpected = 1

L2

(∑(L−1)
i=1

i(i + 1)

L − 1

)
× 100%, (11)

respectively. From Eqs. (10) and (11), we can observe that the expected scores of NPCR and UACI are dependent on the

grayscale value L. When the test image is a binary image, namely L = 2, we have NPCRexpected = UACIexpected = 50%. When

the test image is a 8-bit grayscale image, namely L = 256, we can get NPCRexpected = 99.6094% and UACIexpected = 33.4635%.

For a binary image, the NPCR and UACI values are the same, which can be seen from their definitions in Eqs. (8) and (9).

Table 1 shows the NPCR/UACI results of 10 binary images selected from the MPEG7 CE Shape-1 Part B image dataset, all the

NPCR/UACI results are quite close to the expected score, 50%. For the 8-bit grayscale images chosen from the USC-SIPI ‘Mis-

cellaneous’ image dataset, their NPCR and UACI scores for different image encryption schemes are listed in Tables 2 and 3,

respectively. In our experiments, we directly referred to the simulation results of the schemes in [39,50], and implemented

other schemes to calculate their scores of NPCR and UACI. Among all the six image encryption schemes, LAS-IES achieves

the closest average scores of NPCR and UACI to the expected ones. Thus, we can conclude that LAS-IES has good ability of

resisting differential attack.

6.4. Randomness test

For a cipher-image with ideal security performance, its pixel values are expected to be uniformly distributed to achieve

high randomness. The randomness of an image can be measured by the local Shannon entropy (LocSE) [42]. It tests the

randomness of an image from the local viewpoint. By randomly choosing k non-overlapping image blocks with TB pixels

from an image, the LocSE value is defined as

Hk,TB
=

k∑
i=1

H(Si)

k
, (12)
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Table 2

NPCR scores of 8-bit grayscale images for different image encryption schemes.

File name Wu et al. [39] Zhou et al. [50] Wu et al. [38] Liao et al. [24] Hua’s [19] LAS-IES

5.1.09 99.5804 99.60 99.6094 49.8093 99.6658 99.6064

5.1.10 99.5865 99.61 99.5956 99.6140 99.6475 99.6154

5.1.11 99.5972 99.64 99.6109 49.8138 99.6674 99.6244

5.1.12 99.6201 99.60 99.6063 49.8280 99.5941 99.5703

5.1.13 99.6414 99.63 99.6140 99.5972 99.6445 99.6109

5.1.14 99.5773 99.62 99.6582 99.6368 99.5975 99.6364

5.2.08 99.6300 99.61 99.6101 99.6208 99.6281 99.5870

5.2.09 99.6346 99.60 99.6019 99.6174 99.6197 99.6260

5.2.10 99.6178 99.61 99.5979 99.6292 99.6288 99.6124

7.1.01 99.5861 99.59 99.5842 49.8005 99.6273 99.5992

7.1.02 99.6178 99.62 99.6117 49.8039 99.5892 99.6075

7.1.03 99.6117 99.59 99.6201 49.8096 99.6201 99.6079

7.1.04 99.5808 99.62 99.6201 99.6094 99.5894 99.5988

7.1.05 99.5998 99.61 99.6185 99.6063 99.6185 99.6170

7.1.06 99.6006 99.61 99.6346 99.6048 99.6117 99.6272

7.1.07 99.6059 99.60 99.5926 99.6323 99.6223 99.5931

7.1.08 99.5918 99.58 99.6223 99.6101 99.6151 99.6094

7.1.09 99.6010 99.61 99.6166 49.8100 99.6044 99.6162

7.1.10 99.6002 99.63 99.6086 49.8199 99.6101 99.6045

boat.512 99.6037 99.61 99.5800 99.6037 99.6006 99.6154

elaine.512 99.6082 99.60 99.6128 99.6292 99.6128 99.6196

gray21.512 99.6075 99.61 99.6235 99.6254 99.6082 99.6022

numbers.512 99.5995 99.60 99.6021 99.6120 99.6059 99.6141

ruler.512 99.6147 99.61 99.6132 99.6304 99.6265 99.6120

5.3.01 99.6058 99.60 99.6118 49.8086 99.6098 99.5931

5.3.02 99.6005 99.62 99.5996 99.6163 99.6119 99.6128

7.2.01 99.6073 99.61 99.6099 49.8199 99.6156 99.6156

testpat.1k 99.6117 99.62 99.6069 99.6108 99.6124 99.6072

Mean 99.604996 99.609288 99.610478 81.819565 99.618043 99.609356

Std 0.015657 0.013032 0.015031 24.302271 0.019578 0.013320

Table 3

UACI scores of 8-bit grayscale images for different image encryption schemes.

File name Wu et al. [39] Zhou et al. [50] Wu et al. [38] Liao et al. [24] Hua et al. [19] LAS-IES

5.1.09 33.5253 33.14 33.5096 16.6687 33.5980 33.4456

5.1.10 33.3938 33.24 33.5587 33.5374 33.5366 33.4946

5.1.11 33.8600 33.24 33.4315 16.7015 33.4398 33.5541

5.1.12 33.6150 33.56 33.5379 17.0621 33.4228 33.4302

5.1.13 33.7250 33.56 33.6163 33.6419 33.4205 33.4438

5.1.14 33.4491 33.21 33.4617 34.2965 33.4696 33.4655

5.2.08 33.3933 33.31 33.4323 33.4267 33.4720 33.4008

5.2.09 33.5346 33.62 33.3405 33.4553 33.4921 33.4804

5.2.10 33.5265 33.31 33.4687 33.4993 33.4914 33.4563

7.1.01 33.4789 33.25 33.5444 16.8228 33.5212 33.5037

7.1.02 33.5416 33.27 33.4910 16.8126 33.4846 33.4237

7.1.03 33.4062 33.27 33.5553 16.7308 33.4647 33.4291

7.1.04 33.4845 33.21 33.4806 33.4778 33.5202 33.4739

7.1.05 33.4852 33.30 33.3965 33.4581 33.5400 33.4362

7.1.06 33.4453 33.30 33.5651 33.4489 33.5254 33.3954

7.1.07 33.4535 33.15 33.4363 33.5216 33.5205 33.4073

7.1.08 33.4760 33.26 33.4769 33.4496 33.5678 33.4332

7.1.09 33.4875 33.26 33.4085 16.7680 33.5223 33.4177

7.1.10 33.4754 33.23 33.5247 16.8557 33.4325 33.4344

boat.512 33.4994 33.42 33.4900 33.6291 33.5097 33.4654

elaine.512 33.4355 33.37 33.4439 33.4419 33.5477 33.4225

gray21.512 33.3743 33.37 33.4664 33.4770 33.3930 33.4608

numbers.512 33.4150 33.36 33.5378 33.4503 33.3993 33.4240

ruler.512 33.3807 33.43 33.4166 34.0635 33.5129 33.4262

5.3.01 33.4714 33.42 33.4498 49.8086 33.4532 33.4585

5.3.02 33.4640 33.29 33.4790 99.6163 33.4853 33.4605

7.2.01 33.4917 33.59 33.4762 33.4685 33.4965 33.4556

testpat.1k 33.5025 33.43 33.4467 33.4786 33.4455 33.4347

Mean 33.492543 33.334643 33.480104 28.177253 33.488754 33.447648

Std 0.102056 0.128855 0.061160 7.972915 0.050670 0.033718
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Table 4

LocSEs of binary images and their encrypted ones generated by LAS-IES.

File name Plain-images Cipher-images File name Plain-images Cipher-images

Bone-16 0.000000 0.466667 horse-1 0.000000 0.533333

camel-11 0.000000 0.533333 horse-10 0.000000 0.466667

classic-1 0.033333 0.466667 Misk-1 0.000000 0.500000

cup-11 0.033333 0.466667 octopus-1 0.000000 0.533333

device4-20 0.000000 0.666667 Pass rate 9/10

hammer-20 0.166667 0.466667 Mean 0.510000

Std 0.062952

Table 5

LocSEs of 8-bit grayscale images and their encrypted ones generated by different image encryption algorithms. (k, TB, α) =
(30, 1936, 0.001).

File name Plain-images Cipher-images

Wu et al. [39] Zhou et al. [50] Wu et al. [38] Liao et al. [24] Hua et al. [19] LAS-IES

5.1.09 5.948253 7.901985 7.903354 7.903764 7.904191 7.902127 7.902521

5.1.10 7.009960 7.902731 7.902443 7.901801 7.902371 7.903402 7.902215

5.1.11 4.913895 7.902446 7.902756 7.903306 7.900799 7.902687 7.901470

5.1.12 5.181903 7.902556 7.901526 7.904478 7.903374 7.901906 7.904045

5.1.13 1.403060 7.902688 7.904563 7.904657 7.904566 7.902825 7.902184

5.1.14 6.737685 7.903474 7.902954 7.902874 7.903111 7.902340 7.905557

5.2.08 5.818099 7.903953 7.902356 7.903218 7.901762 7.903327 7.903328

5.2.09 6.384914 7.902233 7.899853 7.903089 7.905854 7.901765 7.902551

5.2.10 4.904788 7.900714 7.902654 7.902077 7.902768 7.902748 7.902888

7.1.01 5.432175 7.902173 7.902634 7.901965 7.902145 7.901305 7.902014

7.1.02 2.384175 7.900879 7.901634 7.904970 7.902157 7.901578 7.902254

7.1.03 4.848621 7.902543 7.905423 7.891503 7.900645 7.903099 7.903894

7.1.04 5.193038 7.901126 7.902125 7.903399 7.904141 7.902607 7.902539

7.1.05 5.966493 7.903579 7.883653 7.901301 7.900027 7.905305 7.902851

7.1.06 6.018822 7.901930 7.902356 7.903367 7.901736 7.902695 7.901960

7.1.07 5.625370 7.903000 7.902364 7.899556 7.900802 7.902896 7.901658

7.1.08 4.405719 7.903197 7.904456 7.883531 7.900944 7.901632 7.902129

7.1.09 5.446080 7.902308 7.903012 7.903201 7.905658 7.903173 7.903018

7.1.10 5.307269 7.899542 7.901598 7.901542 7.893848 7.901524 7.901114

boat.512 6.255248 7.901908 7.901879 7.903091 7.900712 7.903088 7.902407

elaine.512 6.104411 7.901122 7.902989 7.901859 7.902030 7.901720 7.901703

gray21.512 0.376627 7.900170 7.905107 7.901832 7.902149 7.902688 7.901959

numbers.512 5.947982 7.903615 7.892351 7.902144 7.903579 7.901657 7.901664

ruler.512 0.492257 7.903265 7.903001 7.901937 7.901428 7.903052 7.901596

5.3.01 5.680905 7.902727 7.902647 7.902108 7.901040 7.901772 7.902751

5.3.02 5.689569 7.903182 7.910474 7.904169 7.900981 7.903328 7.901552

7.2.01 4.857594 7.902772 7.901989 7.904945 7.904525 7.902454 7.902452

testpat.1k 1.255093 7.902806 7.901681 7.903856 7.903343 7.902752 7.902663

Pass rate 18/28 20/28 17/28 11/28 26/28 23/28

Mean 7.902308 7.901923 7.901769 7.902167 7.902488 7.902462

Std 0.001080 0.004508 0.004347 0.002263 0.000079 0.000921
where S1, S2, . . . , Sk are k chosen image blocks and H(Si) is the Shannon entropy of Si. The Shannon entropy of image X is

defined by

H(X ) = −
L∑

i=1

Pr(xi) log2 Pr(xi),

where xi represents the ith possible value in X, Pr(xi) is the probability of xi, and L denotes the grayscale level.

An image can pass the LocSE test if Hk,TB
falls into an interval of (h∗

le f t
, h∗

right
). Following the recommendation given in

[42], our experiment sets the parameters (k, TB, α) = (30, 2, 0.001) for the binary images and (k, TB, α) = (30, 1936, 0.001)

for 8-bit grayscale images. Then, the critical values (h∗
le f t

, h∗
right

) = (0.445157888, 0.554842112) and the ideal LocSE is 0.5 for

binary images; (h∗
le f t

, h∗
right

) = (7.901515698, 7.903422936) and the ideal LocSE is 7.902469317 for 8-bit grayscale images. We

tested 10 binary images selected from the MPEG7 CE Shape-1 Part B image dataset and 28 grayscale images obtained from

the USC-SIPI ‘Miscellaneous’ image dataset. Table 4 shows the LocSE results of the 10 binary images for LAS-IES, demon-

strating that 9 cipher-images encrypted by LAS-IES can pass the test and the average LocSE is close to the ideal one. For

the 8-bit grayscale images, the LocSEs of their cipher-images encrypted by different image encryption schemes are listed

in Table 5. As can be seen, 23 cipher-images encrypted by LAS-IES can pass the test and LAS-IES has the second-best pass

rate and outperforms four schemes given in [24,38,39,50]. Moreover, LAS-IES can achieve LocSEs of average 7.902462, which
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Fig. 14. Visualized correlation results: (a) the plain-image “Lena” and its cipher-image encrypted by LAS-IES; (b) the correlation between row pixels of (a);

(c) the correlation between column pixels of (a).

Table 6

AC results of the plain-image “Lena” and its cipher-images encrypted by differ-

ent image encryption schemes.

Horizontal Vertical Diagonal

Plain-image “Lena” 0.9400 0.9709 0.9710

Image encryption schemes

Chen et al. [5] 0.00024 0.24251 0.23644

Liao et al. [24] 0.0127 0.0190 0.0012

Fu et al. [13] 0.0368 0.0392 0.0068

Wu et al. [39] 0.0002150 0.0014913 0.0040264

Zhou et al. [50] 0.0054 0.0045 0.0031

Wu et al. [41] 0.0053365 0.0027616 0.0016621

LAS-IES 0.0013174 0.0006427 0.0019122
approaches the ideal LocSE mostly close. These mean that LAS-IES can encrypt different kinds of images into random-like

cipher-images with high randomness.

6.5. Auto-correlation analysis

The adjacent pixels in a natural image may have strong correlation. However, the pixels in a cipher-image with high

security level is expected to be randomly distributed. Therefore, an image encryption scheme should have ability to ef-

ficiently reduce the correlation among adjacent pixels. The correlation between adjacent pixels can be measured by the

auto-correlation coefficient (AC), which is defined as

AC = E[( yt − E[Yt ])( yt+1 − E[Yt ])]

σ 2
, (13)

where Yt is a pixel sequence of the image, Yt+1 is another pixel sequence, in which each pixel is the adjacent pixel of Yt

along the horizontal, vertical or diagonal direction, E[ · ] is the mathematical expectation, and σ is the standard derivation

of Yt,

σ =
√

E[( yt − E[Yt ])2].
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From Eq. (13), we can observe that the AC value falls into the range of [−1, 1] and a small absolute AC value means a

weak correlation between two sequences.

Table 6 lists the AC values of the plain-image “Lena” and its cipher-images encrypted by different image encryption

schemes. LAS-IES has smaller absolute AC values than the schemes proposed in [13,50] in all three directions, and outper-

forms other schemes given in [5,24,39,41] in two directions. Fig. 14 depicts the visualized correlation results of the plain-

image “Lena” and its cipher-image encrypted by LAS-IES. In the Fig. 14(b) and (c) plot the correlation values between pixel

pairs in the row and column directions, respectively. The correlation between different rows and columns are quite strong

in the plain-image but quite weak in the cipher-image. Thus, LAS-IES can efficiently reduce the strong correlation between

adjacent pixels.

7. Conclusion

This paper designed a new 2D chaotic map, called 2D-LASM. It is generated using the output of the Logistic map to

adjust the input of the Sine map, and then extending the phase plane from 1D to 2D. Various objective evaluation meth-

ods, including trajectory, LE and KE, were provided to show that 2D-LASM has better ergodicity, a wider chaotic range, and

is more unpredictable than several existing 1D and 2D chaotic maps. Using 2D-LASM, this paper further proposed a novel

image encryption scheme, called LAS-IES. It contains three main components, namely, adding surrounding pixels, bit manip-

ulation confusion, and bit manipulation diffusion. The adding surrounding pixels is to add random values to the plain-image

to ensure that each encrypted result is different. Multiple rounds of confusion and diffusion are performed in the bit level

to fulfill the principle of confusion and diffusion. Simulation results and security analysis showed that LAS-IES can encrypt

different types of images into random-like cipher-images of high security levels.
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