
Applied Intelligence (2023) 53:22282–22296
https://doi.org/10.1007/s10489-023-04668-4

Laplacian regularized deep low-rank subspace clustering network

Yongyong Chen1 · Lei Cheng1 · Zhongyun Hua1 · Shuang Yi2

Accepted: 25 April 2023 / Published online: 24 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Self-expression-based deep subspace clustering, integrating traditional subspace clustering methods into deep learning
paradigm to enhance the representative capacity, has become an important branch in unsupervised learningmethods. However,
most existing methods investigate to impose only sparse constraint on the coefficient matrix to sparsely and independently
represent all data, yet omitting another essential global low-rank prior. Meanwhile, some non-linear geometric structures
within data has not been well utilized for deep subspace clustering. To conquer these challenges, this paper proposes a novel
deep subspace clustering method, named Laplacian Regularized Deep Low-Rank Subspace Clustering Network (LDLRSC),
in which the low-rank prior and non-linear geometric information in data are captured simultaneously. Specifically, LDLRSC
utilizes the nonconvex surrogate instead of sparsity to describe the global low-rankness of the self-representation matrix.
Moreover, two types of Laplacian constraints are exploited to mine the geometric structure of the data samples. Extensive
experiments on the several widely-used datasets have demonstrated the effectiveness of the proposed LDLRSC over existing
state-of-the-arts.
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1 Introduction

Subspace clustering [1] algorithms believes that many high-
dimensional data are actually distributed in low-dimensional
subspaces [2]. This is because high dimensionality and
redundancy make some dimensions irrelevant and the intrin-
sic dimensions are often lower. Currently most mainstream
subspace clusteringmethods are based on the self-expression
property, which assumes that data from the same category
are in the same linear subspace [3, 4]. Due to the theoreti-
cal soundness and robustness to noises, subspace clustering
has been widely used in different applications, such as face
clustering [5], motion segmentation [6], movie recommen-
dation [7], image restoration [8], hyperspectral image band
selection [9]. In addition, there are a large of works about
multi-view subspace clustering in recent years [10–13].Most
existing subspace clustering methods in the literature can be
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broadly classified into two categories: shallow models and
deep models.

Considering the self-expression property that each data
could be linearly expressed by the other data in the same sub-
space, a large number of shallowmodels have been developed
for subspace clustering. In general, most of them followed a
three-step framework [14]: (1) learning a coefficientmatrixC
with specific characteristic by solving a certain optimization
model; (2) constructing an affinity matrix S from the learned
coefficient matrixC by S = 1

2 (‖C‖+‖CT ‖) or other heuris-
ticmethods to describe the pair-wise correlation between two
data points; (3) performing the spectral clustering algorithm
on the above affinity matrix S to yield the clustering infor-
mation. The research hot among existing methods is how
to learn a coefficient matrix C to well discover the member-
ship of data samples. Several popular studies include l1-norm
regularized sparse subspace clustering (SSC) [5], l p-norm
regularized nonconvex sparse coding [15], nuclear norm reg-
ularized low-rank representation (LRR) [6], least squares
regression [16], tractable schatten-p regularized LRR [17],
thresholding ridge regression [18], block diagonal repre-
sentation [19], scaled simplex representation [14] and their
combination [20]. Unfortunately, one main limitation of
these shallow models is that they may cause performance
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degradation, especially when data points are sampled from
nonlinear subspaces.Thus, the data does not always conform
to the linear assumption used in above subspace clustering
methods. Among existing methods, there are two kinds of
methods to handle the nonlinearity, i.e., kernel-based meth-
ods and deep learning-based ones. To cluster the data drawn
from a union of nonlinear subspaces, kernel-based methods
assumed that all data points could be linearly expressed by
other ones in the projected space instead of the original input
space. Following this idea, many researchers have proposed
kernel versions of above shallow models, such as kernel
sparse subspace clustering (KSSC) [21], kernel low-rank
representation [22, 23], kernel truncated regression repre-
sentation [24]. The major challenge of kernel-based shallow
models is how to select perfect kernel functions to guarantee
the clustering performance.

Integrating traditional subspace clustering methods into
deep learning paradigm, numerous deep subspace clustering
methods have been developed to overcome the nonlin-
ear challenge in real applications. Following the three-step
framework of shallow models, they learn the coefficient
matrix C in an end-to-end learning manner. For example,
Peng et al. [25] developed Deep Subspace Clustering with
Sparsity Prior, in which the coefficient matrix is first learned
in the original space, and then applied into the stacked
auto-encoder to get new potential features. Subsequently, Ji
et al. [26] excavated the self-expression property in the latent
space instead of the original noisy space, in which a fully
connected layer is inserted between the encoder and decoder
to simulate the nature of self-expression. Continuing along
this vein, numerous researchers have combined adversarial
learning [27], neural collaborative learning [28], multi-level
representation [29], multi-modal learning [30] into [26].

Although the improvement of the representative capacity
has beenmadeby introducing the deep learning paradigm,we
observe that they may suffer from the following limitations.
First, most of existing deep subspace clustering methods
investigate to impose only sparse prior on the coefficient
matrix. That is, the sparse representation of each data vector
is calculated sparsely and independently. This is because the
sparse prior is imposed on each element in a local perspective
not in a global perspective. Many studies have proven that
the low-rank prior may be a better regularizer than the sparse
prior in image denoising [31], dynamicMRI restoration [32],
background subtraction [33], snapshot compressive sensing
[34] and also in shallow subspace clustering [6, 35]. The
underlying reason is that the sparse representation represents
all samples individually, while the low-rank representation
represents all samples jointly by finding their lowest-rank
representation. Unfortunately, such powerful low-rank prior
has not been well utilized for deep subspace clustering. To
the best of our knowledge, the onlywork using low-rank con-
straint for deep subspace clustering is DLRSC [36], which

decomposes the coefficient matrix into the product of two
matrices whose number of rows is much larger than that of
columns, such that the rank of the coefficient matrix would
be limited by the minimum of rows and columns. Different
from DLRSC [36], we explore the nuclear norm instead of
the matrix factorization to characteristic the low-rank prior
of the coefficient matrix. Meanwhile, some non-linear geo-
metric structures within data has not been well utilized for
deep subspace clustering. For clustering task, the global
characteristic and local geometric structures embedding in
high-dimensional data are both significant. In summary, there
is an urgent need to design one unified model to exploit
the low-rank prior and non-linear geometric information
simultaneously to strengthen the ability of discovering latent
patterns.

To overcome the above challenges, in this paper, we
propose a novel deep subspace clustering method namely
Laplacian Regularized Deep Low-Rank Subspace Cluster-
ing Network (LDLRSC), which exploits the global low-rank
prior and non-linear geometric information simultaneously,
such that the representative capacity of the similarity matrix
can be further improved. The flowchart of our LDLRSC is
shown in Fig. 1. Our LDLRSC is inspired by [26, 37]. It
exploits the auto-encoder to solve the non-linearity of input
features, a self-expression layer between the encoder and
decoder to learn favorable deep subspace clustering repre-
sentations, the nuclear norm to realize the low-rank prior,
and two types of Laplacian constraints to capture non-linear
geometric information. Besides, we map each singular value
of the coefficientmatrix to a smaller interval and thenperform
the summation to prevent the adverse effects of extreme sin-
gular values [31].Extensive experiments show the superiority
of the proposed LDLRSC method over 12 state-of-the-art
subspace clustering methods. Our contributions are summa-
rized as follows:

• We propose a new LDLRSC method to simultaneously
take the global low-rank prior and local non-linear geo-
metric information into consideration for deep subspace
clustering.

• Unlike existing deep subspace clustering methods using
the sparse prior to individually represent all sample,
LDLRSC utilizes the nuclear norm to carry out the low-
rank prior. To preserve the local non-linear geometric
information, LDLRSC uses two Laplacian regularizers.

• Extensive experiments on five widely used data have
demonstrated the effectiveness of the proposed LDLRSC
method compared with state-of-the-art seven shallow
subspace clusteringmethods andfive deep subspace clus-
tering ones.

The remainder of this article is organized as follows.
Section 2 briefly introduces some related methods for sub-
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Fig. 1 Network architecture of the proposed LDLRSC network. It con-
tains three modules: (1) convolutional encoder module: extracting deep
convolutional feature Z�e to overcome the non-linearity challenge; (2)
self-expression module: learning the self-expressive coefficient matrix
C which is imposed by the low-rank prior instead of the sparse prior;

(3) convolutional decoder module: recovering the latent feature Z�e

into X̂ . To preserve the local geometric structures, LDLRSC introduces
two types of Laplacian constraints. The first type Laplacian constraint
is imposed on the latent features Z�e while the second type is imposed
on the original feature X and the recovered feature X̂

space clustering.We present the proposed LDLRSCmethod,
conduct extensive experiments to investigate the perfor-
mance of LDLRSC, and make conclusions in Sections 3,
4, and 5, respectively.

2 Related work

This section briefly reviews some related works, including
shallow subspace clustering and deep subspace clustering. A
review of current methods is shown in Table 1.

2.1 Shallow subspace clustering

Given a set of n data points [x1, x2, · · · , xn] ∈ R
d×n , we

usually assume that all data points are drawn from K linear
subspaces. The subspace clustering problem refers to finding
these K subspaces andwhich subspace each data point lies in.
In general, the existing shallow subspace clustering method
could be divided into the following categories: algebraic
methods [42], iterative methods [43], statistical methods
[44], and spectral clustering-based methods [6]. Iterative
method needs to alternate between assigning points to sub-
spaces and fit a subspace to each cluster. However, this type
of methods is more sensitive to initialization and typically
requires to know the dimensions of each subspace in advance.
Algebraic methods need to factorize the data matrix firstly,
which exhibits much sensitivity to noise points and outliers.
Among them, the spectral clustering-based methods have
taken a dominant position in recent years. Essentially, they
aim tobuild a similaritymatrix of data vectors in a certainway
to construct an affinity matrix and have stronger robustness
to noise points and outliers. For example, Sparse Subspace

Clustering (SSC) [5] discovered the self-expression property,
that is, each data point can be linearly represented by other
data points in its local subspace. Let X = [x1, x2, · · · , xn]
be the data matrix, self-expression property can be expressed
by the following formula:

X = XC, (1)

where C is the coefficient matrix (also known as self-
representation matrix), which actually encodes the pairwise
relationship between two samples. It has been proven in [45]
that, under the condition that the subspaces are independent
of each other, the coefficient matrix C has a diagonal struc-
ture (up to a certain permutations) and the block-structure of
coefficient matrixC can be obtained by minimizing a certain
norm of C . Then Eq. (1) can be rewritten as:

min
C

‖C‖p s.t. X = XC, diag(C) = 0, (2)

where ‖ · ‖p represents an arbitrary matrix norm. Various
norms for C have been proposed in the past few years, such
as the �1 norm in Sparse Subspace Clustering (SSC) [5] and
the Frobenius norm in Least-Squares Regression (LSR) [16].
In addition, the studies in [46] proposed lowest-rank rep-
resentation to capture the global structures of the data X .
Yang et al. further proposed a low-rank variation dictionary
to fully mine the characteristics of low-rank decomposition
of microarray data [47]. Mathematically, its model is formal-
ized as the following optimization problem:

min
C

rank(C) s.t. X = XC . (3)

Model (3) is a discrete optimization problem, which is NP-
hard, and it is usually approximated as a convex optimization
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Table 1 A brief review of current methods for subspace clustering

Category Representative Work Characteristic

Shallow method SSC [5] attempts to impose sparse constraint on subspace representation and
proposes an efficient algorithm to solve the sparse presentation
model; can handle data points near the intersection of subspaces and
deal directly data nuisances

LRR [6] seeks the lowest-rank representation among all candidates linearly
representing all data points; better captures the global structure of
data

LRLER [38] constructs a low-rank local embedding representation model in which
the local as well as global manifold structures of a dataset are
concerned

S3C [39] learns the affinity between data pairs and the segmentation
simultaneously

Deep method PARTY [25] is the first attempt to apply deep learning into subspace clustering;
learns to progressively map input data into nonlinear latent space
with sparse subspace clustering prior

DSC [26] is the first attempt to directly learn the affinities between all data points
within one neural network by designing a novel self-expressive layer

S2ConvSCN [40] uses the current segmentation results to self-supervise the network
learning

RGRL [41] presents a novel representation learning network guided by sample
relations learned by the network itself

DLRSC [36] proposes to insert a fully-connected linear layer and its transpose in
the network to implicitly seek a rank constraint on the learned
representations

problem. Specifically, the rank function is replaced by the
nuclear norm, transforming Eq. (3) into:

min
C

‖C‖∗ s.t. X = XC, (4)

where ‖ · ‖∗ denotes the nuclear norm [48] of a matrix, i.e.,
the sum of the singular values of the matrix. Generally, the
equality constraint in Eq. (4) is relaxed into the following
model:

min
C

‖C‖∗ + ‖X − XC‖2F . (5)

By solving the optimization problemEq. (5), a graph encoded
by coefficientmatrix is obtained, and finally the spectral clus-
tering algorithm is applied to obtain the clustering result.

As aforementioned, unfortunately, the real data may not
ensure the linear assumption, which may degrade the effec-
tiveness of the above models. Though several kernel-based
methods [22, 49] have been proposed to tackle the nonlinear
problem, how to select perfect kernel functions to guarantee
the clustering performance is still a challenging problem.

2.2 Deep subspace clustering

Deep learning has been introduced into the subspace clus-
tering problem in recent years. Initially, the entire algorithm

architecture is to learn effective latent representations for
clustering. With its natural non-linear mapping character-
istics, deep learning has yielded promising representation
ability, and the nonlinear problem in real data can be effec-
tively solved with deep learning paradigm. In various classic
network architectures, auto-encoders are frequently adopted
by subspace clustering approaches to learn latent repre-
sentations or deep self-expressive representations from the
input data. The deep embedding network (DEN) [50] intro-
duces two constraints, i.e., locality-preserving and group
sparsity, in its network. Among these two constraints,
locality-preserving property is based on a simple fact that
the similarity between two latent representations should hold
if they are similar in the original space. The deep embedded
clustering (DEC) [51] method proposes to adjust the encoder
by minimizing KL divergence between soft assignment and
target distribution.

In these early works, however, the two steps, i.e., feature
learning and clustering were separated, which may led to the
failure of the process of learning representationwith the feed-
back on the clustering result. The lack of the combination of
the two steps may degrade the final clustering performance.
To conquer this limitation, deep subspace clustering (DSC)
[26] proposed a novel network architecture in which a fully
connected layer is cleverly inserted between the encoder
and decoder to simulate the self-expression property, such
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that the latent representation learning of the auto-encoder
and the coefficient matrix learning are integrated into one
unified model. The two-step learning process iterates con-
stantly during the continuous gradient descent of the entire
neural network. Continuing along this vein, several vari-
ants of DSC [26] have been developed such as [28, 40,
41]. To preserve the local structure, RGRL [41] uses the
weighted reconstruction instead of self-reconstruction which
is beneficial to characterize the neighborhood relations of
samples. Later, generative adversarial network (which is also
based on convolutional auto-encoder) has been introduced
into the subspace clustering problem. Under the supervi-
sion of adversarial learning, sample representation learning
and subspace clustering can further improve the clustering
performance.

However, most of the deep subspace clustering algo-
rithms only impose sparse constraints on the coefficient
matrix. Since sparse representation may not capture the
global structures of the data, these methods are more sen-
sitive to noise points and outliers. On the contrary, LRR [6,
46] requires the rank of coefficient matrix to be as small
as possible, which better captures the global structure of
data and provides a more effective tool for robust sub-
space segmentation from corrupted data. To the best of our
knowledge, the only deep subspace clusteringwork that uses
low-rank constraints is DLRSC [36]. As mentioned above,
it is implicit to impose low-rank constraint on the coeffi-
cient matrix and the number of columns is unknown in real
applications.

3 The Proposed LDLRSCmethod

In this section, we present the proposed Laplacian Reg-
ularized Deep Low-Rank Subspace Clustering Network
(LDLRSC) in details, which contains two important mod-
ules, i.e., the low-rank prior and the Laplacian terms, to
capture the low-rank prior of the coefficient matrix and
local non-linear geometric structures embedding in high-
dimensional data.

3.1 Deep low-rank subspace clustering

Given a set of n data points [x1, x2, · · · , xn] ∈ R
d×n drawn

from K linear subspaces {Si }Ki=1. The key to self-expression-
based subspace clustering methods is to construct a graph
with a suitable similarity matrix to measure the pair-wise
correlation between two samples. Existing deep subspace
clustering methods including DSC [26] and its variants [28,
40, 41] consider the sparse prior of C without making full
use of the low-rank prior. In our method, we exploit the

low-rank prior by the following basic low-rankminimization
model:

min
C

rank(C) ≈ ‖C‖∗,

s.t. X = XC,
(6)

where σi is the i-th singular value of C and ‖C‖∗ is defined

as the sum of singular values, i.e., ‖C‖∗ =
n∑

i=1
σi .

As pointed out in [31], the nuclear norm deviates signif-
icantly from the rank function when the singular values are
greater than 1, indicating that they overshrink the rank com-
ponent. Inspired by this observation, we choose to use the
powerful γ -norm proposed in [31] instead of the traditional
nuclear norm ‖C‖∗:

min
C

rank(C) ≈ ‖C‖γ ,

s.t. X = XC,
(7)

where ‖C‖γ =
n∑

i=1
(1−e−σi (C)/γ ), e(·) denotes the exponen-

tial function, and γ is a super parameter greater than 0.
In terms of network architecture selection, we follow the

convolutional auto-encoder as DSC [26] did. Motivated by
the huge success of the convolutional auto-encoder [26], we
adopt a deep neural network in our LDLRSCmethod. Specif-
ically, as shown in Fig. 1, we integrate a self-expression
layer into a deep auto-encoder between the encoder and the
decoder. In ourmodel, input data is mapped onto a non-linear
latent space, self-expressed in this space, and, again, mapped
onto the original space. The encoder can be regarded as a
function that has the ability of dimensionality reduction and
nonlinear conversion at the same time, denoted by F . The
decoder is used to reconstruct the input features, denoted by
G. This means that the encoder is used to map the original
data onto a non-linear latent space and thus the nonlinear-
ity of high-dimensional data could be solved. Suppose their
parameters are represented by �e and �d respectively, then
the basic model of the auto-encoder can be formalized as
follows:

min
�e,�d

n∑

i=1

||Xi − G�d (F�e(Xi ))||22. (8)

Combining the relaxed form of Eq. (7) and convolutional
auto-encoder loss Eq. (8), our tentative loss function can be
written as follows:

min
�e,�d ,C

n∑

i=1

||Xi − G�d (F�e(Xi ))||22 + ‖C‖γ

+‖Z�e − Z�eC‖2F , (9)
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where variable C denotes the coefficient matrix which is
learned based on the discriminative features Z�e learned by
deep encoder instead of the original (noisy) data. Unifying
parameters �e and �d as �, we have:

min
�,C

n∑

i=1

||Xi − X̂i ||22+α1‖C‖γ +α2‖Z�e − Z�eC‖2F , (10)

where X̂i = G�d (F�e(Xi )). The first term of Eq. (10) aims
to measure the differences between the input feature X and
the recovered feature X̂ .

3.2 Laplacian constraint

However, most existing deep subspace clustering methods
and our tentative model in Eq. (10) explore some specific
characteristics such as sparsity and low-rankness, ignoring
the geometric structures within data. Inspired by the man-
ifold learning [52], we may further improve the clustering
performance by fully mining the geometric structure of input
data. That is, we aim to incorporate the Laplacian regulariza-
tion into our tentative loss function in Eq. (10) so that similar
data points have similar representation coefficients. Here, we
consider two types of Laplacian constraints.

The first one is based on themanifold hypothesis [37], that
is, if two data points xi and x j are close in the inner geometry
of the data distribution, their embedding/mapping in the new
space is also close to each other. Therefore, when the vec-
tors in the low-dimensional latent space are used to describe
each vertex in the graph, these vectors should maintain the
affinity between the vertices. In mathematics, this idea can
be expressed as:

min
∑

i, j

Si j‖Z�e,i − Z�e, j‖22, (11)

where Z�e,i and Z�e, j are the i-th and j-th columns of Z�e ,
or the mapppings of xi and x j under some transformation
(Here, we adopt the encoder in our proposed architecture,
and thus zi and z j ), respectively. Si j is the similarity between
samples Z�e,i and Z�e, j .

For the second type, we noticed that the auto-encoder is
a process of mapping the input to the latent feature space
and then reconstructing it back. In the usual practice, each
output data point is reconstructed by itself, which may not be
enough to reflect the local structure between the data points.
Therefore, we propose to use the weighted reconstruction
strategy [41], i.e.,

∑
Si j‖Xi − X̂ j‖22. (12)

It is easy to derive that Eq. (11) can be rewritten as

min Tr(Z�e L Z
T
�e

) (13)

and Eq. (12) can be transformed as

∑
Si j‖Xi − X̂ j‖22 =

∑
Si j

(
‖Xi‖22−2XT

i X̂ j +‖X̂ j‖22
)

=
∑

Si j
((

‖Xi‖22−2XT
i X̂i +‖X̂ j‖22

)

+2
(
XT
i X̂i − XT

i X̂ j

))

= Tr((X − X̂)D(X − X̂)T )

+2Tr(XL X̂T ), (14)

where Tr(·) denotes the trace of a matrix; diagonal matrix
D = Diag(

∑n
j=1 Si j ) and L = D−S. The similaritymatrix

S can be obtained simply by S = 1
2 (|C | + |CT |), which

is dynamic, rather than using pre-defined values like many
existing works. Using normalized degree matrix Dn = I and

normalized Laplacian matrix Ln = D− 1
2 LD− 1

2 , we have
Tr [(X − X̂)Dn(X − X̂)T ] = ||X − X̂ ||2F . In summary, it can
be seen clearly that thefirst typepreserves the local non-linear
geometric structures by imposing the Laplacian constraint on
the encoder features Z�e while the second type is through
imposing the Laplacian constraint on the original feature X
and the recovered feature X̂ .

3.3 The proposed LDLRSC

Combining the above tentative loss function in Eq. (10) and
two Laplacian constraints in Eqs. (13) and (14), we can
obtain the final loss function:

L(�,C) =
n∑

i=1

||Xi− X̂i ||22+α1‖C‖γ +α2‖Z�e −Z�eC‖2F

+ α3Tr(Z�e Ln Z
T
�e

) + α4Tr(XLn X̂
T ),

(15)

where � denotes the network parameters including encoder
parameters �e and decoder parameters �d ; C denotes self-
expression layer parameters;αk(k = 1, 2, 3, 4) is the balance
parameter; diagonal matrix D = Diag(

∑n
j=1 Si j ) and

Ln = D− 1
2 LD− 1

2 is the normalized Laplacian matrix. For
the sake of convenience, we introduce a few sysbomls:

L1 =
n∑

i=1
||Xi − X̂i ||22 + α1‖C‖γ + α2‖Z�e − Z�eC‖2F ,

L2 = Tr(Z�e Ln ZT
�e

), L3 = Tr(XLn X̂T ). Then loss func-
tion Eq. (15) can be rewritten as:

L(�,C) = L1 + α3L2 + α4L3. (16)
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Note that each of the above equations can be solved for
differentiation, so it can be optimized by gradient descent
algorithm. Once the self-expression matrix C is obtained
usingEq. (15), itwill be used to construct the affinitymatrix A
for the spectral clustering algorithm [53]. The simple way is
the average strategy as in [6, 35]. That is, the affinity matrix
A is yielded by A = 1

2 (|C | + |CT |). To further enhance
the block structure of the similarity matrix A, in this paper,
we adopt the heuristic (shown in Algorithm 1) employed by
SSC [5] and EDSC [45], which has been proved beneficial
for clustering. Finally, we obtain the clustering results by the
popular spectral clustering algorithm. Note that in Algorithm
1, β is empirically selected according to the level of noise
and d is the maximal intrinsic dimension of subspaces [41].
The whole process of the proposed LDLRSC is summarized
in Algorithm 2.

Algorithm 1 Heuristic for affinity matrix construction.
Require: The relation matrix, C ;
1: The number of cluster, k;
2: The intrinsic dimension of subspaces, d;
Ensure: The affinity matrix, A;
3: Let S = 1

2 (|C | + |C |T );
4: Compute the SVD of S, S = U�V T ;

5: Let Z = Um�
1
2
m , where m = k ∗ d + 1;

6: Compute affinity matrix A = [Z ZT ]β ;

Algorithm 2 LDLRSC for deep subspace clustering.
Require: Input data X ;
1: Maximum iteration Tmax ;
2: Trade-off parameters α1, α2, α3, α4;
3: The number of cluster K ;
Ensure: Clustering result L;
4: Pre-train the convolutional auto-encoder;
5: Initialize the self-expression layer;
6: while t ≤ Tmax do
7: Calculate similarity matrix S = 1

2 (|C | + |CT |) and normalized

Laplacian matrix Ln = D− 1
2 LD− 1

2 ;
8: Calculate the loss (15) and its gradient;
9: Do forward propagation;
10: end while
11: Run Algorithm 1 to obtain affinity maxtrix A;
12: Run spectral clustering to get the clustering results.

3.4 Training strategy

For a fair comparison, we follow the pre-training and fine-
tuning strategy applied by DSC in all experiments. Specifi-
cally, during the pre-training phase, the deep auto-encoder is
pre-trained without using a self-expression layer for all data,
then the trained parameters will be used to initialize the net-
work. In the fine-tuning stage, we use all the data as a batch
to minimize the loss function (15) with a gradient descent

method for each epoch. After training, we use the coefficient
matrix C (i.e., the parameters of the self-expression layer) to
construct the affinity matrix through the heuristics as shown
in Algorithm 1. The final clustering results are then obtained
by the spectral clustering algorithm.

4 Experiment

We implement our LDLRSC method on TensorFlow-2 in
python and evaluate its performance on five widely used
benchmark datasets. In this section, we first provide more
details for each testing dataset separately, then report the
clustering performance of all competingmethods, and finally
conduct ablation experiments to investigate the contributions
of the low-rank prior and the two Laplacian constraints. The
source code will be released on the author’s webpage1.

4.1 Datasets

We conduct experiments on three benchmark face datasets:
Extended YaleB (EYaleB)2, ORL3, Umist4; and two object
datasets: COIL205 and MNIST6. EYaleB contains 38 sub-
jects, each subject containing 64 images taken under different
lighting. ORL consists of 40 subjects, each of which has 10
images taken in different poses and facial expressions. Umist
contains only 20 persons, each person with 24 images taken
in different poses. COIL20 has 20 classes of toys, and each
class has 72 images. MNIST is a classic handwritten digit
data set.Hereweonly take the first 100 pictures for each digit.
Figure 2 shows several examples of the above five datasets
whose main statistics are summarized in Table 2.

4.2 Evaluationmetrics

We adopt three widely usedmetrics to evaluate the clustering
performance: accuracy (ACC), normalized mutual informa-
tion (NMI), and purity (PUR). The details of ACC, NMI, and
PUR are described as follows.

Accuracy is the most common evaluation metric, which
is defined as:

ACC = max
m

∑n
i=1 1{yi = m(li)}

n
, (17)

1 https://github.com/csanshi/LDLRSC
2 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
3 http://www.uk.research.att.com/facedatabase.html
4 https://paperswithcode.com/dataset/umist-1
5 http://www.cs.columbia.edu/CAVE/software/softlib/
6 http://yann.lecun.com/exdb/mnist/
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Fig. 2 Several examples of the five benchmark datasets

where yi and li are the ground-truth label and the predicted
label for sample xi , respectively. 1 is a indicator function.
m is the one-to-one mapping function of the label. The best
mapping can be obtained by Kuhn-Munkres algorithm [54].

Normalized mutual information (NMI) is the second
widely used evaluation metric for clustering task, which is
defined as follows:

NMI(y, l) = I (y, l)√
H(y)H(l)

, (18)

where y is the ground truth label and l denotes clustering
label. H is the entropy and I is the mutual information mea-
suring the information gain towards the true partition after
knowing the segmentation.

√
H(y)H(l) is the normalized

mutual information.
Purity is ameasure of the extent towhich clusters contain a

single class [55]. Formally, let y and l be some set of clusters
and some set of classes, respectively, purity is defined as:

PUR(y, l) =
∑k

i=1 max j |li ⋂ y j |
N

. (19)

4.3 Experimental settings

Following DSC [26], our LDLRSC adopts the similar net-
work architecture in all experiments. Specifically, for the

input data X , these high-dimensional data are transformed
into a latent representation Z�e by the encoder, and then
passed through a fully connected layer without activation
function and bias. Thus, there exists a fully connected layer
between the encoder and the decoder to simulate the nature
of self-expression, i.e., Z�e = Z�eC . Next, Z�eC recon-
structs the input through a decoder that is symmetrical to
the encoder. Among them, the encoder and decoder are
both stacked convolutional layers, and different datasets have
different configurations, e.g. different network depths and
number of channels. We use Adam [56] as the optimizer.
The learning rate of the network is set to 1e−3, and ReLU is
used for the activation function in each layer except for the
self-expression layer. In the experiment within two Laplace
constraints, the hyperparameter includes the penalty factor
of each part of the network loss function, and there are 5
items in total. However, in the actual experiment, any one
of them can be fixed, and only the other 4 parameters need
to be adjusted. In this way, there are only 4 parameters for
adjustment. We tune these parameters by grid search to the
achieve best results on each dataset. The parameter values
for all datasets are summarized in Table 3. More details of
pre-training, please refer to Section 3.4.

Experimental details for each dataset are given as fol-
lows: MNIST: The MNIST is a classic handwritten digit
image dataset. In our experiment, we select the first 100 sam-
ples o each digit from MNIST. For parameter setting, we set

Table 2 Statistics of the datasets Dataset MNIST EYaleB ORL COIL20 Umist

# of samples 1,000 2432 400 1,440 480

# of subjects 10 38 40 20 20

# of dimensions 28×28 48×42 32×32 32×32 32×32
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Table 3 Hyperparameter values for all datasets

α1 α2 α3 α4

MNIST 0.8 1.2 0.001 0.005

EYaleB 7 18 0.000008 0.00005

ORL 6 1 0.00005 0.002

COIL20 100 25 0.04 0.005

Umist 0.5 15 0.0025 0.75

α1 = 0.8, α2 = 1.2, α3 = 0.001, α4 = 0.005. And we set
α3 = 0.001, α4 = 0.2 for ablation experiment. γ is set to 0.1.
EYaleB: The EYaleB dataset is a popular dataset for cluster-
ing task which contains 2432 images of size 192× 168 from
38 different subjects (K = 38). Each subject is composed
of 64 samples taken under various illuminations and poses.
Following the experimental setting of DSC [26], we down-
sampled the original face images to 48×42 pixels.We set the
trade-off parameters to α1 = 7, α2 = 18, α3 = 0.000008,
α4 = 0.00005. In ablation experiment, we set α3 = 0.001,
α4 = 0.2. γ is set to 0.5. ORL: The ORL dataset consists
of 400 human face images with 40 subjects. Each subject is
composed of 10 imageswhich are taken under varying illumi-
nations with different facial expressions (open/closed eyes,
smiling/not smiling) and facial details (glasses/no glasses)
[57]. The original images are down-sampled to 32 × 32.
Compared to EYaleB, the ORL dataset is more challeng-
ing for subspace clustering because of more non-linearity in
it due to various facial expressions. Besides, the small num-
ber of the samples will increase the training difficulty for
deep learning. For fairness considerations, we adopt the same
network configuration as DSC [26]. The specification of net-
work is shown in Table 4. For the trade-off parameters, we
set α1 = 6, α2 = 1, α3 = 0.00005, α4 = 0.002. In ablation
experiment, we set α3 = 0.001, α4 = 0.2. γ is set to 0.01.
COIL20: To further verify the superiority of our proposed
method, we conduct experiments on dataset COIL20 which
contains 1440 gray-scale images of 20 objects. Each image
was down-sampled to 32× 32. For the trade-off parameters,
we set α1 = 100, α2 = 25, α3 = 0.04, α4 = 0.005. In

ablation experiment, we set α3 = 0.001, α4 = 0.2. γ is set
to 0.4. Umist: For the Umist dataset, it contains 20 subjects
and each one only consists of 24 samples. Same to ORL, the
small number of the samples makes it more challenging to
find a proper division.Meanwhile, images in Umist are taken
under different poses, which further increase the difficulty of
clustering. For the trade-off parameters, we set α1 = 0.5, α2

= 15, α3 = 0.0025, α4 = 0.75. In ablation experiment, we set
α3 = 0.001, α3 = 0.2. γ is set to 0.01.

The statistics of the dataset are summarized in Table 2. All
network settings on these five datasets are shown in Table 4.

4.4 Experimental results

We compare the proposed LDLRSC with seven shallow
subspace clustering methods: SSC [5], ENSC [58], KSSC
[21], SSC-OMP [59], EDSC [45], LRR [46], LRSC [20],
and six deep subspace clustering methods: AE+SSC, DEC
[51], DSC [26], RGRL [41], DLRSC [36], GSA [60]. Note
that both DSC and RGRL have two variants, they are Deep
Subspace Clustering Networks with l1-norm (DSC-L1),
Deep Subspace Clustering Networks with l2-norm (DSC-
L2), Relation-Guided Representation Learning with l1-norm
(RGRL-L1), and Relation-Guided Representation Learning
with l2-norm (RGRL-L2). The reasons of selecting these
competitors are as follows: (1) these shallow and deep sub-
space clustering methods are state-of-the-art clustering ones;
(2) DSC, RGRL, DLRSC and our LDLRSC follow the
similar network configuration; (3) DSC and RGRL are the
representative sparse prior-based deep subspace clustering
while DLRSC is the representative low-rank-based deep sub-
space clustering one. DLRSC uses the matrix factorization
to carry out the low-rank prior while our LDLRSC uses the
γ -norm. ForDeepLow-Rank SubspaceClustering (DLRSC)
[36], we use the source codes released by the author and tune
its parameters by grid search to the achieve best results on
MNIST, ORL and Umist. For the competitor methods, we
directly collect the evaluation metrics from the correspond-
ing papers and some existing literature [26, 41].

Table 4 Network settings,
including the “kernel
size@channels" and size of C

MNIST EYaleB ORL COIL20 Umist

encoder 5×5@15 5×5@10 5×5@5 3×3@15 5×5@20

3×3@10 3×3@20 3×3@3 - 3×3@10

3×3@5 3×3@30 3×3@3 - 3×3@5

C 1000×1000 2432×2432 400×400 1440×1440 480×480

decoder 3×3@5 3×3@30 3×3@3 3×3@15 3×3@5

3×3@10 3×3@20 3×3@3 - 3×3@10

5×5@15 5×5@10 5×5@5 - 5×5@20
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Clustering results of all methods on these five real-world
datasets are recorded in Table 5, in which the best results
are highlighted in bold. As observed, our LDLRSC method
achieves the best performance among all competing meth-
ods in most cases. More specifically, we have the following
observations:

• On EYaleB, ORL, COIL20 and Umist datasets, our pro-
posed LDLRSC is the best method while on MNIST
dataset, it is the second-best method among all com-
petitors. Meanwhile, our proposed LDLRSC performs
better than DSC on all datasets for all metrics. Specifi-
cally, our proposed method performs better than DSC on
MNIST, EYaleB, ORL, COIL20 by 2.7%, 0.53%, 1.5%
and 4.1% in terms of ACC, respectively. It benefits from
the preservation of global low-rank prior and local geo-
metric information.

• It is worth pointing out that our improvement on the
Umist dataset is quite impressive. Our LDLRSC achieves
8.54%, 1.75%, 7.08% improvement over the second-
best DLRSC method on Umist dataset in terms of ACC,
NMI, and Purity, respectively. DLRSC [36] also imposes
low-rank constraint on the presentation matrix while
the solving process is indirect. These show the impor-

tance of local geometric structures of high-dimensional
data.

• The recently proposed RGRL achieves the best perfor-
mance on MNIST dataset while is relatively worse than
our LDLRSC on the remaining four testing datasets espe-
cially on the Umist dataset. The improvement of ACC is
around 10%. This directly demonstrates the effective-
ness and superiority of the low-rank prior than the sparse
prior since RGRL also adopted the Laplacian terms for
preserving the local geometric structure.

• Most deep subspace clustering methods show better per-
formance than shallow subspace clustering methods. For
example, DSC, RGRL, DLRSC and our LDLRSC out-
perform all shallow subspace clustering methods on all
datasets. This is due to the powerful feature representa-
tion and learning capabilities of deep learning.

4.5 Parameter analysis

Our LDLRSC method involves four free parameter, i.e.,
α1, α2, α3, α4. Figure 3 shows the ACC values with dif-
ferent combinations of those four parameters. We can see
that our LDLRSCmethod achieves satisfactory performance
within a large range of those four parameters. Specifically,

Fig. 3 Parameter selection with respect to α1 and α2 (the first column), α3 and α4 (the last column) on ORL (the first row) and Umist (the last row)
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Table 6 Clustering results of
our method and compared
methods on all datasets for
ablation study

Dataset Metric ours(L1) ours(L1 + L2) ours(L1 + L3) ours(L1 + L2 + L3)

ACC 0.7650 0.7670 0.7650 0.7770

MNIST NMI 0.6759 0.6773 0.6924 0.6901

PUR 0.7650 0.7950 0.7660 0.8040

ACC 0.9782 0.9782 0.9782 0.9786

EYaleB NMI 0.9697 0.9694 0.9692 0.9711

PUR 0.9786 0.9786 0.9786 0.9786

ACC 0.8700 0.8750 0.8725 0.8750

ORL NMI 0.9262 0.9317 0.9286 0.9320

PUR 0.8875 0.8900 0.8900 0.8900

ACC 0.9722 0.9743 0.9736 0.9778

COIL20 NMI 0.9719 0.9737 0.9734 0.9758

PUR 0.9722 0.9743 0.9736 0.9778

ACC 0.8541 0.9041 0.8937 0.9333

Umist NMI 0.9127 0.9340 0.9372 0.9463

PUR 0.8645 0.9041 0.9146 0.9333
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Fig. 4 2D visualization of the embedding results on MNIST (the first row), Umist (the second row) and COIL20 (the last row) datasets. The
columns from left to right denote DSC, RGRL, DLRSC, and our LDLRSC, respectively
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LDLRSC is insensitive to parameter α2 as shown in lower
right subfigure of Fig. 3. On Umist dataset, the proposed
LDLRSC could achieve higher ACC values without tuning
parameter α1 and α2 against all competitors as shown in top
right subfigure of Fig. 3.

4.6 Computation complexity

It is intractable to analyze the theoretical complexity of net-
work, since the time complexity of the neural network (here
an autoencoder) is related to the number of the batch, the size
and the dimensionality of the dataset, and computation of the
error in back propagation processwhich depends on specified
optimizer. The practical complexity timemay differ in differ-
ent computation frameworks for deep learning. However, it
is clear that the computation cost of the proposed Algorithm
2 is dominated by computing the loss function (15). Specifi-
cally, letm denote the original latent dimension, d denote the
latent dimension of a sample after the transformation of the
encoder and N denote the size of the dataset. For the forward
propagation, the Laplacian constraint costs O(N 2 × d2), the
‖C‖γ costs O(N 3) and the other terms, i.e. reconstruction
loss and self-expression loss cost O(N ×m) and O(N × d)

respectively. For the back propagation, it is intractable to
analyze the theoretical complexity. But in our experiment,
the time consumption of the experiment will be significantly
reduced without γ -norm constraint, so we speculate that the
singular value decomposition has high complexity in the back
propagation in the practical experiment.

4.7 Ablation study

To show the contributions of low-rank prior and two types of
Laplacian constrints, we also conduct several experiments on
the variants of our LDLRSC method, (using loss L1, using
L1 +L2, using loss L1 +L3 and using loss L1 +L2 +L3).
Here, losses L1, L2, L3 are defined in Eq. (16). The experi-
mental results for the various possible loss combinations are
shown in the Table 6.We observe that (1) Even under the con-
dition without two Laplacian constaints, i.e., using L1, the
performance of our LDLRSC method on all datasets is also
better than DSC [26], directly indicating the superiority of
low-rank prior. (2) These two types of Laplacian constraints
have similar performance on all datasets while combining
Laplacian constraints and low-rank prior can further improve
the clustering performance.

4.8 Visualization

We also show the visualization of the learned affinity matrix
by the t-SNE algorithm in Fig. 4 to further investigate the
clustering performance. Here, we use MNIST, Umist and
COIL20 as the testing datasets and compare our method

with three popular deep subspace clustering methods DSC,
RGRL, and DLRSC.

As observed, our LDLRSC method attempt to cluster all
samples by inheriting from the superiority of low-rank prior
and local geometric structures, such that sample belonging
to the same cluster are usually clustering together and easily
separated.

5 Conclusion

In this paper, we developed a novel deep subspace clustering
method named Laplacian regularized Deep Low-Rank Sub-
space Clustering Network (LDLRSC) to explore the global
low-rank prior and local non-linear geometric structures
simultaneously by the nonconvexγ -normandLaplacian con-
straint, respectively. In our network architecture, LDLRSC
transforms the original data into a latent low-dimensional
representation by an encoder, passes through a fully con-
nected layer that simulates the nature of self-expression, and
finally reconstructs features by the decoder. To the best of
our knowledge, this is the first attempt to directly use neural
networks to learn low-rank representation. In addition, we
try to exploit two kinds of Laplacian constraints in our pro-
posed loss function, which can mine the geometric structure
of the data. Extensive experiments show the effectiveness of
our LDLRSC method compared to several shallow subspace
clustering methods and deep subspace clustering methods.
In the future, we aim to extend the proposed method to han-
dle the multi-view clustering to explore the consistent and
supplementary information embedding multiple features.
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