
Locality-Sensitive Hashing Scheme Based on
Heap Sort of Hash Bucket

Bo Fang
School of computer science

and technology

Harbin Institute of Technology

, shenzhen

Shenzhen, China

Email: fangbo@stu.hit.edu.cn

Zhongyun Hua
School of computer science

and technology

Harbin Institute of Technology

, shenzhen

Shenzhen, China

Email: huazhongyun@hit.edu.cn

Hejiao Huang*
School of computer science

and technology

Harbin Institute of Technology

, shenzhen

Shenzhen, China

Email: hjhuang@aliyun.com

Abstract—Nearest neighbor search (NNS) is one of the current
popular research directions, which widely used in machine
learning, pattern recognition, image detection and so on. In
the low dimension data, based on tree search method can get
good results. But when the data dimension goes up, that will
produce a curse of dimensional. The proposed Locality-Sensitive
Hashing algorithm (LSH) greatly improves the efficiency of
nearest neighbor query for high dimensional data. But the
algorithm relies on the building a large number of hash table,
which makes the space complexity very high. C2LSH based on
dynamic collision improves the disadvantage of LSH, but its
disadvantage is that it needs to detect the collision times of a large
number of data points which Increased query time. Therefore,
Based on LSH algorithm, later researchers put forward many
improved algorithms, but still not ideal.

In this paper, we put forward Locality-Sensitive Hashing
Scheme Based on Heap Sort of Hash Bucket (HSLSH) algorithm
aiming at the shortcomings of LSH and C2LSH. Its main idea is
to take advantage of the efficiency of heapsort in massive data
sorting to improve the efficiency of nearest neighbor query. It
only needs to rely on a small number of hash functions can
not only overcome the shortcoming of LSH need to build a large
number of hash table, and avoids defects of C2LSH. Experiments
show that our algorithm is more than 20% better than C2LSH
in query accuracy and 40% percent lower in query time.

Index Terms—Locality Sensitive Hashing, Nearest Neighbor
Search, Heapsort.

I. INTRODUCTION

The nearest neighbor search (NNS) in Euclidean space has

been widely used in machine learning, information retrieval,

pattern recognition and other fields. The definition of an

NNS problem is that given a query point q and dataset D
return nearest neighbor data points which are most similar

to the query point q from the dataset. In order to solve the

nearest neighbor search problem, many methods have been

proposed, for example, R-tree[1], K-D tree [2] and SR-tree

[3], they can achieve good query efficiency in medium and

low dimensional data. With the increase of data dimension,

the efficiency of these methods in the nearest neighbor query

is greatly reduced, even worse than linear search [4], [5]. To

solve this problem, in 1999, P. Indyk and R. Motwani proposed

Locality-Sensitive Hashing (LSH) based on hamming distance

[6]. The basic idea of LSH is that if two adjacent data points

in the original data space are projected by the same projection

or projection, it is highly likely that they will still be adjacent

in the new data space, while it is highly unlikely that non-

adjacent data points will be mapped to the same bucket. LSH

compares the hamming distance of the hash value obtained, but

generally the distance is measured by Euclidean distance. It

is troublesome to map the Euclidean distance to the hamming

space and then compare the hamming distance. Therefore, the

researchers proposed Locality-Sensitive Hashing based on p-

stable distribution (E2LSH) [7], which can directly deal with

Euclidean distance.

For general LSH algorithms, we need to build L hash table,

each hash table contains k hash functions, and then map all the

data points of dataset to the hash tables, the data points which

are stored in the same hash bucket as query point q will be

the candidate neighbor points. Then, compute the distance of

query point and the candidate point. Finally, the nearest data

point to the query data point is returned. The proposed p-stable

LSH can directly work on the Euclidean space without any

embedding. This algorithm can find the nearest neighbor in

time. Compared with previous methods, LSH performs very

well in high-dimensional space. Although LSH can achieve

good results in theory, it has some shortcomings in practical

application. The main limitation of the LSH scheme is its

large memory consumption. Because LSH requires enough

hash tables to maintain query efficiency [8].

To overcome the shortcomings of LSH, researchers have

proposed many improved methods. Entropy based LSH [9] is

the earliest improved method. According to the entropy of the

hash value of the current random point in the neighborhood of

the query point, hash multiple random points, hash multiple

hash buckets, and merge the hash results. As a result, candidate

dataset will contain more points, and recalls will be enhanced.

Under this scheme, fewer hash tables are required and less

storage space is required. But the downside is that it’s easy to

get duplicate hash buckets. According to the entropy - based

LSH theory, the space requirement of basic LSH method and

query adaptive method is reduced.[10] Multi-probe LSH smart

probe may contain multiple buckets of query results in the hash

978-1-7281-1846-8/19/$31.00 ©2019 IEEE

The 14th International Conference on
Computer Science & Education (ICCSE 2019)
August 19-21, 2019. Toronto, Canada

 5

TuesP3.2

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.

table. It proved that the Multi-probe LSH method has similar

time complexity to the basic LSH method, and the number

of hash tables used is reduced by order of magnitude. RLSH

[11] solves the difficulty of generating neighbor data based on

entropy LSH through random projection. Unlike Multi-probe

LSH, whose possibility of obtaining the best performance is

unknown, the posterior Multi-probe LSH [12] considers the

prior knowledge of query and search object and proposes a

more reliable posterior model. This prior knowledge enables

better quality control of the search and helps select the

most likely hash bucket accurately. The above method mainly

reduces the number of hash tables by expanding the search

scope, however, the effect is not very significant.

In order to significantly reduce the number of hash tables,

C2LSH proposed a collision detection method. The idea of

C2LSH [13] is to create L hash tables, each hash table

has only one hash function, which can greatly reduce the

number of hash tables, and then calculate the number of

collisions to compare the hash values between data points.

However, the disadvantage of this method is that it needs

a large number of collision detection. LazyLSH [14] uses

a single base index to support the computations in multiple

Lp spaces, significantly reducing the maintenance overhead.

Extensive experiments show that LazyLSH provides more

accurate results for approximate KNN search under fractional

distance metrics.

In this paper, we draw on the LazyLSH multi-paradigm and

the idea of collision detection in C2LSH. We propose the

HSLSH algorithm. In HSLSH, we establish a hash table, it

contains the L hash function, we made up of L hash function

value vector as a hash bucket ID, and then using heapsort to

sort the hash bucket ID. The order is based first on the number

of collisions and then on the distance between Manhattan.

Heapsort greatly reduces the number of collision detection.

Experiments show that HSLSH is much better than C2LSH in

query accuracy and query time.

The rest of the paper is organized as follows. Section II

introduces the nearest neighbor search. Section III introduces

Locality-Sensitive Hashing. Section IV introduces C2LSH

algorithm. Section V describes HSLSH in detail. Section VI

is the experiments section. Section VII is the conclusion of

this paper.

II. K-NEAREST NEIGHBOR SEARCH

In similarity search, data is described as high dimension

vectors. When given query points and dataset as well as

similarity measurement functions, the nearest neighbor search

is to search data points most similar to query points from the

dataset. Its formal description is as follows:

Give a query data q, A is denoted a set of returned

data points which size is, denote the similarity measurement

functions.

KNN(q) = A, {A ⊆ X, | A |= K, ∀x ∈ A,

y ∈ X −A,D(q, x) ≤ D(q, y)} (1)

K-nearest neighbor search can control the number of expected

return points, so it is commonly used in multimedia informa-

tion retrieval and other fields. In this paper, we use KNN to

analyze our algorithm.

III. LOCALITY SENSITIVE HASHING(LSH)

The basic idea of LSH is as follows: First hashing the point

which in the datasets, so that the probability of a collision

between two points close to each other is much higher than

two points far from each other. In the query, the query point

is hashed into the bucket according to the same hash function,

and then all points in the bucket are taken out as candidate

approximate nearest neighbor points. Finally, the distance

between the query point and each candidate approximate

nearest neighbor point is calculated to determine whether it

meets the query conditions.

1)if D(p, q) ≤ r1,then PrH [h(p) = h(q)] ≥ p1
2)if D(p, q) ≥ r2,then PrH [h(p) = h(q)] ≤ p2
In [6], the concept of function family is proposed, let S

denote a set of d dimensions data points, D : S × S → R is

the similarity measurement functions, p and q are two arbitrary

data points in S. Function family H = {h : S → U}is -

sensitive. If and only if :(in this r1 < r2, p1 < p2).

A. p-stable distributions

In [6], which has proposed p-stable LSH, we first introduce

the p-stable distribution .

Denote: For the distribution D over a real number set R,

if exist P ≥ 0 ,for any n real numbers v1, v2, ..., vn and n
variables that satisfy D distributions X1, X2, ..., Xn. Then the

random variable
∑

i viXi and (
∑

i | vi |p)1/p have the same

distribution, where X is a D distributed random variable then

D is called a p- stable distribution.

For any p in (0, 2],there is a stable distribution:

When p = 1 is Cauchy distribution, the probability density

function is c(x) = 1/[π(1 + x2)].
When p = 2 is Gaussian distribution, the probability density

function is g(x) = 1/(2π)1/2 × e−x2/2.

The hash function of p-stable LSH is in formula (2):

ha,b(v) = �a · v + b

w
	(ha,b(v) : R

d → N) (2)

Where a is a d-dimensional vector, each of which is a random

variable independently selected from a p-stable. b is a random

number within the range of [0, w].
For two data points v1, v2,let s =|| v1, v2 ||. The probability

that v1 and v2 collide under a uniformly randomly chosen hash

function ha,b,denoted as p(s) ,can be computed in formula (3)

:

p(s) = Pra,b
[ha,b(v2)] =

∫ w

0

1

s
f2(

t

s
)(1− t

w
)dz (3)

Where f2(x) = 2√
2π

e
−x2

2 , the collision probability p(s)
decreases monotonically with s for a fixed w ,so the family

of hash functions ha,b is sensitive with p1, p2.

 6

TuesP3.2

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.

Denote G function: gi(v) = (h1(v), .., hk(v)), 1 < i <
l, that corresponds to L hash tables, and each function gi(·)
is generated independently. Each function gi(·) consists of k
hash functions which randomly selected independently from

the hash function family ha,b. The value of the function gi(·)
corresponds to a specific hash bucket.

The process of RNN or KNN search using LSH is mainly

divided into two steps: index establishment and query. When

setting up the index, for every point v ∈ p , calculate its

L function values and store them in the corresponding hash

bucket in tables. When querying, calculate L function values

of query point q, then find L hash buckets where q is, calculate

the distance between the points in these hash buckets and

q, find the points within the specified distance (RNN), or k

nearest points (KNN).

Complexity analysis: For each query structure, we create

L hash tables, and each hash table has k hash functions.

The calculation of time complexity is mainly divided into

three parts. The first part is the time Tprojection to project

the query point to the hash table, Tprojection = nklThash

(Thash denotes the time to project one hash function), the

second part is the time Tquery to return the candidate neighbor

set,Tquery = klTsearch (Tsearch denotes the time to traverse

the data points in a hash function bucket) and the third part is

the time Tcalculate to return the K nearest neighbor points by

calculating the distance from the points in the candidate set

Tcalculate = NcTdistance (Nc denotes the number of candidate

set, Tdistance is the time of calculating the distance of two data

points).

So, T = Tprojection + Tquery + Tcalculate = nklThash +
klTsearch + NcTdistance. The space complexity is mainly

determined by the index structure, S denotes space complexity,

S is also divided into two parts, the first is the consumption

of the original data set O(dn),and the second for storing hash

function is O(dkl).

IV. LSH BASED ON DYNAMIC COLLOSION

COUNTING (C2LSH)

Traditional LSH requires a large number of indexes to

be built, it consumes space and increases query time, so

in [8],C2LSH exploits only a single base ß of m LSH

functionh1, ..., hm, m is the size of base ß. each Hash table

Ti is built by hi(·), so,each data points o in the dataset D
is hashed to an integer by hi(·),which is taken an the bucket

ID (or simply bid) of o. Then, all the data points are sorted

in increasing order of their bids along the real line. In other

words, each hash table Ti is indeed a sorted list of buckets,

and each bucket contains a set of object IDs representing

the objects that fall in the bucket. If two objects are hashed

by hi(·) into the same bucket, we say they collide with each

other under. To search NN for a query point q, C2LSH only

considers distance computation for data objects that collide

with q under a large enough number of functions in ß.

Complexity analysis: the query time of C2LSH consists

of three parts, in this paper m = O(log n) (n is size of

dataset). The first part is that time to locate the hash bucket

corresponding to query object q is md = O(d log n),the

second part ,collision detection time is O(n log n). Then,the

calculation time of the candidate’s real distance is O(d). Query

time complexity of C2LSH algorithm is O(d log n+ n log n).
The total space complexity is O(dn). Index space complexity

is O(n log n).

V. LSH BASED ON HEAP SORT OF HASH

BUCKET(HSLSH)

A. Introduction

The disadvantage of basic LSH is that a large number

of hash tables need to be built to meet the query accuracy.

Although C2LSH improves this disadvantage, it increases the

query time complexity due to the need for a large number of

collision detection. In order to solve these two contradictions,

we propose HSLSH.It can avoid the disadvantages of LSH

and use heapsort method to solve the disadvantages of C2LSH

query time increasing.

In this paper, on the basis of the previous research, we put

forward an algorithm with higher query efficiency. In C2LSH,

due to the need of collision detection of a large number of data

objects, the query efficiency is greatly reduced. Moreover, the

size of the collision threshold is difficult to control. In this

paper, instead of using a hash value vector as the bucket ID,

we’re going to use the vector h1(·), ..., hm(·) from the value

of the hash function of the entire hash table as the bucket

ID. Then, based on the given vector comparison rules, use

the heap method to build the heap, each time the heap is

built, an optimal bucket is returned. The biggest advantage

of heap sort is that it is much more efficient than other sorting

methods to return the optimal data in the sorting of massive

data, In the aspect of Multi-probe, our algorithm also shows

good efficiency. Our method only needs to perform a pop-heap

operation to expand the number of buckets detected, and the

quality of the data in the bucket is better than Multi-probe

LSH according to the given sorting rules. The following is a

detailed description of HSLSH.

B. Algorithm Description

This algorithm randomly select hash functions from the

family of hash functions as one hash table, each data object

of data set D will get a hash value vector. Then, use as the

bucket id of the hash bucket that holds the data object o. The

detailed algorithm is divided into following steps:

Step 1: Generates a hash table G containing L hash

functions.

Step 2: Map all the data objects to the corresponding bucket

of the hash table.

Step 3: Return K Nearest neighbor search for the query

point q. This step can divide into two part:

1) Map the query point to the hash table G, get the bucket

id of the bucket, call it tarV ec.
2) Heapsort bucket ids according to the given rule, as

follows:

 7

TuesP3.2

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.

Step 1: Calculate the equivalent number of bucket vector

elements Ct.

Step 2: If the Ct are equal and their Manhattan distances

are compared.

3) Sets the ratio (ri) that returns the number of buckets,

Then use heapsort to return the optimal Nt buckets(Nt

denoted the number of returned bucket), and use all data points

which is stored in the returned bucket as candidate neighbor

set Sc.

4) Calculate the Euclidean distance between data object and

query object in the candidate neighbor set Sc and return the

optimal K data objects.

Algorithm 1 and Algorithm 2 are the pseudo-codes of the

hash table construction and the query process respectively.

Algorithm 1: HSLSH algorithm to generate hash tables

Input: Dimension d, The width of the hash bucket w;

The size of hash table L; The Dataset D.

Output: The Hash tabel G, BIDs

1 G = ∅, hft = ∅, BIDs = ∅, BIDs denote the set of id

of all data object;

2 hft(d, l, w) //The hft represents an array of hash
functions objects;

3 for j = 1; j ≤ L; + + i do
4 hf(d, w) //generate a hash function object;
5 hft.push(hf);

6 //Generate its bucket id sequence for each data object;
7 for j = 1; j ≤ D.length; + + i do
8 for i = 1; i ≤ L; + + i do
9 D[j].bid.push(hft[i](D[j].data));

10 G[D[j].bid].insert(D[j].id);
11 BIDs.push(D[j].bid);

12 return G, BIDs;

C. C.Algorithm Complexity Analysis

Time complexity: Similarly, the time complexity is divided

into three parts: the first part is the indexing time (Tprojection),

the second part is the time(Tsearch) to return the candidate

neighbor set, and the third part is the computing time Tcompute.

So Ttotal = Tprojection + Tsearch + Tcompute = O(ldn) +
O(Nt)l log n+O(C logCd)(n is the size of D, d is dimension

of data, C is the number of data points in the candidate

dataset).

Space complexity: Space complexity is divided into two

parts. The first is the space used to store the entire dataset is

O(nd) and second the space is needed to store the entire index

structure is O(nl)+O(n) ,so, Stotal = O(nd)+O(nl)+O(n).

VI. EXPERIMENT AND ANALYSIS

In this chapter, we will evaluate the performance of HSLSH

algorithm through real data sets. We will compare HSLSH

algorithm with the latest C2LSH algorithm. All algorithms

Algorithm 2: HSLSH algorithm for query

Input: Query object q; Hash table G; The number of

optimal buckets Nt; The id set IDs

Output: KNN ,The optimal K data object;

1 candidate set Sc = ∅; B = ∅; KNN = ∅;

2 for i = 1; i ≤ L; + + i do
3 q.id.push(hft[i](D[j].data));
4 for j = 1; i ≤ Nt; + + i do
5 optimalbid =heapsort(BIDs, q.bid);

6 BIDs.delete(optimalbid);
7 B.push(optimalbid);

8 for i = 1; i ≤ B.length; + + i do
9 for j = 1; j ≤ G.length; + + j do

10 Sc.push(G[B[i][j]);

11 Sort(Sc,Euclidean distance(q, o in Sc));

12 for i = 1; j ≤ K; + + i do
13 KNN .push(Sc[i]);

14 return KNN ;

use C++11 language, and all experiments are completed on

machines with CPU Inter(R) Core(TM) i7-6700 CPU @

3.4GHz,3,41GHz memory size of 8G.

A. Dataset
We will use two real data sets, Mnist and Fashion, that are

commonly used to evaluate the performance of existing LSH

algorithms.
Mnist. The Mnist dataset contains 60000 784-dimensional

data objects, each of which is a handwritten digital image of

size 28 × 28. The Mnist dataset also contains a test set of

10000. We randomly selected 50 data objects from the test set

as the query set.
Fashion. Fashion is also contains 60000 784- dimensional

data object, but compared with the previous Mnist datasets, a

data object in each dimension relatively full, each data object

is a size of 28 × 28 clothing pictures, at the same time, the

data set includes a size of 10000 set of tests, we randomly

selected 50 data object as a query set.

B. Evaluation of measurement
In our experiment, we evaluated the performance of the

algorithm from the following two aspects
Query Efficiency: Query efficiency is mainly reflected in

query time. We observe and compare the time of various

algorithms by controlling the same variables.
Query Accuracy. In our experiment, we use approximate

proportion to measure the quality of the algorithm query

results. In particular, for each query object q, we compare the

K-nearest neighbor returned by them with the real label of

query object q, and use γi to represent the accuracy of each

object qi ,as shown in formula 4. R represents the average

accuracy of the entire test set, as shown in formula 5.

γi =
Ci

K
(4)

 8

TuesP3.2

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.

R =

m∑
i=1

γi

m
(5)

(Ci denoted the same number of neighbor objects as the

real label, m is the number of test set).

C. Experimental parameter configuration

In this section, we discuss the impact of different parameter

Settings on the performance of HSLSH algorithm. A large

number of experimental results show that both HSLSH and

C2LSH can achieve the highest query efficiency when hash

functions L = 10 and bucket width w = 200. Then, we fixed

the number of hash functions L = 10, and set the bucket

w = 200 in the experiment. We run the program with the same

number of threads as the test set data. In our experiment, the

nearest neighbor K is a variable parameter, and the value of

K is 10, 20..., 100.

D. Experimental results

We first set K = 10 to find out the optimal parameters

of C2LSH and HSLSH(the balance between query time and

query precision is considered comprehensively), and then set

different K values according to the optimal parameters ri, and

then compare the query efficiency of the two methods.

Figures 1 − 4 shows the relationship between parameter

adjustment(ri and b) on the Mnist dataset and query time

and query precision.

Fig. 1: Fig. 2:

v

Fig. 3: Fig. 4:

It can be observed from the figure above that, on Mnist, the

optimal parameter ri = 0.05 for HSLSH algorithm and b = 8
for C2LSH algorithm.

Figures 5 − 8 shows the relationship between parameter

adjustment(ri and b) on the Fashion dataset and query time

and query precision.

Fig. 5: Fig. 6:

Fig. 7: Fig. 8:

It can be observed from the figure above that, on Fashion,

the optimal parameter ri = 0.03 for HSLSH algorithm and

b = 8 for C2LSH algorithm.

Next, we use the optimal parameters and observe the query

efficiency of the two methods according to the different values.

Figure 9,10 shows the comparison of query efficiency

between HSLSH and C2LSH on Mnist.

Fig. 9: Fig. 10:

Figure 11,12 shows the comparison of query efficiency

between HSLSH and C2LSH on Fashion.

Fig. 11: Fig. 12:

On the Mnist dataset, we can clearly see that the query

accuracy of H2LSH is more than 20% higher than that of

C2LSH under different K values, and the query time is more

than 40% lower than that of C2LSH. Similarly,on the Fashion

dataset the query accuracy of H2LSH is 20% higher than that

of C2LSH, and the query time is about 40% lower than that of

 9

TuesP3.2

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.

C2LSH. To sum up, we can conclude that the performance of

HSLSH algorithm in K-nearest neighbor query is much better

than that of C2LSH algorithm.

VII. CONCLUSION

In this paper, we describe the HSLSH algorithm in full

detail. HSLSH algorithm makes up for the deficiency of

traditional LSH and C2LSH, and it greatly improves the query

time and precision of K-nearest neighbor query by using

heapsort in massive data query.When the data set is sufficiently

large, the performance of HSLSH algorithm will be more

efficient than that of C2LSH algorithm.

ACKNOWLEDGMENT

This work is financially supported by National Key R&D
Program of China under Grant No. 2017YFB0803002 and

No. 2016YFB0800804, National Natural Science Foundation

of China under Grant No. 61672195 and No. 61732022.

REFERENCES

[1] Guttman. R-tree: A dynamic index structure for spatial searching. In
SIGMOD, Pages 47-57,1984. J. Clerk Maxwell, A Treatise on Electricity
and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68C73.

[2] J. L.Bentley. K-D trees for semi-dynamic points sets In Symposium
on Computational Geometry,1990.K. Elissa, Title of paper if known,
unpublished.

[3] Katayama N and Satoh S. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. SIGMOD,1997.

[4] H. Samet. Foundations of Multidimensional and Metric Data Structures.
2006.

[5] Y. Tao, K. Yi, C. Sheng, and P .Kalnis. Efficient and accurate nearest
neighbor and closest pair search in high dimensional space. ACM TODS,
35,2010

[6] P. Indyk and R. Motwani. Approximate Nearest Neighbor: Towards
Removing the Curse of Dimensionality. In Proceeding of the 30th
Symposium on Theory of Computing.1998.pp.604-613.M. Young, The
Technical Writers Handbook. Mill Valley, CA: University Science, 1989.

[7] M. Datar,N. Immorlica, P.Indyk, and V. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. Proceedings of the ACM
Symposium on Computational Geometry,2004.

[8] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S.
Madden, and P. Dubey. Streaming similarity search over one billion
tweets using parallel locality-sensitive hashing. In PVLDB, volume 6,
pages 1930C1941, 2013

[9] Panigrahy R 2006 Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithm (SODA), January 22C26, 2006, Miami,
Florida, USA, p. 1186.

[10] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.Multi-probe LSH:
efficient indexing for high-dimensional similarity search. In VLDB, pages
950C961, 2007

[11] Lu Ying-Hua, Ma Ting-Huai, Zhong Shui-Ming, Cao Jie, Wang Xin and
Abdullah Al-Dhelaane Improved locality-sensitive hashing method for
the approximate nearest neighbor problem.2014.

[12] Joly A and Buisson O 2008 Proceedings of the 16th ACM International
Conference on Multimedia, October 26-31,2008, Vancouver, Canada p,
209.

[13] J. Gan, J. Feng, Q. Fang, and W. Ng, Locality-sensitive hashing scheme
based on dynamic collision counting, in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, 2012, pp. 541C552.

[14] Y. Zheng, Q. Guo, A. K. Tung, and S.Wu. Lazylsh: Approximate nearest
neighbor search for multiple distance functions with a single index. In
SIGMOD, 2016.

 10

TuesP3.2

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 11:01:52 UTC from IEEE Xplore. Restrictions apply.

