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Abstract—Inpainting the given region of an image is a typical requirement in computer vision. Conventional inpainting, through
exemplar-based or diffusion-based strategies, can create realistic inpainted images at a very low cost. Also, such easy-to-use
manipulation poses new security threats. Therefore, the detection of inpainting has attracted considerable attention from researchers.
However, the existing methods are typically not suitable for the general detection of various inpainting algorithms. Motivated by this, in
this work, an efficient feature enhancement network is proposed to locate the inpainted regions in the digital image. First, we design an
artifact enhancement block to effectively capture the traces left by diffusion or exemplar-based inpainting. Then, the VGGNet is used as
a feature extractor to describe advanced and low-resolution features. Finally, to take full advantage of enhanced features, we
concatenate the features obtained by the feature extractor and the up-sampling operations. Extensive experimental evaluations,
covering benchmarking, ablation, robustness, generalization, and efficiency studies, confirm the usefulness of the proposed method.
This is especially true on the conventional inpainting dataset, our method obtains an average F1 score 7.63% higher than the second-
best method. Theoretical and numerical analyses support the effectiveness of our feature enhancement network in representing the
artifacts in inpainted images, exhibiting better potential for real-world forensics than various state-of-the-art strategies.

Index Terms—Image inpainting, forgery localization, feature enhancement, feature concatenation

1 INTRODUCTION

URRENTLY, image processing is becoming easier due to

the advanced photo editing software, which allows
users to manipulate images without professional knowl-
edge. Unfortunately, attackers might take advantage of the
editing tools to maliciously create fake media with the
potential in misleading the public. This compels us to
develop fake media detection methods that can verify the
authenticity and integrity of media.
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As a powerful technique, image inpainting can recon-
struct the missing regions in a visually plausible way. It
could be grouped into two categories: conventional inpaint-
ing [1], [2], [3], [4], [5], [6], [7], [8] and deep learning-based
(DL-based) inpainting [9], [10], [11], [12], [13]. The former is
to fill the target hole with the appropriate background con-
tent of the same image, while the latter can generate realistic
visual content through neural networks. Additionally,
many conventional inpainting methods that combine exem-
plar and diffusion-based techniques have been designed
[14], [15]. In fact, the development of conventional inpaint-
ing algorithms is longer than that based on GAN, and the
algorithm implementation is relatively mature. Common
image processing software such as Photoshop, GMIC, and
OpenCV all involve conventional repair algorithms. There-
fore, it is still very practical to detect traditional inpainted
images. However, those approaches can also be exploited to
generate forged images by adversaries. In practical scenar-
ios for inpainting, the object or key information (such as
data, time, or number) can be removed to mislead observ-
ers, as shown in Fig. 1. Hence, it is of practical significance
to detect forgery regions created via inpainting tools.

Over the past decades, a variety of forgery detection/
localization approaches [16], [17], [18], [19] have been pro-
posed. Among them, many methods were built on the anal-
ysis of the abnormal features, such as color inconsistencies
[16], JPEG compression artifacts [17], color filter array [18],
and photo response non-uniformity [19]. However, these
methods did not consider the prior knowledge of image
inpainting, thus it is difficult to gain a satisfactory perfor-
mance in the inpainting detection.

In general, image inpainting is performed by exem-
plar-based or diffusion-based strategy. More specifically,
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Fig. 1. Two examples of inpainted images: inpainted (left), original (mid-
dle), and ground-truth (right).

the exemplar-based approach tries to find the best candi-
date exemplar for covering the damaged region. As for
the diffusion-based approach, it propagates the image
content from the boundary to the missing area by model-
ing the diffusion process. Therefore, the forgery detection
for inpainting can be inspired by the principles of these
inpainting algorithms. For the detection of exemplar-
based inpainting, some existing approaches [20], [21],
[22], [23] focus on searching similar blocks within the
given image to expose inpainted patches. In the case of
detecting diffusion-based inpainting, Li et al. [24] pio-
neered a localization method based on the local variances
of the changes in inpainted and original regions. Since
deep learning has demonstrated superior performance in
many applications [25], [26], [27], [28], [29], Zhu et al. [30]
utilized an encoder-decoder network to localize inpainted
regions in an image. As filtering is widely used in various
fields of images [31], [32], [33], [34], [35], Li et al. [36]
used a high-pass full convolutional network to locate the
tampered regions by deep-learning inpainting. Neverthe-
less, to the best of our knowledge, the universal detection/
localization for such two types of image inpainting is still
lacking.

In this work, we propose an efficient feature enhance-
ment network for conventional inpainting localization.
More specifically, it consists of three blocks: artifact
enhancement, feature extraction, and forgery output. The
first block focuses on exposing the anomalous artifacts of
the inpainted region. To this end, we design a high-pass
filtering module with four spatial rich model (SRM) ker-
nels [31] and a Laplacian kernel, which captures inconsis-
tencies in the domain of noise residuals. Moreover, we
fuse such residual features with color features to capture
tampering artifacts. Next, the VGGNet [37] with 13 con-
volutional layers and 4 max-pooling layers is employed
as the second block to effectively extract anomalous fea-
tures from the inpainted image. Besides, to take further
advantage of the features from the enhancement block,
we introduce the up-sampling structure of U-Net [38],
which combines high and low-resolution features for out-
putting more precise forgery regions. Finally, extensive
experiments exhibit state-of-the-art performance in the
localization of conventional inpainting. For this paper,
the major contributions are as follows:

e The existing methods are not sufficient to cope with
the universal detection of various conventional

inpainting methods. To this end, we built a network
for the general localization of conventional image
inpainting.

o  We design an artifact enhancement block that is capable
of capturing inpainting artifacts and providing high-
quality features for the feature extractor and forgery
output block.

e On the basis of artifact enhancement, we further
introduce a feature fusion strategy to improve the
quality of up-sampling.

This paper is structured as follows. In Section 2, we
briefly introduce the development status of conventional
inpainting techniques as well as inpainting detection. Sec-
tion 3 presents our method in detail. In Section 4, we con-
duct several experiments to evaluate the localization
performance of the presented approach. Finally, Section 5
gives a conclusion and highlights the future work.

2 RELATED WORKS

2.1 Conventional Inpainting Methods

The conventional inpainting technique aims to recover the
damaged region with the spatial information of the undam-
aged region. It basically includes exemplar-based and
diffusion-based, where the exemplar-based inpainting is
effective in reconstructing large regions, and the diffusion-
based inpainting performs well in achieving local intensity
consistent.

Fundamentally, the exemplar-based approach works
by searching for the best matching patches in the undam-
aged region and copying them to the target location. The
inpainting algorithm in [2] was designed to fill the miss-
ing area by the mean of searching for the undamaged
patches with the least mean-squared-error distance. Sub-
sequently, various improved methods of [2] were devel-
oped to improve the priority calculation and optimize
patch searching. For example, the method in [3] defined a
patch priority order based on structural sparsity to speed
up calculations. Liu et al. [4] proposed a exemplar-based
method by multi-scale graph cuts. To speed up the
inpainting operation, the random patch search method
was adopted in [6] for finding the best patch. In addition,
an inpainting method that adopts a novel non-local tex-
ture similarity measure and nonlinear filtering to select
several candidate patches was presented in [8].

There are two types of diffusion-based inpainting algo-
rithms. One of them reconstructs the damaged area by mini-
mizing the high-order partial differential equation or
variational repair function, and the other propagates the
pixel intensity continuously into the damaged area along
the isophote direction. Inspired by the ideas of classical
fluid mechanics, the diffusion-based method of [1] propa-
gated isophote lines continuously from the exterior into the
region to be inpainted. Later, a novel method based on two
fourth-order partial differential equations [5] was proposed
to repair the image. Li et al. [7] diffused the target region by
computing the distance and direction between the damaged
pixels and its neighborhood pixels. In summary, these
methods ensure the local intensity smoothness and are
applicable to the completion of lines, curves, and small
areas in the image.
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Fig. 2. The architecture of the proposed network. It consists of three different blocks: artifact enhancement block, feature extraction block, and forg-
ery output block. The first block is equipped with 5 filters for guiding the network to learn inpainting artifacts in the frequency domain. Despite this
shallow representation, the feature extraction block is then performed for learning more representative features. On the basis of artifact enhance-
ment, the feature fusion strategy is performed in the forgery output block to generate more refined localization results.

2.2 Detection of Conventional Inpainting
Hitherto, there are several research paths in the field of
inpainting detection. For the detection of exemplar-based
inpainting, many existing techniques are based on the fact
that the inpainted patches are copied from the same image.
Thus, the common pipeline of those algorithms mainly con-
tains two major processes: suspicious region detection and
forgery region identification. In [20], the inpainting process
can be briefly explained as follows: i) the zero-connectivity
labeling was applied on patch pairs to yield matching
degree features for all patches in the suspicious region, ii)
the fuzzy memberships of patch matching degrees were
computed to describe the uncertainty in detecting tampered
region, and iii) the tampered regions were identified by a
cut set. Unfortunately, this method requires manually
selecting suspicious regions in advance and takes a long
time to search similar regions. To overcome these draw-
backs, a new method based on multi-region relation was
proposed in [21] for identifying tampered regions from sus-
picious areas. Moreover, the two-stage searching algorithm
based on the weight transformation was also applied in [21]
to speed up the calculation. This method had only a limited
improvement in computational time yet. In [22], the average
sum of the absolute difference between the inpainted image
and the reserved JPEG compressed image under different
quality factors was used to detect the inpainted image. Fur-
thermore, Liang et al. [23] utilized central pixel mapping to
accelerate the search of suspicious regions and integrated
the greatest zero-connectivity component labeling and frag-
ment splicing detection to predict tampered areas. How-
ever, these two methods still exhibit high false alarms.
Recently, the approach of [30] constructed a convolutional
neural network (CNN) to predict the inpainting probability
for each pixel, and hence locate the inpainted patches.
Although this approach effectively reduces the false alarm,
its performance for the localization of conventional inpaint-
ing is unsatisfactory.

As a pioneering attempt for diffusion-based inpainting
detection, Li et al. [24] proposed a method by analyzing the
local variance of image Laplacian along the isophote

direction. This method can quickly find the region of diffu-
sion-based inpainting, but it also suffers from a high
false positive rate and is unsuitable for exemplar-based
localization.

In practice, an adversary may employ both diffusion-
based and exemplar-based algorithms to achieve realistic
fake images. Consequently, the above schemes that only
consider the detection/localization of a single type cannot
achieve satisfactory results in such real-world scenarios. For
this reason, we propose an end-to-end strategy for the gen-
eral localization of diffusion-based and exemplar-based
inpainting regions.

3 THE PROPOSED NETWORK

3.1 Network Overview

We propose a network for inpainting localization via a fea-
ture enhancement strategy. Our approach is characterized
by stronger generality and robustness. Unlike regular
CNN-based forgery detection methods taking the tampered
images as the input of the feature extractor, our network
enhances more subtle manipulation traces within the image
before the feature extraction.

Fig. 2 depicts the overview of the proposed network
with details about each block. The architecture consists of
three different blocks: artifact enhancement block, feature
extraction block, and forgery output block. The first block
is designed to capture inpainting traces by high-pass fil-
ters and a series of convolution operations. In the feature
extraction block, the VGGNet [37] is performed to learn
more manipulation features. As for the forgery output
block, the up-sampling structure in [38] is employed to
output more precise inpainted regions. In what follows,
we elaborate on the details of our proposed concept
blocks. In Table 1, we list core notations for this paper.

3.2 Artifact Enhancement Block

Different from the regular CNN-based forgery detection,
which tends to learn content-dependent features, we pay
close attention to capturing artifacts of the inpainting

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:21:09 UTC from IEEE Xplore. Restrictions apply.



ZHANG ETAL.: LOCALIZATION OF INPAINTING FORGERY WITH FEATURE ENHANCEMENT NETWORK 939

TABLE 1
Notations and Definitions

TABLE 2
Specifications of the Feature Extraction Block

Notation Definition Stage Layer Kernel Stride Inputdepth Output depth
(2,9)/ (u,v) The spatial/ frequency domain coordinates Convolution 3 1 32 64
T The input of the network layer 1 Convolution 3 1 64 64
Yy The output of the network layer Max-pooling 2 2 64 64
h The activation function
w The weight of the convolution kernel Convolution 3 1 64 128
b The bias item of the convolution 2 Convolution 3 1 128 128
f The image function Max-pooling 2 2 128 128
F The Fourier coefficient )
HW The height and width of the image Convolution 3 1 128 256
- - Convolution 3 1 256 256
® The concatenating operation 3 Convolution 3 1 256 256
Max-pooling 2 2 256 256
: Convolution 3 1 256 512
operation. The.refore, we hope that the. prqpqsed methqd Convolution 3 1 512 512
can suppress image content to expose Inpainting traces in 4 Convolution 3 1 512 512
the first block.. Inspired by '[36], [.39], the inpainting feature Max-pooling 2 2 512 512
enhancement in our work is achieved through the feature _
fusion of image noise residuals obtained by high-pass fil- 5 (Cionvollutt}on g % gg gg
: : : onvolution
ters and RGB features. Besides focusing on the spatial Convolution 3 1 512 512

domain, some methods are devoted to analyzing the arti-
facts of forgery in the frequency domain.

We design a high-pass filtering module with 5 filter
kernels in the artifact enhancement block, where 4 SRM
kernels are selected from [31], and the last one is Lapla-
cian kernel. See Section 4 for the analysis of filtering ker-
nels. Here, SRM kernels can effectively expose the noise
inconsistencies in exemplar-based complex texture
regions and the Laplacian kernel has the capability of
exposing diffusion-based inpainting noise inconsistencies.
A depth-wise convolution with the kernel size of 3 and
the stride of 1 is applied to independently perform calcu-
lations on each channel of the input layer. In our model,
we set the high-pass filter kernel as the depth separable
convolutional initial kernel. Hence, the filtering module
will perform 5 depth separable convolution operations
and each convolution configures a different kernel. We
take the RGB channels as the input of the high-pass filter-
ing module to get 15 noise feature maps. At the same
time, we perform a regular convolution with 3 filters on
the RGB image. Subsequently, the color features and
noise residuals are fused to obtain an output of 18 chan-
nels. Finally, we configure a 3x3 convolution with a
stride of 1 for the fused feature map, generating 32
channels.

In brief, we perform a list of high-pass filtering and con-
volution operations to gain a result of 32 channels.

3.3 Feature Extraction Block

After the fusion of local noise residuals and color fea-
tures, the inpainting traces are effectively enhanced,
which is beneficial to guide the feature extraction block to
accurately identify inpainting regions. To further improve
the feature quality, we take VGGNet [37] which has made
great success in the large-scale computer vision field as
the feature extractor. The VGGNet employs multiple con-
volutions of smaller kernel sizes (3x3). This can not only
reduce the number of parameters but also improve the fit-
ting ability of the network. The calculation process of 3x3

convolution is given below

1 1
Yy = h( Z Z Wm nLitm,j4+n + b> ) (1)

m=—1n=-1

where z;; stands for the pixel at the coordinate (i,j) of
input, and wy,, is the weight of convolution kernel at the
coordinate (m,n). Moreover, the max pooling with 2 x 2
kernel size is calculated using the following formula

o -1 01 01 i1
Yij = max(a:iﬁj STy i1 Tt g x72+1,j+1)v 2)

where yf ; represents the value at the coordinate (i, j) of the
l-th network layer.

To learn higher-level representative features, the fea-
ture extraction block contains a total of 17 layers: 13 3x3
convolutions and 4 max-pooling operations. Each convo-
lutional layer is followed by a rectified linear unit (ReLU)
[40]. The feature extraction block can be divided into five
stages. Specifically, the first two stages are both composed
of two successive convolutional layers and a maximum
pooling layer; the third and fourth stages are both com-
posed of three convolutional layers and a maximum
pooling layer; the fifth stage is configured with three con-
secutive convolutional layers. Additionally, the number
of output feature maps in stage 1 is 64; the number of out-
put channels in each stage except the last stage is doubled
to a maximum of 512 channels; the last stage has the same
number of output channels as stage 4. More detailed
information is depicted in Table 2.

3.4 Forgery Output Block

Through feature extraction, we continuously down-sam-
ple the input to filter out features that contain redundant
information. Since the pooling operations reduce the size
of the feature maps to 1/16 of the input image, the feature
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TABLE 3
Specifications of the Forgery Output Block

Step Layer Kernel Stride Input depth Output depth Concatenate

Up-sampling 2 512 512 v
1 Convolution 3 1 1024 512

Convolution 3 1 512 512

Up-sampling 2 512 512
2 Convolution 3 1 512 256

Convolution 3 1 256 256

Up-sampling 2 256 256 v
3 Convolution 3 1 384 128

Convolution 3 1 128 128

Up-sampling 2 128 128 v
4 Convolution 3 1 192 64

Convolution 3 1 64 64

Convolution 3 1 64 2

maps need to be restored to the same spatial resolution as
the input image for further pixel classification. Here, if
our forgery output block is built only on a series of up-
sampling layers, the accuracy of the prediction will be
restricted by the feature map from the second block. This
is because the up-sampling operation can not generate
more semantic information and may even lose the details
about the inpainted regions.

As we know, the low-level features usually refer to
details in the image, such as edge, corner, color, and gra-
dients, which can be obtained by convolutional layer, SIFT
[41], or HOG [42]. As for the high-level features, they are
built on low-level features to detect objects and shapes in
the image. Thus, the fusion of low-level and high-level fea-
tures can enrich more detailed semantic information of
high-level feature maps. It also can take full advantage of
the enhanced features to effectively and precisely predict
inpainted regions. For this, we introduce the decoder
structure of [38], which integrates low-level and high-level
features to improve the spatial resolution of feature maps.
The forgery output block is shown in Fig. 2. The feature
concatenation between the two blocks occurs in steps 1, 3,
and 4 from bottom to top. We express this feature concate-
nation as follows:

yl _ $1l_1 @.’1}21_1, (3)

where 71! is the feature maps of the [-th layer in the forgery
output block, z5' denotes the corresponding feature maps of
the I-th layer in the feature extraction block. In each step,
two successive convolutional layers are employed to extract
useful features, since there is a lot of redundant information
in low-level feature maps.

After four times of up-sampling processing, an output
result with a depth of 2 and the same size as the input
image is obtained. Eventually, each pixel of the result is
binary classified to identify the inpainted regions by the
Softmax function. More detailed settings about up-sam-
pling and convolutional layers in the forgery output
block are demonstrated in Table 3. The training proce-
dure of the model is shown in Algorithm 1.

Algorithm 1. The Training Algorithm

Input: Training data D ; training epochs M; learning rates a.
Output: Model f
1: for epoch =1 to M do

2:  for minibatch(z;,y;) C D do

3: by — I(z;) > Artifact Enhancement
4 py — P(x;) > Feature Extraction
5. gy — Q(zi, hy) > Forgery Output
6: ly «— Vy[Loss(iy, Dy, @y, Yi)]

7: end for

8 ky—ky1—a-ly >Update ky,
9: end for

4 EXPERIMENTAL EVALUATION

In this section, we conduct a series of experiments to evalu-
ate the performance of the proposed method. We first create
the synthetic datasets for training and testing. Then, the per-
formance of our method and four related inpainting detec-
tion methods are compared on the testing datasets. In
addition, we evaluate the robustness of the proposed
method against JPEG compression, rotation, and scaling.

4.1 Experimental Setup

Training Datasets. To train the model, we randomly select
50000 different images with fixed size 256 x256 from the Pla-
ces [43] database to generate synthetic inpainted images
with corresponding ground-truth masks. The Places con-
tains 10 million images, including more than 400 different
types of scene environments. We first generate missing
regions in these images, where these regions are located in
the center of images, and the tampered areas occupied 10%
to 12% of the whole image. Considering the randomness of
the data, the shapes of the missing regions are random,
including rectangles, circles, irregular shapes, etc. Several
examples are presented in Fig. 5. Then, the exemplar-based
inpainting method [6] is introduced to repair the missing
regions for generating the training dataset. The inpainted
images are divided into two subsets: 48000 instances with
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g

Fig. 3. The sample images for the missing regions (marked in white) with
the regular and irregular shapes.

corresponding ground-truth masks are exploited for train-
ing our CNN and the left 2000 are served as validation.
Additionally, to obtain better results, we perform other
image processing operations, which include resizing and
flipping. At last, the images and labels are fed to the model
for training.

Testing Datasets. In order to test the localization perfor-
mance of the proposed model, we create additional testing
datasets from four databases. We choose 300 images ran-
domly from Places [43], ImageNet [44], and CelebA [45]
databases respectively to generate inpainted images. Note
that there is no intersection between the testing datasets
and training datasets. There are a total of 900 inpainted
images with corresponding ground-truth masks in the test-
ing datasets. We crop these images from the center to gener-
ate 256x256 images and apply different painting methods
to repair these images separately to generate different data-
sets. To better test the performance, the tampered locations
and shapes in the images are random. The testing images
possess four different tampering ratios: 5 %, 10 %, 15 %, and
20 %. The following two datasets are used for performance
evaluation:

o  Exemplar-Based Inpainting Dataset. The dataset con-
tains 900 inpainted images with corresponding tam-
pering masks generated by the exemplar-based
inpainting algorithm [6].

o Diffusion-Based Inpainting Dataset. In this dataset, we
apply the diffusion-based inpainting method [1] to
generate testing images.

Implementation Details. The proposed network for local-
ization is implemented in the TensorFlow deep learning
framework [46]. In all of our experiments, the Adam opti-
mizer [47] with 1x107* initial learning rate is set to calcu-
late network parameters. The learning rate will decrease
every epoch by 8%. Moreover, in all convolutional layers,
the kernel weights are initialized with variance scaling
initializer. We train the whole network for 30 epochs and
set the batch size as 8 to improve the training speed. The
model achieves its optimal localization when the verifica-
tion loss value converges to the minimum. After training,
we save the best parameters of the model for testing. We
carry out all the experiments on an Nvidia RTX 3080
GPU server.

Performance Metrics. Since image forgery localization is a
pixel-level binary classification problem, we evaluated the
performance of the proposed and existing methods by using
Intersection over Union (IoU), Fl-score, precision, and
recall.

Comparative Methods. We compared the proposed method
with four existing inpainting localization methods.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on Octo

e LDI [24]. A method was proposed to discriminate
the tampered regions altered by diffusion-based
inpainting techniques.

e Patch-CNN [30]. A method was proposed to locate
the inpainted regions altered by exemplar-based
inpainting techniques.

e HP-FCN [36]. A method was proposed for the locali-
zation of deep inpainting techniques by using a
high-pass fully convolutional network.

e IML-PS [48]. A method was proposed to accomplish
the task of tampering localization by focusing on the
detection of commonly used editing tools and opera-
tions in Photoshop.

4.2 Study of Inpainted Regions

In this part, we discuss the differences between inpainted
and pristine regions, we convert the gray-scale image into
the frequency domain through a fast Fourier transform

H-1W-1

— Z Z f(i,j)€_2jn<U'i/H+vj/W)7 (4)

i=0 =0

where f(i, j) denotes the value in spatial domain with coor-
dinate (z,7), € [0,H —1] and je€ [0,W —1], and F(u,v)
refers to the Fourier coefficient of f(i,j). Then, we calculate
the 2D power spectrum of the frequency coefficient

P(u,v) = |F(u, 0)[". ®)

At last, we derive the azimuthally averaged 1D power
spectrum [49] from the Fourier power spectrum for the con-
venience of observation. The radial average power spec-
trum (RAPS) is a direction-independent average power,
which provides a very convenient method to interpret the
energy spectrum.

To analyze the difference between the inpainted image
and the original image, we randomly select 250 images
from the Places database [43] to create inpainted images.
These images were operated with the approaches [6] and
[1], respectively, where the tampered areas are irregular
and the tampering ratio is 20%. Meanwhile, the correspond-
ing 250 authentic images are exploited for comparison. We
calculate the RAPS of the two groups of images respectively
and then compute the statistic measures (mean and stan-
dard deviation) of RAPS. We begin our analysis from Figs. 4
and 5. In Figs. 4f and 5f, the statistics of RAPS for inpainted
and pristine images without high-pass filtering are shown,
and the others (Figs. 3a—e and 4a-e) show the statistics of
RAPS for the same images with high-pass filtering. Notice
that, the color area in the figure refers to the standard devia-
tion, which reflects the degree of dispersion between indi-
viduals in the group, and the line in the color area
represents the mean value. We can observe that the
inpainted image and the original image have similar RAPS
when there is no high-pass filtering, while the two groups
of images with filtering operation have different RAPS. We
selected 4 SRM kernels from [31], and 1 Laplacian kernel
according to the magnitude of statistical difference in
RAPS. From Figs. 4a and 5a, it can be found that the

images Erocessed by the Laplacian kernel are significantly
er 10,2023 at 14:21:09 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. The statistics of RAPS for inpainted/untampered images with/without high-pass filtering of different kernels, where the inpainted images are
generated by the exemplar-based inpainting method [6].
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Fig. 5. The statistics of RAPS for inpainted/untampered images with/without high-pass filtering of different kernels, where the inpainted images are
generated by the diffusion-based inpainting method [1].

different in RAPS. This shows that the Laplacian kernel
has the ability to expose exemplar-based inconsistencies
and diffusion-based inpainting inconsistencies. At the
same time, it suggests that high-pass filtering is helpful to
expose inpainting artifacts. The kernels of high-pass filter-
ing are shown in Fig. 6.

Furthermore, we also experimentally validate the design
of kernels. It can be seen from Table 4 that the greater the
difference between the kernels in RAPS, the more helpful it

Fig. 6. The five filter kernels used to enhance inpainting features. There
are the Laplacian, Spam12h, Spam12y, Spam11, and Spam14v kernel
from left to right.

is to improve the model performance. The performance
improvement of the fusion of five kernels is the best. This
may be due to the fusion of kernels increasing the nonlinear

TABLE 4

F1-Score (%) for Different Kernel Settings

Kernel Settings Exemplar-based Diffusion-based
dataset dataset
F1 F1
Laplacian 93.84 86.08
Spam12h 94.56 83.75
Spam12v 94.92 84.79
Spam11 95.21 82.67
Spam14v 92.95 81.78
No kernel 91.92 80.07
Fusion 96.95 89.49
Learnable kernels 97.92 85.27
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TABLE 5
Localization Results (%) for the Methods With/Without Artifact Enhancement Block

Methods With enhancement Without enhancement

F1 IoU Precision Recall F1 IoU Precision Recall
Patch-CNN [30] 88.28 80.13 80.82 98.58 86.23 77.08 78.10 97.90
HP-FCN [36] 93.86 89.62 93.17 94.80 93.14 88.02 92.66 93.94
IML-PS [48] 96.02 90.55 96.01 96.17 95.24 91.50 94.69 96.06
Proposed 96.95 94.40 96.79 97.20 95.87 92.35 95.42 96.33

fitting power of the model. However, increasing the number
of kernels will also greatly increase the training time.
Thoughtfully, we finally chose these filter kernels to train
our model. In addition, we also explore the impact of train-
able filter kernels on the performance of model. From
Table 4, one can see that although learnable kernels can
gain model performance on the exemplar-based dataset,
they are not satisfactory on the diffusion-based dataset.
Since we pay more attention to the generalization ability of
the model to unknown inpainting algorithms, the filter ker-
nels are set as non-learnable.

4.3 Ablation Analysis

The key design of the network architecture has a great influ-
ence on the overall performance. Before conducting com-
parative experiments, we perform an ablation analysis to
validate the effectiveness of our design choices. We examine
the impact of different designs through three sets of experi-
ments, i.e., i) the use of artifact enhancement block, ii) the
type of feature extractor, iii) the concatenation of features
from various steps, and iv) the training loss functions. In
these experiments, we utilize the same datasets for training
and testing. The average Fl-score, IoU, recall, and precision
are reported over the testing datasets.

Effect of Artifact Enhancement Block. In this part, we assess
the performance gains achieved through using the artifact
enhancement block as the first block. To this goal, we first
remove the artifact enhancement block from our model and
then retrain the model. Experimental results obtained on
the testing instances are shown in Table 5. It can be found
that the performance of our model without enhanced arti-
facts decreases compared with the model with enhanced
artifacts. Obviously, the artifact enhancement block can
effectively improve the performance of our model. More-
over, in order to verify whether this block works for another
model, we adopt it to the models in Patch-CNN, HP-FCN,
and IML-PS. From Table 5, one can know that the designed
artifact enhancement block can effectively improve the pre-
diction performance of all methods.

TABLE 6
Localization Results (%) for Different Feature
Extraction Networks

Feature extractor F1 IoU Precision Recall
MobileNets [51] 90.16 84.65 92.77 90.56
ResNet [50] 94.96 90.74 94.24 95.83
VGGNet [37] 96.95 94.40 96.79 97.20

Feature Extractor. In this subsection, we discuss the
impact of three different backbone networks, ResNet [50],
MobileNets [51], and VGGNet [37], as feature extractor. To
this end, we remove the fully connected layers of the three net-
works and then fine-tune these models to configure the artifact
enhancement and forgery output blocks. From the results in
Table 6, we can observe that the performance of VGGNet per-
forms better than others.

Feature Concatenation. The forgery output block fuses
the high-level feature maps with the low-level feature
maps obtained by the feature extractor. We now explore
the effect of different concatenate layers on the network
performance. Note that the feature concatenation is per-
formed after up-sampling, and the forgery output block
has a total of 4 steps for up-sampling and feature concat-
enation. Table 7 illustrates the experimental results of
feature fusion at different stages of the forgery output
block. The results suggest that the model achieves the
best performance when the feature fusion occurs in the
first, third, and fourth steps. The artifact enhancement
block can provide more representative features for the
feature extractor and forgery output.

Loss Functions. The loss function can guide the network
to optimize the parameters. Here, we investigate the
impact of different loss functions on model performance.
From the results of Table 8, we can find that the standard
cross entropy loss achieves the best Fl-score, precision,
and IoU. The weighted cross entropy loss obtains the

TABLE 7
Localization Results (%) for Feature Concatenation in
Different Steps

Stepl Step2 Step3 Step4 Fl1  IoU Precision Recall

94.87 92.04 9577 9451

v 94.01 91.65 94.07 94.82
v 95.57 9226  96.07 9549

v 9490 91.81 9486  94.56

v 9601 9375 9584  96.85

v v 95.57 92.05 96.83  94.60
v v 4 96.24 93.19 9626  96.37
v 4 v 9582 9250 9722  94.65
v v v v 9584 9256 9673  95.23
v v 95.78 9237 9580 96.21
v v vV 9695 9440 96.79  97.20
v v 9562 9233 9557 9590
v 4 95.74 9238 9568  96.03

v v v 9553 9206 9580 95.59

v v 9598 9270 9537 96.74

v v 9612 9347 96.04 96.85
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Fig. 7. Examples from the testing datasets, in which the tampered images in row #1—#4 are operated by the exemplar-based inpainting method [6]
and the tampered images in row #5—#8 are operated by the diffusion-based inpainting method [1].

highest recall but gets lower precision and IoU. The focal
loss achieves slightly lower performance scores than the
standard cross entropy loss. Therefore, training the net-
work with the Focal loss can achieve good localization per-
formance overall.

4.4 Performance for Exemplar-Based Inpainting
To be fair, we retrain the models with the same training

datasets. The default parameter values provided in Patch-
CNN, HP-FCN, and IML-PS are used to train the model.

From Table 9, one can observe that the Fl-scores of LDI,
Patch-CNN, HP-FCN, IML-PS, and our method are 13.71%,
86.23%, 93.14%, 95.24%, and 96.95%, respectively. Appar-
ently, LDI, which was designed to locate the tampered
regions of diffusion-based inpainting, failed for localization
of exemplar-based inpainting. This phenomenon could be
attributed to the fact that the exemplar-based inpainting
finds similar pixels in the image to fill the missing area,
which is different from the diffusion-based algorithm.
Although the Fl-score (95.24%) achieved by IML-PS is
1.71% lower than our approach, the performance of IML-PS
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Fig. 9. The F1-scores of different methods for various inpainting ratios
on the diffusion-based inpainting dataset.

subjects to a large decline on unknown inpainting datasets
(see Sections 4.5 and 4.6). It can be concluded that the
proposed model outperforms other comparative methods
overall.

Fig. 7 exhibits several localization examples of different
approaches. Intuitively, the localization results of Patch-
CNN and HP-FCN are relatively rough and blurred, which
cannot fulfill the accuracy requirements. The possible rea-
son is that these methods perform up-sampling operations
in the networks directly after the feature extraction, result-
ing in the loss of too many details. Furthermore, Patch-
CNN, HP-FCN, and IML-PS tend to misjudge unmodified
pixels as tampered pixels. This is probably due to the lack
of an effective artifact enhancement module in their net-
work, which makes the network unable to accurately iden-
tify the tampered pixels. Compared with these models,
the proposed method can effectively discriminate the
tampered regions and generate more precise localization
results.

In addition, we evaluate the performance on inpainted
images with tampering rates of 5%, 10%, 15%, and 20%
respectively. From Fig. 8, we can observe that the average
Fl-scores of the proposed method achieve the best. As for
the LDI, the results are still unavailable. With the reduction
of the inpainted region, the proposed method has the lowest
Fl1-score of 95.55%, which is 1.92% higher than IML-PS. The
possible reason is that our network fuses the features of
the feature extractor during up-sampling, which can add
more details about the inpainted regions. Therefore, our
network still achieves impressive and stable results con-
cerning different inpainted areas.

TABLE 8
Localization Results (%) for Different Loss Functions
F1 IoU Precision Recall
Focal loss 96.50 93.63 96.28 96.85
Standard cross entropy loss  96.95 94.40 96.79 97.20
Weighted cross entropy loss 9536 91.63  92.16  99.25
TABLE 9

Localization Results (%) of Different Methods on the
Exemplar-Based Inpainting Dataset

F1 IoU Precision Recall
LDI [24] 13.71 11.92 12.40 22.20
Patch-CNN [30] 86.23 77.08 78.10 97.90
HP-FCN [36] 93.14 88.02 92.66 93.94
IML-PS [48] 95.24 91.50 94.69 96.06
Proposed 96.95 94.40 96.79 97.20
TABLE 10

Localization Results (%) of Different Methods on the
Diffusion-Based Inpainting Dataset

F1 IoU Precision Recall
LDI [24] 22.51 13.55 14.57 70.89
Patch-CNN [30] 55.78 42.75 66.32 59.62
HP-FCN [36] 62.93 79.44 83.88 59.44
IML-PS [48] 75.94 67.94 87.59 74.19
Proposed 89.49 84.04 92.37 90.18

4.5 Performance for Diffusion-Based Inpainting

In previous experiments, we take the exemplar-based
inpainting method as an example for evaluations. In this
experiment, we use the diffusion-based inpainting algo-
rithm [1] to create the testing datasets for assessing the gen-
eral detection ability against traditional inpainting forgery.
Although the algorithm [1] was released earlier, it has been
included in the OpenCV library as a default inpainting algo-
rithm. The details of data generation are the same as in
previous experiments. We also conduct comparative experi-
ments with four competing methods [24], [30], [36], [48].
From Table 10, one can note that all methods are capable of
identifying the diffusion-based inpainted regions. The pro-
posed approach achieves the best Fl-score, IoU, precision,
and recall, which are 13.55%, 16.1%, 4.78%, and 15.99%
higher than the second-best one (IML-PS), respectively. The
LDI performed the worst, with an average score of only
14.54%. This is probably because the design of LDI only con-
siders uncompressed tampered images, while most of the
testing images are JPEG compressed, resulting in poor
performance of LDI in the detection of compressed
inpainted images. Additionally, Fig. 9 suggests that as the
inpainting ratio increases from 5% to 20%, the perfor-
mance of our method does not degrade and remains opti-
mal, while the performance of other DL-based methods
degrades significantly. This is due to the poor generaliza-
tion ability of these methods for unlearned inpainting
methods. Consequently, the proposed method can also
achieve favorable performance on tampered images based
on diffusion inpainting.
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Fig. 10. The F1-score curves for different algorithms against JPEG compression, rotation, and scaling on the exemplar-based inpainting dataset.
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Fig. 11. The F1-score curves for different algorithms against JPEG compression, rotation, and scaling on the diffusion-based inpainting dataset.

4.6 Evaluation on Robustness

In this experiment, we study the robustness of our proposed
method against JPEG compression, rotation, and scaling
attacks. The corresponding post-processing operations are
performed on the inpainted images to generate testing
instances, and the previously trained models are employed
to perform a robustness evaluation. In addition, we also
assess the performance of the proposed method on
unknown painting algorithms.

Scaling. To evaluate the resistance of the five methods
against scaling, we carry out a scaling operation over the
testing instances. The pixel area relationship is applied for
sampling to enlarge the original resolution, and the cubic
interpolation in the 4x4 pixel neighborhood is applied to
shrink the resolution. Each image is scaled with a ratio from
50% to 150% by a step size of 25%. The average Fl-scores
obtained on the scaled instances are reported in Figs. 10 and
11. It can be discovered that the performance of our method
obtains the best at scaling ratios of 50%, 75%, and 100% on
the exemplar-based inpainting dataset. When the scaling
ratio = 125% and 150%, the performance degrades severely.
Furthermore, our method performs poorly on scaling
robustness tests in diffusion-based inpainted images. In
future work, we will improve the robustness of the method
against scaling processing.

Rotation. Here, we assess the performance of the five
methods on rotated images. For that, we rotate the images

by 45°, 90°, 135°, 180°, 225°, 270°, and 315° respectively.
Figs. 10 and 11 demonstrate that all solutions are robust
against rotation attacks when rotation angle = 90°, 180°, and
270°. The proposed method still achieves the best perfor-
mance on both inpainted datasets. In other cases, all meth-
ods except LDI fail to detect the rotated image. This is
because other rotations involve more challenging re-inter-
polation and re-quantization, leading to the failure of most
methods. In future work, we will try the data augmentation
to effectively mitigate this situation.

JPEG compression. As a lossy compression, JPEG com-
pression is one of the most common attacks in image detec-
tion. Note that the testing images are all in JPEG format. In
this experiment, we set the quality factor (QF) range from
85 to 100 by a step size of 5. It can be observed from Fig. 10
that the localization performance will decline as the QF
decreases. When the QF drops from 100 to 90, the average
Fl-score of our method drops by about 4% and is still
the best. However, as the QF drops to 85, the performance
drops a lot. The reason may be that the decrease of the QF
leads to the reduction of the high-frequency components of
the image, which makes it difficult for high-pass filtering to
capture tampering artifacts. Moreover, from Fig. 11 we
know that the proposed method performs best when QF =
100 and 95, but degrades a lot at QF = 90 and 85 on the diffu-
sion-based images. It is worth further optimization in the
future for this scenario.

TABLE 11
Localization Results (%) of Different Methods on the Photoshop Inpainting and DL-Based Inpainting Datasets

Methods Photoshop Inpainting DL-based Inpainting [11] DL-based Inpainting [13]

F1 ToU Precision  Recall F1 IoU Precision  Recall F1 IoU Precision Recall
LDI [24] 16.60 8.97 33.35 12.18 17.64 10.12 13.46 29.11 9.14 4.46 6.57 16.69
Patch-CNN [30] 35.16  20.00 46.80 2946 1226 5.38 14.29 10.67 023 0.12 1.75 0.13
HP-FCN [36] 4116  27.20 38.87 4644 17.89 7.17 13.71 26.37  0.00 0.00 0.00 0.00
IML-PS [48] 15.74 947 37.11 10.20 2.47 1.26 1.43 11.15 0.01 0.07 1.78 0.07
Proposed 51.74 39.69 58.61 56.54 15.65 7.33 19.53 13.55 0.00 0.00 2.15 0.00
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Performance on unknown inpainting algorithms. Consider-
ing that the tampered images may be generated by
unknown inpainting approaches in practice, we utilize the
Photoshop inpainting tool and DL-based inpainting meth-
ods [11], [13] to yield the inpainted images, where the repair
tool of Photoshop is composed of a conventional inpainting
algorithm and deep learning inpainting algorithms. From
Table 11 we can find that the proposed method achieves the
best performance on the Photoshop inpainting dataset. This
means that our model has better generalization perfor-
mance. Moreover, all methods fail on the DL-based inpaint-
ing dataset. This may be because the inpainting principles
of DL-based inpainting methods differ significantly from
those of conventional inpainting, resulting in different data
distributions in the generated images.

5 CONCLUSION

In this work, a novel feature enhancement network has been
presented for the localization of conventional inpainted
images. Our method has the distinctive ability to efficiently
locate both exemplar-based and diffusion-based inpainted
regions. Considering that the inpainting operation inevita-
bly leaves artifacts in the image, we designed an artifact
enhancement block to capture the inpainting traces. Addi-
tionally, we found that the enhanced features can be further
utilized through the concatenating operation between the
feature extractor and forgery output block. Our model bene-
fits from the artifact enhancement block and feature connec-
tion, which guide the network to learn more about
inpainting features. Through a series of experiments, we
evaluated the localization ability of the proposed method
for conventional inpainting. The results demonstrate that
the proposed method has a 1.71% higher F1-score on exem-
plar-based inpainting dataset and 13.55% higher Fl-score
on diffusion-based inpainting images than the second-best
algorithm (IML-PS). Besides, the proposed method obtained
an Fl-score 10.58% higher than IML-PS. This shows that the
proposed method has good detection capability for
unknown repair algorithms.

In the future, we will further boost the robustness against
challenging post-processing, especially against re-interpola-
tion and weighting. We also intend to study a general fea-
ture enhancement block for capturing the traces of various
tampering operations.
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