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A change in neuronal-action potential can generate a magnetically induced current during the release and propagation of
intracellular ions. To better characterize the electromagnetic-induction effect, this paper presents an improved discrete Rulkov
(ID-Rulkov) neuron model by coupling a discrete model of a memristor with sine memductance into a discrete Rulkov neuron
model. The ID-Rulkov neuron model possesses infinite invariant points, and its memristor-induced stability effect is evaluated
by detecting the routes of period-doubling and Neimark-Sacker bifurcations. We investigated the memristor-induced dynamic
effects on the neuron model using bifurcation plots and firing patterns. Meanwhile, we theoretically expounded the memristor
initial-boosting mechanism of infinite coexisting patterns. The results show that the ID-Rulkov neuron model can realize diverse
neuron firing patterns and produce hyperchaotic attractors that are nondestructively boosted by the initial value of the memristor,
indicating that the introduced memristor greatly benefits the original neuron model. The hyperchaotic attractors initially boosted by the
memristor were verified by hardware experiments based on a hardware platform. In addition, pseudorandom number generators are
designed using the ID-Rulkov neuron model, and their high randomness is demonstrated based onstrict test results.
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1 Introduction

Generally, neuronal electrical activity arises from high-di-
mensional dynamics of nonlinear processes [1]. These non-
linear processes cause generations and interactions of ionic
currents to move in membrane channels [2]. To mathemati-
cally characterize these electrical activities, a number of
theoretical neuron models that involve various nonlinearities
were successively proposed in the past few decades. The
Hodgkin-Huxley [2] and Morris-Lecar [3] models are two
well-known neuron models that are based on the ion chan-
nels of biological neurons. These ion channels have been
verified to be well simulated using memristors [3,4]. Owing
to their nonlinearity and nonvolatility [5], memristors can be

used to mimic neural synapses [6] or exhibit electromagnetic
induction [7] during the interactions of extracellular and
intracellular ions. In other words, when neuronal electrical
activities are triggered, biophysical effects can be reliably
demonstrated by introducing memristors into the neuron
models.
Biological neurons can be stimulated to demonstrate a

variety of firing patterns, and further cooperation among
neurons is critical to induce mode transition and regulation of
body gaits [2]. Most nonlinear circuits can be specially de-
signed to reproduce similar dynamical properties in the
membrane potential of biological neurons, and further in-
volvement of specific electric components such as memris-
tors, Josephson junctions, thermistors, and piezoelectric
ceramics in the branch circuit can enhance the possible
biophysical function of a neural circuit [5], which is devel-
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oped from known nonlinear circuits. As a result, each
functional neural circuit can be considered a biological
neuron, and these memristive, piezoelectric, and thermo-
sensitive neural circuits can be designated as neuron-based
neuromorphic circuits, which can encode and process phy-
sical signals as artificial and biological neurons [8].
The physical attributes (charge and flux) of a memristor

enable it to become a special nonlinear component with an
inherent state in the voltage-current domain [4]. A flux-
controlled memristor introduces the effect of resistance and
magnetic field, an inherent state that predicates its memory
ability associated with the intrinsic memory characteristic of
a magnetic field. Thus, memristive nonlinearity involves an
inherent state that introduces a physical effect, which is
different from conventional nonlinearity [9]. Owing to their
unique nonlinearity, memristors have been broadly used in
neuron-based neuromorphic circuits, and their dynamic de-
pendence on the initial value of a memristive variable,
known as the memristive effect, has attracted great attention
[10,11]. By applying a controllable mask process, a parallel
dynamic memristor-based reservoir computing system was
reported in [12], which achieved highly efficient computing
to process temporal signals. Finite-time stabilization of
memristor-based inertial neural networks with time-varying
delays was investigated in [13] using a novel reliable control
strategy. A memristor-based neural circuit was designed by
simulating the short-term facilitation and long-term po-
tentiation to demonstrate the neurochemical learning and
memory foundations in [14]. Furthermore, Kumar et al. [15]
showed that the Hopfield computing network could more
efficiently and accurately converge to a solution when in-
corporated with memristors. Lin et al. [16] programmed
parallel operation kernels into a three-dimensional (3D) ar-
ray by constructing a 3D memristor circuit and implemented
a complex neural network with software-comparable accu-
racy in recognizing handwritten digits. Bilotta et al. [17]
confirmed that when memristors were embodied, a cellular
neural network could achieve better performance in pattern
recognition and image processing. Consequently, memristors
have become an important component of neuron-based
neuromorphic circuits and have received great attention.
Neuronal action potentials can trigger electromagnetic

induction [18]. When neuronal electrical activities are as-
sociated with electromagnetic induction, a memristor-based
neuron model has been presented to describe the electro-
magnetic-induction effect [19]. Recently, several novel
memristive neuron models have been developed by coupling
memristors with existing neuron models, and memristor ef-
fects with complex firing patterns have been revealed
[20,21]. However, most previous studies mainly focused on
continuous models of memristive neurons. Establishing a
memristor-based discrete neuron model and studying its
memristive effect on complex firing patterns are challenging.

More lately, a discrete model of memristor has been pre-
sented by discretizing a continuous model of memristor [22];
several simple memristive maps have been constructed, and
their complex dynamical behaviors were disclosed in terms
of hyperchaotic oscillation, coexisting attractors, and period-
doubling or quasiperiodic bifurcation [23,24]. Encouraged
by this strategy, we propose a discrete memristive Rulkov
neuron model [11] using a discrete memristor and a two-
dimensional (2D) neuron map [25] for the first time. Thus,
the memristor-induced electromagnetic-induction effects
have been simulated in the proposed neuron model, and the
actual electrical activities of biological neurons have been
represented when involved with the biophysical memory
effect.
Some of the previous work preferred to mimic neural ac-

tivities using continuous dynamic equations, and a con-
tinuous memristor was involved in estimating the effect of
electromagnetic induction and radiation [18–21]. In fact,
spiking and bursting neurons trigger firing patterns at certain
intervals, and multiple firing modes in electrical activities are
developed rather than kept in continuous firing patterns. In
the presence of external electric stimuli and electromagnetic
fields, continuous firing activities can be suppressed at cer-
tain intervals, and the inner electromagnetic field may re-
main invariant within these intervals. Therefore, a discrete
neuron model coupled with a discrete memristor term can be
more suitably employed to approach the physical process of
electrical activities [11].
The Rulkov neuron model in [26,27] is a simple 2D map

that generates chaotic bursting similar to biological neurons.
Here, the nonlinearity used is smooth and continuous,
whereas that used in [25] was nonsmooth and discontinuous.
To achieve the memristor initial-boosting behavior in [23],
an improved discrete Rulkov (ID-Rulkov) neuron model is
developed by coupling a memristor with a sine memductance
used in [23] into a simple 2D map model presented in
[26,27]. Because of the introduction of the memristor with
periodic memductance, the constructed ID-Rulkov neuron
model can generate diverse firing patterns of neurons and
produce hyperchaotic attractors that are nondestructively
boosted by the memristor initial value [28]. Notably, such
memristor initial-boosting behavior has not been reported in
existing discrete neuron models. In particular, because the
ID-Rulkov neuron model exhibits better performance than
many existing chaotic maps, its generated hyperchaotic se-
quences are more suitable for various chaos-based industrial
applications [23].
The main contributions and novelty of the present study

are outlined as follows. (1) To better describe the electro-
magnetic-induction effect, we propose an ID-Rulkov neuron
model with infinite invariant points and evaluate the mem-
ristor-induced stability effects by detecting the period-dou-
bling and Neimark-Sacker bifurcations. (2) We theoretically
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expound the memristor initial-boosting mechanism of in-
finite coexisting patterns and numerically investigate the
memristor-induced dynamical effects on the ID-Rulkov
neuron model. (3) We design pseudorandom number gen-
erators (PRNGs) using the ID-Rulkov neuron model. The
pseudo-random numbers (PRNs) feature high randomness
and are suitable for many chaos-based applications.

2 Discrete modeling for neurons considering
electromagnetic induction

As demonstrated by neurobiological experiments and nu-
merical simulations, an individual neuron can show irregular
bursts. This study provides an example to show the elec-
tromagnetic-induction effects of hyperchaotic dynamics of
bursts on a chaotically bursting cell when the electro-
magnetic induction triggered by action potential is con-
sidered.

2.1 Proposed ID-Rulkov neuron model

A memristor is a nonlinear circuit element with an inherent
state. It is different from conventional nonlinear circuit ele-
ments [9]. By referring to the memristor discrete modeling
strategy in [22,23], a discrete memristor with sine mem-
ductance can be developed and expressed as

i v
v

= sin( ),
= + , (1)n n n

n n n+1

where n represents the iteration associated with time, vari-
ables vn, in, and φn stand for the sampling values of v(t), i(t),
and φ(t) at the nth iteration, respectively, and ε is a positive
constant representing the scale factor of time. When a dis-
crete sinusoidal voltage is applied to the memristor, the
fingerprints of the pinched hysteresis loops, the memory
effect related to the initial value, and local activity can be
demonstrated by numerical simulations [23]. We note that
the memductance in eq. (1) is periodically multivalued,
whereas that in [11] is single-valued with a threshold. In
addition, the discrete memristor model given in eq. (1) is an
ideal memristor model [4], which is intrinsically distinct
from physical memristive devices [29,30].
The Rulkov model presented in [26] is a simple 2-D map

and is established under a dynamical assumption. It is dif-
ferent from the Hodgkin-Huxley [2], Morris-Lecar [3], and
Chay [31] models derived from biophysical mechanisms.
The Rulkov model can generate chaotic bursting behavior
that is similar to that of biological neurons. It can be ex-
pressed as

( )x x y
y y x

= / 1 + + ,

= ,
(2)n n n
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where xn is the fast dynamical variable that denotes the
neuronal-action potential, yn is the slow variable representing
the recovery variable, α and σ are positive control para-
meters, and β is the external influence. We need to note that
the nonlinearity F x x( , ) = 1 / (1 + )n n

2 used in eq. (2) is
smooth and continuous, whereas that used in [25] is non-
smooth and discontinuous. The smooth and continuous
nonlinearity makes feasible stability analysis of the invariant
point of the discrete map.
Changes in the neuronal-action potential during the release

and propagation of intracellular ions can generate a magne-
tically induced current. To better characterize the electro-
magnetic-induction effect, an ID-Rulkov neuron model can
be built by coupling the memristor presented in eq. (1) to the
original discrete Rulkov neuron model given in eq. (2). The
structure of the proposed ID-Rulkov neuron model is shown
in Figure 1 in which F(xn, α) and σ are the nonlinear term and
control parameter used in eq. (2), respectively, and k is the
memristor gain. The ID-Rulkov neuron model can be easily
derived using such a structure, and its mathematical re-
presentation is expressed as

x x y kx
y y x

x

= / (1 + ) + + sin( ),
= ,
= + .

(3)
n n n n n
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n n n

+1
2
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We note that the external influence should be set to β = 0;
otherwise, the aforementioned discrete model tends to have
unbounded behavior. In particular, kxnsin(φn) estimates the
equivalent induction current from the memristive channel.
The biophysical mechanism is considered an electro-
magnetic-induction effect in which intracellular and extra-
cellular ions are pumped and propagated to generate time-
varying channel current and magnetic field. As a result, this
induction current can alter the excitability of the neuron as
external stimuli. The typical values and variable ranges of
each parameter in the ID-Rulkov neuron model given in
eq. (3) are listed in Table 1 for easy reference.
From a biological standpoint, the media and cell can be

successively magnetized and polarized in the presence of an
external electromagnetic field, and continuous fluctuations

Figure 1 (Color online) Structure of the ID-Rulkov neuron model.

3Bao H, et al. Sci China Tech Sci



of the electromagnetic field may induce a periodic induced
current in the flexible media [8,32]. In particular, periodic
firing can modulate the propagation, pumping, and dis-
tribution of intracellular ions in the cell. Thus, a memristor
with periodic memductance can be applied to simulate the
polarization characteristics.

2.2 Proposed ID-Rulkov neuron model

The stability of a discrete dynamical system can be char-
acterized by its invariant point. An invariant point of a dis-
crete map is defined as the point that maps to itself in its
domain [23]. Thus, the invariant point of the ID-Rulkov
neuron model given in eq. (3) represents the solutions of the
following equations:

X X Y kX
Y Y X

X

= / (1 + ) + + sin( ),
= ,
= + .

(4)

2

According to the second or third equation in eq. (4), X = 0.
Substituting X = 0 into the first equation in eq. (4) yields Y =
−α. Because X = 0, the first equation in eq. (4) is true for any
real constant of . Hence, the invariant point of the ID-
Rulkov neuron model can be obtained from eq. (4) as
P X Y µ= ( , , ) = (0, , ), (5)
where μ is a constant that depends on the initial position on
the φ axis. In other words, any point on the φ axis is an
invariant point, which indicates that the ID-Rulkov neuron
model in eq. (3) has infinite invariant points in the φ axis.
An invariant point has a stable or unstable state, and its

stability is reflected by its Jacobian eigenvalues. The Jaco-
bian of the ID-Rulkov neuron model at P = (0, −α, μ) is
calculated as

k µ
J =

sin 1 0
1 0
0 1

. (6)S

The eigenvalues of the Jacobian in eq. (6) are solved as

M M M

= 1, 

= 0.5 + 0.5 ± 0.25(1 + ) ,
(7)

1

2,3
2

whereM = ksinμ. Here, the newly introduced parameterM is
determined by gain k and initial value μ, which are both
associated with the memristor. For convenience, we define
parameter M as a memristor parameter. Thus, the Jacobian
eigenvalues are closely dependent on memristor parameter
M and positive parameter σ but completely independent of
positive scale factor ε.
Obviously, if |λ2| < 1 and |λ3| < 1, invariant point P is

critically stable because |λ1| = 1; otherwise, it is unstable. We
denote memristor parameter M as a variable parameter and
specify the representative parameter setting as σ = 0.2. From
eq. (7), we obtain the critical stable interval of M as

M1.1 < < 0.8. (8)
WhenM increases within [−1.2, −1] and [0.7, 0.9], the loci

of the three Jacobian eigenvalues in eq. (7) are shown in
Figure 2(a) and (b), respectively. Therefore, λ1 is a critical
root and is always on the unit circle. However, λ2 and λ3 can
be either inside or outside the unit circle depending on M.
When M increases from −1.2 to −1, λ2 is located inside the
unit circle, but λ3 crosses the unit circle from −1, leading to
the occurrence of period-doubling bifurcation at M = −1.1.
When M increases from 0.7 to 0.9, complex conjugate roots
λ2 and λ3 simultaneously go through the unit circle from the
first and fourth quadrants, respectively, resulting in the ap-
pearance of Neimark-Sacker bifurcation at M = 0.8.
In summary, if memristor parameter M is located in the

region given by eq. (8), the ID-Rulkov neuron model is
critically stable. When M changes, the ID-Rulkov neuron
model follows the routes of period-doubling and Neimark-
Sacker bifurcations. Because |λ1| = 1, the memristor-induced
stability effect on the ID-Rulkov neuron model cannot be
determined from eq. (8). However, it can be effectively de-
tected using numerical simulations.

3 Memristor-induced dynamic effects

This section presents our investigation of the memristor-in-
duced dynamical effects on the ID-Rulkov model with
variable memristor parameters k and φ0. The other para-
meters are fixed at α = 5, σ = 0.2, ε = 0.3, and initial values
(x0, y0) = (0, 0). The mixed 2D bifurcation diagram is illu-

Table 1 Typical values and variable ranges of each parameter in eq. (3)

Parameters Physical meanings Values

α Parameter in the
original model 5

σ Parameter in the
original model 0.2

ε Scale factor in the
memristor 0.3

k Memristor gain
(variable) [−1.6, 1.6]

μ(φ0)
Memristor initial value

(variable) [−π, π] or [−4π, 3π]

Figure 2 (Color online) Loci of three Jacobian eigenvalues with the in-
crease in M at fixed σ = 0.2. (a) M∈ [−1.2, −1]; (b) M∈ [0.7, 0.9].
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strated by calculating the spike periodicities of action po-
tential x per cycle, and the maximal Lyapunov exponent
(MLE) plot is measured using Wolf’s Jacobian-based
method [23].

3.1 Memristor parameter-related dynamics

The mixed 2D bifurcation diagram can be used to describe
the memristor parameter-related dynamical distributions in
the parameter plane. When the memristor parameters are
varied within φ0 ∈ [−π, π] and k ∈ [−1.6, 1.6], the mixed 2D
bifurcation diagram in the φ0-k plane can be generated, as
shown in Figure 3(a). The parameter planes that emerge from
the orbits are drawn by different colors according to different
spike periodicities. Yellow represents hyperchaos (denoted
as HC), brown represents chaos (denoted as CH), pink re-
presents multiple periods with cycle numbers greater than
eight (denoted as MP), and the other colors represent Period-
1 to Period-8, which are denoted as P1 to P8, respectively.
We can observe that the color-painted regions in Figure 3(a)
mainly consist of brown (Chaos), black (Period-2), yellow
(Hyperchaos), and blue (Period-3). In addition, we can ob-
serve numerous periodic windows with tangent bifurcations
and routes to chaos with period-doubling bifurcations in the
parameter plane.
The mixed 2-D MLE plot can also be used to illustrate the

memristor parameter-related dynamical distributions in the
parameter plane. The mixed 2DMLE plot in the φ0-k plane is
shown in Figure 3(b) using the same memristor parameter
regions shown in Figure 3(a). In the same manner, the
parameter planes that emerge from the orbits are drawn by
different colors according to the different MLE values. The
red-yellow color denotes chaos due to positive MLE, and the
black color denotes the period labeled due to zero MLE.
Comparison of Figure 3(a) and (b) reveals that the dynamic
distributions described by different measures are completely
consistent. Therefore, the numerical results in Figure 3 show
that the coupled memristor can induce complex dynamical
effects on the ID-Rulkov neuron model.
Subsequently, we take six sets of memristor parameters

from the different colorful regions in Figure 3 to demonstrate
the firing patterns generated from the ID-Rulkov neuron
model. Figure 4 shows the iterative sequences of variables x,
y, and φ for different sets of memristor parameters. From the
photographs shown in Figure 4, various periodic, chaotic,
and hyperchaotic spiking/bursting firing patterns are re-
vealed in the ID-Rulkov neuron model. Three Lyapunov
exponents (LEs) of these firing patterns can be calculated,
and the results are listed in Table 2. We note that no positive
LEs exist for the periodic firing pattern, one positive LE for
the chaotic firing pattern, and two positive LEs for the hy-
perchaotic firing pattern. Consequently, the ID-Rulkov
neuron model exhibits complex dynamics, and its firing

patterns closely rely on its memristor parameters.
According to the memristor parameter-related dynamical

distributions shown in Figure 3, we can obtain the memristor
parameter-related LE spectra and bifurcation diagrams,
which are shown in Figure 5. We only partially display the
third LE spectra for better visual effects.
First, the memristor initial value is fixed at φ0 = 0, and the

memristor gain is adjusted within k ∈ [−1.6, 1.6]. The top of
Figure 5(a) shows the LE spectra, whereas the bottom of
Figure 5(a) shows the bifurcation diagram of action potential
x. We can observe that with the evolution of k, the ID-Rulkov
model undergoes periodic spiking with zero MLE, hy-
perchaotic spiking with the first two positive LEs, and
chaotic spiking with one positive LE. The hyperchaotic be-
havior is located within k ∈ [−1.135, −0.858] and k ∈
[−0.761, −0.371]. In addition, the reverse and forward peri-
od-doubling bifurcations, tangent bifurcations, and periodic
windows can be found within the evolution range of k, which
leads to the appearance of complex dynamics.
Second, the memristor gain is fixed at k = −1, and the

memristor initial value is varied within φ0 ∈ [−π, π]. The
memristor initial-value-related LE spectra (top) and bi-
furcation diagram of action potential x (bottom) are shown in
Figure 5(b), which shows that following the increase in φ0,

Figure 3 Memristor parameter-related dynamical distributions in the φ0-k
plane at fixed α = 5, σ = 0.2, ε = 0.3, and (x0, y0) = (0, 0). (a) 2D bifurcation
diagram obtained by calculating the spike periodicities per cycle; (b) 2D
MLE plot measured using Wolf’s Jacobian-based method.
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the ID-Rulkov neuron model exhibits periodic spiking with
zero MLE, hyperchaotic spiking with the first two positive
LEs, and chaotic spiking with one positive LE. The hy-
perchaotic behavior appears within k ∈ [−0.697, 1.148].
Further, the reverse and forward period-doubling bifurca-
tions, tangent bifurcations, and periodic windows can be
observed as φ0 increases from −π to π. The memristor initial-
value-related dynamical behavior indicates the coexistence
of infinite firing patterns, i.e., the emergence of extreme
multistability.

3.2 Dynamics boosted by memristor initial value

The proposed ID-Rulkov neuron model contains infinite
invariant points that are closely associated with the mem-
ristor initial value. The infinite invariant points can cause the
emergence of infinite coexisting attractors due to the mem-
ristor initial boosting.
To expound the boosting mechanism due to the memristor

initial value, the ID-Rulkov neuron model in eq. (3) can be
rewritten as

( )x x y kx x

y y x

= / 1 + + + sin + ,

= .
(9)n n n n

m

n

m

n n n

+1
2

0
=0

1

+1

We denote a linear conversion as
m= + 2 , (10)0 00

where m is an integer and φ00 is the initial value within [−π,
π] and satisfies the following condition:

x< + < . (11)
m

n

m00
=0

1

Hence, we obtain

x xsin + = sin + . (12)
m

n

m
m

n

m0
=0

1

00
=0

1

Figure 4 Memristor parameter-related firing patterns of variables x, y, and φ in the ID-Rulkov neuron model. (a) Periodic spiking at (φ0, k) = (0, 0.3); (b)
periodic bursting at (φ0, k) = (2, −0.9); (c) chaotic spiking at (φ0, k) = (−0.5, 0.3); (d) chaotic bursting at (φ0, k) = (1, −0.5); (e) hyperchaotic spiking at (φ0, k) =
(0, −1); (f) hyperchaotic bursting at (φ0, k) = (0.9, −1).

Table 2 Firing patterns and LEs of the six sets of memristor parameters

(ϕ0, k) Firing patterns (LE1, LE2, LE3)

(0, 0.3) Periodic spiking (−0.0004, −0.0921,
−0.9115)

(2, −0.9) Periodic bursting (−0.0001, −0.1935,
−0.1940)

(−0.5, 0.3) Chaotic spiking (0.4217, 0.0000,
−0.2703)

(1, −0.5) Chaotic bursting (0.3353, 0.0000,
−0.0974)

(0, −1) Hyperchaotic spiking (0.3117, 0.0398,
−0.0000)

(0.9, −1) Hyperchaotic bursting (0.3313, 0.0181,
−0.0010)
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The result shown in eq. (12) indicates that the sine mem-
ductance in eq. (1) has a cyclic property.
Therefore, the discrete map-based ID-Rulkov neuron

model in eq. (9) is cyclic at the memristor initial value φ0.
The cyclic property is confirmed by the invariance of eq. (9)
using the linear conversion in eq. (10). This result demon-
strates that the dynamics of the ID-Rulkov neuron model can
be reproduced as memristor initial value φ0 periodically
evolves with fixed 2π offset. As a result, the ID-Rulkov
neuron model can be boosted, and its firing patterns can be
boosted by the memristor initial value along the φ axis.
To demonstrate the cyclic property of the ID-Rulkov

neuron model, we use the mixed 2D bifurcation diagram to
illustrate the dynamical distributions in the parameter plane.
Memristor initial value φ0 is varied in [−4π, 3π], which
covers three full 2π cycles, and memristor gain k is varied
within [−1.6, 1.6], which is the same as that shown in
Figure 3(a). The mixed 2D bifurcation diagram in the φ0-k
plane is shown in Figure 6 using the same method shown in
Figure 3(a). We note that the painted colors and their marks
are the same as those shown in Figure 3(a). We can observe
that when the memristor initial value φ0 periodically evolves
with fixed offset 2π, the ID-Rulkov neuron model can re-
produce the complex dynamics within the main value in-
terval [−π, π] of the memristor initial value, leading to the
occurrence of memristor initial-boosting behavior.

We consider k = −0.5 and φ0 ∈ [−4π, 3π] as examples. The
memristor initial-value-related LE spectra (top) and bi-
furcation diagram of action potential x (bottom) are shown in
Figure 7. We can obviously see that the dynamical behavior
within φ0 ∈ [−3π, −π] and φ0 ∈ [π, 3π] is the same as that
within φ0 ∈ [−π, π]. The results demonstrate that the infinite
coexisting patterns can be boosted by the memristor initial
value with fixed offset 2π.
According to the results shown in Figure 7, the iteration

sequences provided by the ID-Rulkov neuron model are
boosted in their dynamic amplitudes by the memristor initial
values with period 2π. We denote the representative para-
meter and initial settings as α = 5, σ = 0.2, ε = 0.3, k = −0.5,
and (x0, y0) = (0, 0). When four sets of memristor initial
values are set to φ0 = 2lπ (l = −2, −1, 0, 1), the generated
hyperchaotic attractors are shown in Figure 8, which shows
that all hyperchaotic attractors have similar fractal structures,
and they can be controlled in the dynamic amplitudes by
boosting the memristor initial values.
The performance metrics of the memristor initial-value-

boosting hyperchaotic attractors shown in Figure 8 are
evaluated using three LEs (LE1, LE2, and LE3), spectral

Figure 5 Memristor parameter-related bifurcation behavior when the
memristor gain and memristor initial value vary in their determined re-
gions. (a) Memristor gain-related (bottom) bifurcation diagram and LE
(top) spectra at fixed φ0 = 0; (b) memristor initial-value-related (top) LE
spectra and (bottom) bifurcation diagram at fixed k = −1.

Figure 6 Memristor parameter-related dynamical distributions indicated
by 2D bifurcation diagram in the φ0-k plane when φ0 is varied in [−3π, 4π]
and k is varied in [−1.6, 1.6] for fixed α = 5, σ = 0.2, ε = 0.3, and (x0, y0) =
(0, 0).

Figure 7 Memristor initial-value-related (top) LE spectra and (bottom)
bifurcation diagram at fixed k = −0.5, which demonstrate the infinite co-
existing patterns boosted by the memristor initial value with fixed 2π offset.
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entropy (SpecEn) [33], permutation entropy (PermEn) [34],
and correlation dimension (CorDim) [35]. The calculation
results are listed in Table 3. We can observe that the hy-
perchaotic attractors contain two large positive LEs, which
indicate hyperchaos with outstanding performance metrics.
Most importantly, these hyperchaotic attractors exhibited
nearly identical performance metrics, and the slight differ-
ence is caused by numerical-simulation errors. Therefore, the
hyperchaotic attractors generated by the ID-Rulkov neuron
model can be nondestructively boosted by the initial value of
the memristor, which is applicable to various chaos-based
information-engineering applications.

3.3 Experimental verification using hardware platform

The hyperchaotic attractors shown in Figure 8 contain
iterative sequences in two dimensions. When the hyperch-
aotic sequences are used in industrial applications, we need
to acquire them from a hardware platform. Owing to sinu-
soidal and reciprocal quadratic nonlinearities, the micro-
controller-based digital circuit can more easily implement
the ID-Rulkov neuron model than the discrete component-
based analog circuit.
The hardware platform developed in [24] is directly

adopted, and it is designed based on a 32-bit microcontroller

with two digital-to-analog converters and some peripheral
circuits. According to the ID-Rulkov neuron model in
eq. (3), we program the model using the C language and
download the code to the microcontroller. The parameters
and initial values shown in Figure 8 are preloaded into the
hardware platform, and the experimental results are physi-
cally captured by an oscilloscope.
When the power supply is turned on, the developed hy-

perchaotic attractors in the two-channel mode can be syn-
chronously displayed by the oscilloscope, as shown in Figure
9. Four hyperchaotic attractors are shown to experimentally
emerge within different amplitude ranges, and they can be
nondestructively controlled by the memristor initial value
with fixed offset 2π, indicating the feasibility of the digitally
circuit-implemented platform for the ID-Rulkov neuron
model.

4 Applications in PRNG

Chaotic systems have various applications, such as in PRNG
[36]. To demonstrate the application of the ID-Rulkov neu-
ron model in PRNG, we design four PRNGs using the gen-
erated hyperchaotic sequences and measure the randomness
of the generated PRNs. We note that the hyperchaotic se-
quences are numerically generated by the ID-Rulkov neuron
model using MATLAB software.

4.1 PRNG design

PRNG can be designed to illustrate the application of the ID-
Rulkov neuron model. Let us denote hyperchaotic sequence
X = {X(1), X(2), …, X(n), …} as the hyperchaotic sequence
of the neuronal-action potential under the same parameter
and initial-value settings shown in Figure 8. New hyperch-
aotic sequence Y = {Y(1), Y(2), …, Y(n), …} within the range

Table 3 Performance metrics for the memristor initial-value-boosting
hyperchaotic attractors

ϕ0 (LE1, LE2, LE3) SpecEn PermEn CorDim

−4π (0.4476, 0.0165,
0.0000) 0.9360 4.4386 1.7582

−2π (0.4438, 0.0162,
0.0000) 0.9350 4.4241 1.7450

0 (0.4455, 0.0163,
0.0000) 0.9347 4.4334 1.7381

2π (0.4448, 0.0171,
0.0000) 0.9340 4.3915 1.7266

Figure 8 Memristor initial-boosted hyperchaotic attractors of the ID-
Rulkov neuron model for α = 5, σ = 0.2, ε = 0.3, k = −0.5, and (x0, y0) = (0,
0), which demonstrate the amplitude-controllable hyperchaos boosted by
the memristor initial value.

Figure 9 Experimentally acquired hyperchaotic attractors from the ID-
Rulkov neuron model for α = 5, σ = 0.2, ε = 0.3, k = −0.5, and (x0, y0) = (0,
0), which demonstrate the amplitude-controllable hyperchaos boosted by
the memristor initial value.
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[0,1] can be obtained by operating modulo 1 to X. Subse-
quently, each output Y(n) is converted into 52-bit binary
stream YB(n) using the IEEE 754 float standard. Thus, the
sequences from the 35th to the 42nd in each binary stream
are considered as PRNs, and they can be expressed as

P Y n= ( ) . (13)i B 35:42

Here, we consider the ID-Rulkov neuron model under two
specific memristor initial values φ0 = 0 and 2π as two ex-
amples, and the designed PRNGs are called PRNG1 and
PRNG2, respectively.

4.2 Randomness test by NIST SP800-22

The National Institute of Standards and Technology (NIST)
SP800-22 test suite [37] is utilized to measure the random-
ness of the designed PRNGs, which is a convinced random-
number test standard that contains 15 subtests. Each subtest
is designed to determine a nonrandom area within a set of
binary sequences. Significance level γ is set to measure the
statistical errors, and it is considered as 0.01. The bits of each
binary sequence should not be smaller than 106. In our ex-
periment, a set of 120 binary sequences with 106 bits is
generated by each PRNG and measured using the NIST
SP800-22 standard.
Each subtest generates a P-value for every binary se-

quence. Thus, 120 P-values are generated by each subtest,

and they can indicate the measured result from the two as-
pects of pass rate and P-valueT. The pass rate indicates how
many binary sequences have passed the subtest. The related
binary sequence can pass the test if the P-value is not smaller
than the threshold, which is 0.9628 for γ = 0.01, and 120
binary sequences according to the calculation in [37]. P-
valueT calculates the distribution of these generated P-va-
lues. It first counts the number of P-values that fall into each
of the 10 uniformly divided sub-intervals within [0,1]. Then,
a χ2 test is performed on the numbers of P-values in every
sub-interval and generates P-valueT. At P-valueT that is lar-
ger than 0.0001, the related subtest can be passed [37]. Table
4 shows the NIST SP800-22 results of the binary sequences
generated by the two PRNGs. It shows that these sequences
can obtain pass rates and P-valueTs that are all larger than the
thresholds of 0.9628 and 0.0001, which means that the ID-
Rulkov neuron model can generate highly random PRNs. To
save space, we only take the binary sequences generated by
the ID-Rulkov neuron model under two specific memristor
initial values as examples. In fact, the binary sequences
generated by this model under other memristor initial values
can also pass the test.

4.3 InfoEn evaluation

To compare the application performance of PRNs generated
by the ID-Rulkov neuron model with some existing discrete

Table 4 NIST SP800-22 results of the binary sequences generated by two PRNGs

No. Subtests

PRNG1 (ϕ0 = 0) PRNG2 (ϕ0 = 2π)

Pass rate P-valueT Pass rate P-valueT
≥ 0.9628 ≥ 0.0001 ≥ 0.9628 ≥ 0.0001

01 Freq. 0.9750 0.3242 0.9833 0.7728

02 Block Freq. 0.9917 0.2430 0.9917 0.8881

03
Cum. Sumsa) (F) 0.9750 0.8623 0.9917 0.7399

Cum. Sumsa) (R) 0.9667 0.9885 0.9833 0.8623

04 Runs 0.9917 0.5681 0.9917 0.8755

05 Longest Runs 0.9833 0.3641 1.0000 0.8043

06 Rank 0.9750 0.2645 0.9667 0.3925

07 FFT 0.9833 0.6198 0.9917 0.5681

08 Non-Ovla. Temp.a) 0.9907 0.5019 0.9900 0.4445

09 Ovla. Temp. 1.0000 0.7887 1.0000 0.7728

10 Universal 0.9917 0.4846 0.9833 0.8195

11 Appr. Entropy 1.0000 0.8881 1.0000 0.8343

12 Ran. Exc.a) 0.9852 0.4039 0.9938 0.6445

13 Ran. Exc. Var.a) 0.9920 0.4796 0.9910 0.5298

14
Serial (1st) 0.9833 0.4846 1.0000 0.4220

Serial (2nd) 0.9917 0.6718 1.0000 0.9997

15 Lin. complexity 1.0000 0.4373 0.9833 0.6718

Success No. 15/15 15/15 15/15 15/15
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systems, we generate PRNs using the ID-Rulkov neuron
model under the four specific memristor initial values listed
in Table 2 and four existing 2D chaotic systems under their
representative parameter and initial-value settings as the
source chaotic system in eq. (13). The information entropy
(InfoEn) is used to evaluate the distribution of these PRNs.
InfoEn is a well-known indicator for testing the distribu-

tion of a signal. For signal P, its InfoEn is calculated as

H P p P p P( ) = ( )log ( ), (14)
i i i=1

2
2

n

where Pi indicates the ith possible value in signal P, p(Pi)
represents the probability, and n is the bit length of each
value. Every 8 bits of PRNs are used as a value in our ex-
periment. Then, we can obviously see that the maximum
InfoEn is eight when all the possible values are equally
distributed. Larger InfoEn means more uniform distribution
of PRNs.
Table 5 lists the InfoEns of the eight PRNs with 10000-bit

lengths provided by the different chaotic systems. These
existing chaotic systems include the Hénon map [38], CFa
map with curve fixed points [39], hidden NFIamap [40], and
NEM1 quadratic map [41]. These representative parameter
and initial-value settings are set in reference to [24]. Ob-
viously, PRNs obtained from the ID-Rulkov neuron model
can obtain larger InfoEns than those from the four existing 2-
D chaotic systems, which indicates that the hyperchaotic
sequences provided by the ID-Rulkov neuron model are
more uniformly and randomly distributed. When used in
many practical applications, PRNs are required to show high
randomness. Thus, the ID-Rulkov neuron model can produce
PRNs that show better performance in these applications. In
addition, PRNs generated by the ID-Rulkov neuron model
under the four specific memristor initial values exhibit al-
most the same InfoEn, which further illustrates that the hy-
perchaotic sequences provided by the ID-Rulkov neuron
model can be nondestructively boosted by the initial value of
the memristor.

5 Conclusions

Intracellular ion pumping is random and paroxysmal, and the
electromagnetic field is variable. Meanwhile, magnetic flux
is a statistical scalar, and the transient effects are missed

when continuous models are used. Thus, the combination of
memristor and discrete map can reliably demonstrate the
biophysical effects of neurons and nervous systems. This
paper proposes an ID-Rulkov neuron model using the
aforementioned principle to better characterize the electro-
magnetic induction effect. The memristor-induced stability
effects are briefly evaluated by detecting the period-doubling
and Neimark-Sacker bifurcation routes. The memristor-in-
duced dynamical effects on the ID-Rulkov neuron model are
numerically investigated using bifurcation plots and firing
patterns, and the memristor initial-boosting mechanism of
the infinite coexisting patterns is theoretically expounded.
The results reveal that the ID-Rulkov neuron model exhibits
complex dynamics, including memristor parameter-related
bifurcation and memristor initial-boosting behavior. Its
generated hyperchaotic attractors, which are verified by
hardware experiments, can be nondestructively boosted by
the initial value of the memristor. Compared with the con-
tinuous neuron model, the ID-Rulkov neuron model gen-
erates hyperchaotic sequences with lower dimensions and
provides random numbers with higher randomness, which
can be easily implemented on a digital hardware platform.
Owing to their excellent performance, the nondestructively
boosted hyperchaotic sequences can be used in various
chaos-based applications such as image encryption [42],
PRNG [43], secure communication [44], and generative
adversarial nets [45]. This subject deserves further study.
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