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As a significant extension of classical clustering methods, ensemble clustering first generates multiple basic

clusterings and then fuses them into one consensus partition by solving a problem concerning graph par-

tition with respect to the co-association matrix. Although the collaborative cluster structure among basic

clusterings can be well discovered by ensemble clustering, most advanced ensemble clustering utilizes the

self-representation strategy with the constraint of low-rank to explore a shared consensus representation ma-

trix in multiple views. However, they still encounter two challenges: (1) high computational cost caused by

both the matrix inversion operation and singular value decomposition of large-scale square matrices; (2) less

considerable attention on high-order correlation attributed to the pursue of the two-dimensional pair-

wise relationship matrix. In this article, based on low-rank and sparse decomposition from both matrix and

tensor perspectives, we propose two novel multi-view ensemble clustering methods, which tangibly decrease

computational complexity. Specifically, our first method utilizes low-rank and sparse matrix decomposition

to learn one common co-association matrix, while our last method constructs all co-association matrices into

one third-order tensor to investigate the high-order correlation among multiple views by low-rank and sparse

tensor decomposition. We adopt the alternating direction method of multipliers to solve two convex models
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by dividing them into several subproblems with closed-form solution. Experimental results on ten real-world

datasets prove the effectiveness and efficiency of the proposed two multi-view ensemble clustering methods

by comparing them with other advanced ensemble clustering methods.

CCS Concepts: • Computing methodologies → Ensemble methods; Unsupervised learning; Spectral

methods;

Additional Key Words and Phrases: Multi-view clustering, ensemble clustering, low-rank and sparse decom-

position
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1 INTRODUCTION

As a classic unsupervised learning algorithm, clustering analysis aims to segregate groups accord-

ing to their similar characteristics and assign them into their corresponding clusters. Because of the

difficulty and high cost of acquiring labeled data, clustering has been widely used in text categoriza-

tion [11], image clustering [38], image compression [10], and video processing [45]. Till now, there

are several kinds of clustering algorithms, e.g., K-means, kernel-based clustering, graph-based clus-

tering, spectral clustering [25], and so on. Usually, each clustering algorithm has its strengths and

drawbacks. For example, it is known that the K-means method is the basic fast one among all

methods. Nevertheless, it is sensitive to the initialization of center points and noise. Although

kernel-based methods handle non-linear data perfectly, their performance highly depends on the

choice of kernel types such as Gaussian, linear, and polynomial. Thus, constructing a general clus-

tering algorithm for different kinds of datasets from the real world is challenging. Confronted

with this challenge, one naive way is to yield multiple base clusterings and fuse them into one con-

sensus base for the final clustering result. Following this idea, ensemble clustering used different

techniques such as the graph partitioning method to get a better and more consensus clustering

and has been an efficient alternative to resolve cluster structures [17, 30].

Recently, researchers have proposed considerable ensemble clustering algorithms to capture

various cluster structures of the data [17, 29, 30, 46], most of which adopted two steps, including

basic partitions (BPs) generation and aggregation. That is, the first step aims to generate the co-

association matrices derived from BPs, while the last one is to yield the consensus clustering result.

Two kinds of strategies exist to fulfill the basic cluster integration [30]: designing some utility func-

tions or constructing co-association matrices. The former tries to depict the similarity between

different basic clusterings, while the latter contributes to transforming the similarity of basic

clusterings into a graph partition problem. Taking co-association matrices methods as an example,

Tao et al. [30] and Li et al. [17] have combined the ensemble clustering with the popular spectral

clustering into one unified model. Their main differences are that the former work resorted to

the self-representation property to uncover the low-rank representation with the block-diagonal

structure, while the last work used the ensemble learning strategy to obtain a robust presentation

of graph Laplacian matrix. Later, one nonconvex rank minimization model of Reference [30] was

further developed in its journal paper [29]. Liu et al. [22] investigated the K-means method to

reduce the high complexity of spectral ensemble clustering. However, there has been a growing

concern about the performance of existing ensemble clustering methods when solving multi-view

data, not single-view data. This is because multi-view data are ubiquitous in various applications,

such as video surveillance, natural language processing, human action recognition, and so on.
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To overcome this issue, many studies have been proposed by extending existing single-view

ensemble clustering algorithms by investigating the consistency or/and diversity among basic

partitions. One typical instance is Reference [27], which extended the single-view ensemble

clustering method in Reference [30] by pursuing one low-rank common co-association matrix

for consistency. To eliminate the data corruption and noises, the marginalized denoising process

was integrated into the ensemble clustering in Reference [28]. Also, Liu et al. [20] formulated the

consensus-guided multi-view clustering method into two k-means clusterings iteratively with

high-efficiency [36].

In general, the majority of existing approaches may suffer from the following deficiencies:

(1) High computational cost: Current advanced single-view and multi-view ensemble clustering

algorithms blindly pursue performance improvement through self-representation strategy at

high computational cost, such as in References [27–30]. The high computational cost attributes

to the matrix inversion operation and singular value decomposition of n × n co-association

matrices, where n denotes the number of samples. (2) High-order correlation loss: In the

second step of aggregation, most existing multi-view ensemble clustering methods utilized graph,

co-association, k-means to explore two-dimensional pair-wise relationship matrix from BPs, yet

without exploring the high-order reciprocity in different views.

Regarding the above problems, rooted in the low-rank and sparse decomposition rather than

the early self-representation framework, we propose two innovative multi-view ensemble clus-

tering methods, abbreviated as matrix multi-view ensemble clustering (MMEC) and tensor

multi-view ensemble clustering (TMEC) with both clustering performance improvement and

computational cost guarantee. The flowchart of our proposed two multi-view ensemble clustering

methods is shown in Figure 1. Different from current excellent multi-view ensemble clustering

algorithms [27–30, 39–41, 43], which utilized the self-representation framework to explore the

higher level information of BPs, the proposed MMEC and TMEC decompose co-association matri-

ces or tensor into the low-rank term and sparse part (as shown in Figure 1(c)) without the matrix in-

version operation, and thus yielding lower computation complexity. Moreover, in light of low-rank

and sparse decomposition of matrices S (i ) , TMEC transforms all co-association matrices {S (i ) }mi=1

into tensorS to explore the high-level information and the high-order correlation among data with

multi-view in the same time. To sum up, the contributions of the article are summarized as follows:

• We propose two novel multi-view ensemble clustering methods to explore heterogeneous

and higher level information of multi-view data. The low-rank and sparse decomposition

are utilized in learning co-association matrices in the multi-view ensemble clustering, which

could significantly speed up the algorithm’s operation.

• The first matrix-based method decomposes each co-association matrix, taking them as the

collection of one shared low-rank matrix and one sparse noise matrix. The other tensor-

based method stores all co-association matrices into the co-association tensor with the tensor

constraint in low-rank to investigate the high-order correlation of multi-view data.

• We conducted experiments on ten real-world datasets to demonstrate the effectiveness of

the proposed MMEC and TMEC methods compared to other highly sophisticated multi-view

ensemble clustering models.

The rest of this article is organized as follows: We will briefly review ensemble clustering meth-

ods and the low-rank and sparse decomposition techniques and applications in Section 2. Some

preliminary knowledge about ensemble clustering and tensor optimization is given in Section 3.

Moreover, Section 4 gives two novel multi-view ensemble clustering methods based on the low-

rank and sparse decomposition and their corresponding solutions. Last, the conclusion of this

article is summarized in Section 5.
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Fig. 1. The pipeline of our proposed two multi-view ensemble clustering algorithms, MMEC and TMEC.

MMEC is based on the low-rank and sparse matrix decomposition while TMEC resorts to the low-rank

and sparse tensor decomposition. Both of them follow three steps: (a) Let {X (i ) }mi=1 represent multi-view

data with m views and n samples. For the ith view, we generate r basic partitions (BPs) following Random

Parameter Selection (RPS) strategy and then fuse them as a co-association matrix S (i ) . (b) MMEC is without

any processing while TMEC stores all co-association matrices {S (i ) }mi=1 into the co-association tensor S.

(c) MMEC decomposes each co-association matrix S (i ) as the sum of low-rank matrix Z and the sparse noise

matrix E (i ) while TMEC decomposesS into the low-rank tensorZ and the sparse noise tensor E. Finally, the

low-rank co-association matrix Z and co-association tensorZ serve as the import of the spectral clustering

method to acquire the final partition.

2 RELATED WORK

This section introduces related work, including ensemble clustering methods with respect to ap-

plication and low-rank and sparse decomposition concerning technique.

2.1 Ensemble Clustering

Ensemble clustering refers to a combining process, which transforms multiple clustering models

or partitions into a single strengthened division. The process is likewise defined as consensus

clustering or aggregation clustering [1]. In principle, a compelling ensemble clustering method

has the ability to create more accurate, steady, and conformable clustering results compared with

the independent clustering methods.

From supervised learning to unsupervised learning, this transmission is not straightforward

as the conception, because there are various unique and difficult problems when constructing

ensemble clustering. Among them, the important and most challenging one is the way to merge

multiple clusters developed by the single clustering methods. As this cannot be done through

simple voting or average operation, more complicated aggregating approaches and schemes are

required. Thus, researchers have proposed several strategies using voting, utility functions, and

co-association matrices. For instance, Wang et al. [34] designed a soft-voting algorithm to combine

multiple basic clusterings. Also, Topchy et al. [31] used the generalized mutual information defi-

nition and proposed a category utility function-based objective function for consensus clustering.
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To combine multiple partitions, Strehl et al. [26] conducted three graph algorithms in ensemble

clustering. Then, Fern et al. [12] improved the clustering performance with bipartite graph. These

works first generated similarity matrices and then utilized ensemble algorithms to obtain the final

results. In 2005, the co-association matrix was stated by Fred et al. First, hierarchical clustering

methods are employed for the consensus partition [13], which specifies the ensemble clustering

problem as a classic problem about graph partition. In terms of the co-association-based methods,

Liu et al. [21] stated the spectral ensemble clustering method and transformed the classical graph

partition problem into the weighted K-means clustering problem. To avoid input noises from

basic clusterings and reveal the intrinsic cluster structure in basic clusterings, Tao et al. [29]

designed a novel robust spectral ensemble clustering approach as the robust version of Reference

[21] by learning a common representation Z in low-rank form for all co-association matrices.

Moreover, Tao et al. first integrated the ensemble clustering problem with the spectral clustering

theory to handle ensemble clustering tasks the from single-view and multi-view in Reference [27]

and further added the marginalized denoising strategy to detect the noises in Reference [28].

However, most existing ensemble clustering approaches learned pair-wise relationship matri-

ces from basic clusterings without analyzing the high-order correlation within diverse views.

They mainly attempt to make denoising under the self-representation property. In contrast,

our proposed models learn high-level information and high-order correlation among all views

simultaneously to uncover the underlying correlation for better clustering, which highlights the

block-diagonal structure of co-association matrices.

2.2 Low-rank and Sparse Decomposition

Recent years, the low-rank and sparse decomposition-based methods have been applied in vari-

ous fields, such as color image processing [9], hyperspectral image restoration [7], hyperspectral

anomaly detection [18], deep compression [42], multi-source heterogeneous domain adaptation

[35], traffic event detection [15], and multi-view spectral clustering [8, 37]. For more applications,

please refer to the excellent papers [2, 3, 32, 33] and the references therein.

Via the decomposition of low-rank and sparse matrix, Candes et al. proposed a novel ro-

bust principal component analysis (RPCA) model in 2009. Since the decomposition is non-

parametric without making any postulate, it has been widely used in a large scale of problems [2].

In the image processing domain, it is efficient to distinguish information from noise, edge, and

outliers with the method. Specifically, the decomposition with low-rank and the sparse property

has well worked out image analysis like image denoising, image colorization, and face recognition.

Moreover, decomposition of low-rank and sparse has been exploited in latent variable selection.

For instance, Chandrasekaran et al. [6] utilized this decomposition to explore the latent compo-

nents. The method aims to learn a statistical model that observes samples from a subset of random

variables, which are based on the graphic attributes of low-rank and sparse matrices decomposi-

tion. Then, it gets the entire collection of variables. The recent advanced variants such as stable

RPCA, inductive RPCA, enhanced RPCA have been reviewed in References [2, 3, 33].

In terms of the multi-view clustering problem, a novel Markov chain-based multi-view spectral

clustering model was designed by Xia et al. [37] to find a real matrix of transition probability.

In our proposed methods, we generate multiple co-association matrices or a third-order tensor

by collecting multiple matrices in the decomposition of low-rank and sparse. Furthermore, we

complete our formulation and optimization problems for learning co-association matrices.

3 PRELIMINARY

There are some frequently used notations and definitions given in this section. Also, we provide

explanations that are helpful to understand our low-rank and sparse decomposition methods from

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 7, Article 103. Publication date: May 2023.
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Table 1. Primary Notations and Corresponding Information

Notation Meaning

A, A, a tensor, matrix, vector

A (k ) the kth frontal slice of tensor A
A(i ) Mode-i matricization of A
Af = fft(A, [], 3) the fast Fourier transformation

n, M the number of samples, views

Ai jk the (i, j,k)th entry of A
A(i, :, :) the ith horizontal slice of A
A(:,i, :) the ith lateral slice of A
A(:, :,i ) the ith frontal slice of A
S ∈ Rn×n×M the co-association tensor

E (v ) ∈ Rn×n the error matrix for vth view

‖ · ‖2,1, ‖ · ‖F l2,1-norm, Frobenius norm

‖ · ‖�, ‖ · ‖∞ t-SVD-nuclear norm, infinity norm

matrix to tensor. To indicate the tensors, matrices, and vectors, we use letters in calligraphy, capital,

and lowercase (e.g., A, A, a), respectively. The regularly employed notations are epitomized in

Table 1.

Nowadays, many researchers have utilized the tensor nuclear norm [16] to represent the low-

rank attribute of hyperspectral images, color images, grayscale videos, and so on. Thus, we first

introduce the definition of the tensor nuclear norm. Given a tensor A ∈ Rn1×n2×n3 , the definition

of block circular matrix bcirc(A) and block diagonal matrix bdiag(A) are formulated as

bcirc(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A (1) A (n3 ) · · · A (2)

A (2) A (1) · · · A (3)

...
...

. . .
...

A (n3 ) A (n3−1) · · · A (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

bdiag(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A (1)

A (2)

. . .

A (n3 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

GivenA ∈ Rn1×n2×n3 andB ∈ Rn2×n4×n3 , the t-product outcome is ann1×n4×n3 tensor defined

asA ∗B. More specifically,A ∗B = bvfold(bcirc(A) ∗ bvec(B)). bvec(A) = [A (1) ; · · · ;A (n3 )]

indicates the block vectorization, while bvfold(bvec(A)) = A and bdfold(bdiag(A)) = A
indicates the inverse operations of bvec and bdiag, respectively. By transposing each of the frontal

slices and then reversing the order of transposed frontal slices 2 alongn3, we can get the transpose

of A, which is defined as AT ∈ Rn2×n1×n3 . The first frontal slice of the identity tensor I ∈
R

n1×n1×n3 is an n1 × n1 identity matrix and the remaining frontal slices of it are zero. If a tensor

A ∈ Rn1×n1×n3 has AT ∗ A = A ∗ AT = I, then the tensor is orthogonal.

Definition 1 (Co-association Matrix). For ∀v , given a set of data points X (v ) = {x (v )
1 , . . . ,x

(v )
n } ∈

R
dv×n , which are sampled from K clusters C = {C1, . . . ,CK }, 1 ≤ v ≤ M . Let Π(v ) =

{π (v )
1 , . . . , π

(v )
r } represent a group of r BPs for X (v ) , 1 ≤ π (v )

i (x (v )
j ) ≤ Ki , 1 ≤ i ≤ r , 1 ≤ j ≤ n,

π (v )
i = {π (v )

i (x (v )
1 ), . . . ,π (v )

i (x (v )
n )} is one of the categories, which partitions X (v ) into Ki clusters.
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To summarize Π(v ) , we can define the co-association matrix S (v ) ∈ Rn×n :

S (v )
(
x (v )

a ,x
(v )
b

)
=

1

r

r∑
i=1

δ
(
π (v )

i

(
x (v )

a

)
,π (v )

i

(
x (v )

b

))
, (1)

where x (v )
a , x (v )

b
∈ X (v ) . δ (a,b) is 1 if a = b; 0 otherwise.

Definition 2 (Tensor-Singular Value Decomposition (t-SVD) [16]). Given X, the definition of

its t-SVD is

X = U ∗ G ∗ VT .

The orthogonal tensors are defined as U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 , while G ∈ Rn1×n2×n3

serves as an f-diagonal tensor. For all the frontal slices, they are diagonal matrices.

According to the t-SVD, the tensor nuclear norm can be described as follows:

Definition 3 (Tensor Nuclear Norm [16]). Given a tensor X ∈ Rn1×n2×n3 , as the sum of singular

values of all the frontal slices of X̂, the tensor nuclear norm of the tensor is defined as ‖X‖�,

‖X‖� =
min{n1,n2 }∑

i=1

n3∑
j=1

|Ĝ (i, i, j ) |, (2)

where X̂ indicates the Discrete Fourier Transformation of X. Within the unit ball of the tensor

spectral norm, the above tensor nuclear norm is the convex envelope of the tensor average rank.

4 PROBLEM FORMULATION

The proposed two multi-view ensemble clustering methods are abbreviated as MMEC and TMEC,

respectively. As shown in Figure 1, MMEC uses the matrix decomposition in low-rank and sparse

matrix while TMEC adopts the low-rank and sparse tensor decomposition. First, we introduce

the formulation of the MMEC method. Second, we will illustrate our TMEC model, which is an

improvement of the matrix-based method MMEC.

4.1 The First Matrix-based Model: Formulation of MMEC

Given multi-view data {X (v ) }Mv=1 and following the previous methods [27, 29], we generate multi-

ple basic partitions by the random parameter selection strategy for each view individually and then

compute the co-association matrices S (1), S (2), . . . , S (M ) by Equation (1) to investigate the higher

level information from BPs. To find a consensus clustering result, Tao et al. [27] proposed the fol-

lowing model to learn a general representationZ employed by multi-view co-association matrices:

min
H,Z ,E (v )

tr (HTLZH ) + λ1‖Z ‖∗ + λ2

M∑
v=1

‖E (v ) ‖1

s .t . S (v ) + HHT = S (v )Z + E (v ),Z ≥ 0, Z1 = 1, HTH = I ,

(3)

where S (v ) ∈ Rn×n is constructed by Equation (1). Z ∈ Rn×n denotes the shared low-rank represen-

tation among all views. E (v ) ∈ Rn×n represents the noises of thev-view. The first term concerning

the objective function in Equation (3) stems from the spectral clustering, which is based on the

Laplacian matrix LZ . H ∈ Rn×K denotes the unified indicator matrix for consensus clustering re-

sult. ‖Z ‖∗ denotes the matrix nuclear norm, which is denoted as the sum of non-zero singular

values of Z . In addition, ‖E‖1 =
∑

i, j ei, j is the l1 norm.

Although the complementary information can be well explored in the above method and its

enhanced version [28], there may exist two shortcomings: (1) These methods must perform the

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 7, Article 103. Publication date: May 2023.
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matrix inversion operator on the n × n matrix, the singular value decomposition from the low-

rank matrix approximation, and the eigenvalue decomposition on the variable H , all of which

take expensive time. (2) They focus on finding the common two-dimensional representation Z
of different views, but unfortunately fail to discover the high-order interaction between multiple

views. To conquer the first challenge, we decompose each co-association matrix Z into two parts:

one shared latent co-association matrix Z that indicates the implicit real clustering structure and

an error matrix E (v ) that encodes the noise in each view:

S (v ) = Z + E (v ), v = 1, . . . ,M . (4)

Inspired by Equation (3), we also exploit the matrix nuclear norm as the regularizer to model the

latent matrixZ . But, we adopt the l2,1 norm instead of the l1 norm, since the difference between S (v )

and Z could be tiny [19]. Consequently, under the low-rank and sparse assumption, our proposed

matrix-based multi-view ensemble clustering method MMEC is formulated as

min
Z ,E (v )

‖Z ‖∗ + λ
M∑

i=1

‖E (v ) ‖2,1

s.t. S (v ) = Z + E (v ), v = 1, . . . ,M,

(5)

where ‖E (v ) ‖2,1 is defined as
∑

j ‖E (v ) (:, j )‖2. λ is a weight parameter balancing the costs of low-

rank terms and sparse terms. In our MMEC model Equation (5), it follows the low-rank and sparse

decomposition strictly rather than the self-representation framework used in most advanced multi-

view ensemble clustering methods such as References [27–30], and thus avoiding matrix inversion

operation perfectly. The low-rank term ‖Z ‖∗ could reveal the pair-wise membership under a multi-

view setting and bring out the same cluster information shared by multiple views [28]. The l2,1
norm has been proven to remove noise such as hyperspectral image denoising [7, 14].

4.2 The Second Tensor-based Model: Formulation of TMEC

Our first MMEC model has addressed the first shortcoming of high computational cost by

strictly following the decomposition of low-rank and sparse matrix. The shared low-rank represen-

tation Z explores the consistency of multiple views features only, without considering the internal

diversity in each view [24]. For the second limitation, we investigate the tensor optimization to

uncover the high-order correlation in all views via storing every S (v ) as the vth frontal slice of

third-order tensor S ∈ Rn×n×M as shown in Figure 1(c). Then, we separate S into one tensor Z
and one noise tensor E, i.e.,

S = Z + E . (6)

Compared with Equation (4), which uses the matrix optimization, Equation (6) utilizes the tensor

optimization, which explores the view dimension explicitly, thereby possibly achieving the high-

order correlation.

Different Z (v ) contain some related information as the multi-view characters are obtained from

identical objects. In addition, it is noted that the amount of samples is much bigger than the amount

of clusters. As a consequence, the tensor Z is supposed to be low-rank. To obtain and regularize

the original objective function for our model, We exploit the tensor nuclear norm based on t-SVD

in Equation (2). Therefore, our second tensor-based method is formulated as

min
Z,E
‖Z‖� + λ‖E‖2,1

s.t. S = Z + E,
(7)

where S denotes co-association tensor. In Section 5, we will observe that (1) our second tensor-

based method TMEC could significantly improve the ensemble clustering performance over our

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 7, Article 103. Publication date: May 2023.
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ALGORITHM 1: MMEC for multi-view ensemble clustering

Input: Co-association matrices {S (1), . . . , S (M ) }, trade-off parameter λ;

Initialize: Z0,E
(v )
0 ,Y

(v )
0 initialized to 0; k = 0, μ0 = 10(−6) , ρ = 2, μmax = 1010, ϵ = 10−8;

1: while not converged do

2: Update the shared low-rank representation Zk+1 by Equation (10);

3: for v = 1 to M do

4: Update the noise matrix E (v )
k+1

by Equation (13);

5: Update Lagrangian multiplier Y (v )
k+1

by Equation (15);

6: end for

7: Update the penalty parameter μk+1 = min(ρμk , μmax );
8: Check the condition of convergence:

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖Zk+1 − Zk ‖∞
‖E (v )

k+1
− E (v )

k
‖∞, v = 1, 2, . . . ,M

‖Zk+1 + E
(v )
k+1
− S (v ) ‖∞, v = 1, 2, . . . ,M

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤ ϵ ; (9)

9: end while

Output: Zk , E
(v )
k

(v = 1, 2, . . . ,M).

first matrix-based method MMEC, and (2) TMEC not only avoids the high computation cost but

also investigates the high-order correlation across multiple views.

4.3 Optimization of MMEC

Based on the problem formulation, the optimization problem could be settled, since the objec-

tive function includes the convex matrix nuclear norm and the convex l2,1 norm. Thus, we solve

the MMEC model in Equation (5) through the Alternating Direction Method of Multipliers

(ADMM) scheme. The corresponding augmented Lagrange function of Equation (5) is

L (Z ,E (v ) ) = ‖Z ‖∗ + λ
M∑

v=1

‖E (v ) ‖2,1 +
M∑

v=1

〈Y (v ),Z + E (v ) − S (v )〉 + μ

2

M∑
v=1

‖Z + E (v ) − S (v ) ‖2F , (8)

where Y (i ) ∈ Rn×n denotes the Lagrangian multiplier corresponding to the vth view. 〈A,B〉 indi-

cates the inner product of matrices defined as tr (ATB), and the variable μ is an adaptive penalty

parameter.

The description of our designed algorithm based on the matrix in low-rank and sparse decom-

position is presented in Algorithm 1. Then, we would explain the update of Z and E (v ) .

1. Z -subproblem:

While other variables are settled, the subproblem about Z is

Zk+1 = arg min
Z
‖Z ‖∗ +

M∑
v=1

〈Y (v )
k
,Z + E (v )

k
− S (v )〉 + μk

2

M∑
v=1

‖Z + E (v )
k
− S (v ) ‖2F

= arg min
Z
‖Z ‖∗ +

μk

2

M∑
v=1

������
Z + E (v )

k
− S (v ) +

Y (v )
k

μk

������

2

F

= arg min
Z
‖Z ‖∗ +

μkM

2

������
Z − 1

M

M∑
v=1

(
S (v ) − E (v )

k
−
Y (v )

k

μk

)������

2

F

,

(10)
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which can be solved by the method of singular value threshold [5]. Suppose that the SVD form of

( 1
M

∑M
v=1 (S (v ) − E (v )

k
− Y

(v )
k

μk
)) is U ΣVT , the solution to Equation (10) is as follows:

Zk+1 = UT1/μM (Σ)VT , (11)

where the shrinkage operator is Tλ (A) = max(A − λ, 0) +min(A + λ, 0).
2. E (v )-subproblem:

We fix other variables and then the subproblem with respect to E (v ) can be reduced as

E (v )
k+1
= arg min

E (v )
λ

M∑
v=1

‖E (v ) ‖2,1 +
M∑

v=1

〈Y (v )
k
,Zk+1 + E

(v ) − S (v )〉 + μk

2

M∑
v=1

‖Zk+1 + E
(v ) − S (v ) ‖2F

= arg min
E (v )

M∑
v=1

���
�
λ ���E (v )���2,1

+
μk

2

�������
E (v ) − ��

�
S (v ) − Zk+1 −

Y (v )
k

μk

��
�

�������

2

F

���
�
. (12)

We can see that the E (v )-subproblem is independent of other (M − 1) variables, which means that

the E (v )-subproblem can be solved by

E (v )
k+1
= arg min

E (v )

λ

μk
‖E (v ) ‖2,1 +

1

2

�������
E (v ) − ��

�
S (v ) − Zk+1 −

Y (v )
k

μk

��
�

�������

2

F

. (13)

As proven in Reference [19], the above subproblem has the closed-form solution, the jth column

of which is

E (v )
k+1

(:, j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖H (v )
k

(:, j ) ‖2− λ
μk

‖H (v )
k

(:, j ) ‖2
H (v )

k
(:, j ), if λ

μk
< ‖H (v )

k
(:, j )‖2,

0, otherwise,

(14)

where H (v )
k
= S (v ) − Zk+1 −

Y
(v )

k

μk
.

3. Update multipliers: We update each Lagrangian multiplier by

Y (v )
k+1
= Y (v )

k
+ μk

(
Zk+1 + E

(v )
k+1
− S (v )

)
. (15)

Once the shared low-rank representation Z is learned from Algorithm 1, we can use Z for the

input co-association matrix to the MMEC algorithm for the spectral clustering method and even-

tually get the clustering solution.

4.4 Optimization of TMEC

Similar to Equation (5), our TMEC model in Equation (7) is also a convex optimization problem

and thus, we adopt ADMM to solve it. Mathematically, the augmented Lagrangian function of

Equation (7) is defined as

L (Z,E) = ‖Z‖� + λ‖E‖2,1+ < Y,S −Z − E > +
μk

2
‖S − Z − E‖2F

= ‖Z‖� + λ‖E‖2,1 +
μ

2
‖S − Z − E +Y/μ‖2F , (16)

where Y ∈ Rn×n×M represents the Lagrangian multiplier.

1. Z-subproblem: In the iterative process, the optimal low-rank tensor representationZ can

be updated by the optimization as follows:

Zk+1 = arg min
Z

1

μk
‖Z‖� +

1

2
‖Z − (S − Ek +Yk/μk )‖2F . (18)
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ALGORITHM 2: TMEC for multi-view ensemble clustering

Input: Co-association matrices {S (1), . . . , S (M ) }, trade-off parameter λ;

Initialize: Z0,E0,Y0 initialized to 0; k = 0, μ0 = 10(−6) , ρ = 2, μmax = 1010, ϵ = 10−6;

1: while not converged do

2: Update the low-rank tensorZk+1 by Equation (18);

3: Update the sparse noise tensor Ek+1 by Equation (20);

4: Update Lagrangian multiplier Yk+1 by Equation (23);

5: Update the penalty parameter μk+1 = min(ρμk , μmax );
6: Check the conditions of convergence:

max

⎧⎪⎪⎨⎪⎪⎩

‖Zk+1 −Zk ‖∞
‖Ek+1 − Ek ‖∞
‖S − Zk+1 − Ek+1‖∞

⎫⎪⎪⎬⎪⎪⎭
≤ ϵ ; (17)

7: end while

Output: Zk ,Ek .

Based on t-SVD, this is a tensor nuclear norm minimization problem with a closed-form solution,

which employs the tensor tubal-shrinkage operator [16]:

Zk+1 = Cτ (Hk ) = U ∗ Cτ (G) ∗ VT , (19)

where Hk = S − Ek + Yk/μk and its t-SVD is Hk = UGVT . τ = 1
μk

. Cτ (G) = G ∗ J , where

J is an n × n × M f-diagonal tensor, and the diagonal element in the Fourier domain of it is

J̄ (i, i, j ) = max(1 − τ
Ḡ (i,i, j )

, 0).

2. E-subproblem: The sparse noise tensor E is updated by the following optimization

issue:

Ek+1 = arg min
E

λ

μk
‖E‖2,1 +

1

2
‖E − (S −Zk+1 +Yk/μk )‖2F . (20)

As the l2,1-norm of the tensor E is represented as the sum of l2-norm for each mode-3 fiber, we

unfold every tensor along the third mode, leading to the optimization problem as follows:

E (3)k+1 = arg min
E (3)

λ‖E (3) ‖2,1 +
μk

2
‖E (3) − (S (3) − Z (3)(k+1) + Y(3)k/μk )‖2F . (21)

Let C = S (3) − Z (3)(k+1) + Y(3)k/μk , it has the following closed-form solution:

E (3)(:, j ) =

⎧⎪⎪⎨⎪⎪⎩

‖C:, j ‖2− λ

μk

‖C:, j ‖2 C:, j , if λ
μk
< ‖C:, j ‖2;

0, otherwise,
(22)

where C (:, j ) indicates the jth column of the matrix C . We will transform E (3)k+1 into tensor Ek+1.

3. Update multipliers:

Yk+1 = Yk + μ
k (S −Zk+1 − Ek+1). (23)

We learn the tensor Z with low-rank property and the sparse tensor E iteratively as summa-

rized in Algorithm 2. Finally, we obtain results of the clustering algorithm by running the spectral

clustering method on A = 1
M

∑
v ( |Z (v ) | + |Z (v )T |).
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Table 2. Descriptions of the Real Multi-view Datasets

Database Instance/Number View1 View2 View3 View4 View5 View6
100leaves 1,600/100 64d 64d 64d — — —
BBC4view 685/5 4,659d 4,633d 4,655d 4,684d — —
Flowers 1,360/17 1,360d 1,360d 1,360d — — —
MSRC-v1 210/7 24d 576d 512d 256d 254d —
Mfeat 2,000/10 216d 76d 64d 6d 240d 47d
Notting-Hill 4,660/5 6,750d 2,000d 3,304d — — —
ORL 400/40 4,096d 3,304d 6,750d — — —
3Sources 169/3 3,560d 3,631d 3,068d — — —
20Newsgroups 500/3 2,000d 2,000d 2,000d — — —
Caltech101-7 1,474/7 48d 40d 254d 1,984d 512d 928d

4.5 Convergence and Complexity

Convergence: Since the matrix nuclear norm, the tensor nuclear norm, and the l2,1 norm are

convex, they satisfy the general assumption of ADMM strictly. References [4, 23] have reported

the proof of the global convergence of ADMM for the decomposition of low-rank and sparse with

respect to matrix and tensor. In the next section, we will show the numerical convergence of MMEC

and TMEC methods.

Complexity: As for the MMEC method, as shown in Algorithm 1, supposing the data is n × n
withM views, the computing cost about the stated method contains these parts: (a) For the spectral

clustering operation, it costsO (n3); (b) it will takeO (Mn2) to update E (i ) for each view; (c) updating

Z costs O (Mn2) due to the SVD operation. The final product is accessed by performing the spectral

clustering algorithm with a complexity of O (n3). Overall, the cost of Algorithm 1 is O (2KMn2 +

2n3) in total, where K denotes the number of iterations.

For the tensor-based method TMEC, suppose the number of iterations is K and the tensor is

n × n × M . The computing complexity of TMEC includes the following parts: (a) With a thresh-

olding solution, E can be updated with complexity of O (Mn2). (b) As for updating Z, we first

rotate Z from n × n × M to n × M × n and then calculate the FFT and inverse FFT, which take

O (Mn2loд(n)). Since we know n >> M , the rotation can reduce the complexity from O (Mn3)
to O (Mn2loд(n)). The tensor tubal-shrinkage operator performs the singular value decomposition

with the complexity of O (M2n2). The complexity of learning the low-rank tensorZ and the sparse

tensor E in Algorithm 2 is O (KMn2 (M + loд(n) + 1)). The final product is accessed by performing

the spectral clustering algorithm with a complexity ofO (n3). In conclusion, the general complexity

in Algorithm 2 is O (KMn2 (M + loд(n)) + n3).

5 EXPERIMENT

5.1 Experimental Settings

We report and analyze the experiment results of our two methods, MMEC in Algorithm 1 and

TMEC in Algorithm 2. Also, we compare our models with other recently proposed and advanced

clustering algorithms on ten real world datasets by the evaluation of two popular validation criteria.

Moreover, extensive discussion including parameter analysis, numerical convergence, and running

time, is given at the end of this section.

(1) Datasets: We introduce ten datasets with multiple views, which are summarized in Table 2,

including image data and text data.
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The introductions of these datasets are indicated as follows:

• 100leaves1 is a dataset in the UCI repository. Each sample is one of the 100 leaves species.

It consists of 1,600 instances with 3 views.

• BBC4view2 is the News article dataset. There are 685 samples in total with 5 categories.

BBC4view extracts 4 views.

• Flowers3 includes 1,360 flower instances with 17 directories. There are three views known

as 1,360d color, 1,360d texture, and 1,360d shape.

• MSRC-v14 contains 210 images extracted from 7 distinct subjects. As for the 5 multiple

views, they are 5 different types of features like the LBP feature and the HOG feature.

• Mfeat5 is a dataset with instances of handwritten numbers sampled from Dutch utility maps.

The dataset has 2,000 instances and 10 cluster numbers.

• Notting-Hill [27] is a movie data set that contains 4,660 faces from 5 persons, represented

as 4,660 instances and 5 categories.

• ORL6 holds 400 images extracted from 40 diverse subjects. This dataset holds 40 directories,

which stands for 40 different people. There are 10 images in each directory.

• 3Sources [28] is a text dataset from three online news sources. This dataset contains 169

instances and 3 categories.

• 20Newsgroups7 comprises around 18,000 newsgroups posts on 20 topics. This dataset has

500 instances.

• Caltech101-78 consists of 7 categories with 1,474 images, and the dataset contains 6 differ-

ent views.

(2) Compared Methods: As for the compared methods, there are four single-view clustering meth-

ods (SC, rBDLR, SEC, RSEC) and three multi-view clustering methods (RMSC, MVEC, MV2EC).

Specifically,

• SC: We conducted spectral clustering [25] in two models: SCbsv returns performance of

the best single view while SCsum collected all views of the dataset and employed spectral

clustering.

• rBDLRbsv returns the best result from a single view via rBDLR [44].

• RMSC: Robust Multi-view Spectral Clustering [37] is a highly sophisticated method based

on Markov chain.

• SEC: Spectral Ensemble Clustering [21] is one of the popular ensemble clustering

algorithms.

• RSEC: Robust Spectral Ensemble Clustering [29] is a single-view ensemble clustering model

by investigating one shared representation in low-rank.

• MVEC: Multi-view Ensemble Clustering [27] extends RSEC for handling clustering in mul-

tiple views.

• MV2EC: Marginalized ensemble clustering for multiple views is an ensemble clustering

method derived from MVEC, which alleviates the noises of BPs by the marginalized de-

noising process [28].

1https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set.
2http://mlg.ucd.ie/datasets/segment.html.
3http://www.robots.ox.ac.uk/vgg/data/flowers/.
4http://research.microsoft.com/en-us/projects/objectclassrecognition/.
5https://archive.ics.uci.edu/ml/datasets/Multiple+Features.
6https://cam-orl.co.uk/facedatabase.html.
7http://qwone.com/~jason/20Newsgroups/.
8http://www.vision.caltech.edu/datasets/.
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Note that SEC and RSEC are recently proposed single-view ensemble clustering methods while

MVEC and MV2EC are recently proposed multi-view ensemble clustering methods.

For a proper comparison, the random parameter selection (RPS) strategy [13] is selected to

yield a set of 100 basic partitions for each view individually for all ensemble clustering methods

including our MMEC and TMEC. Also, the parameters in compared methods are set as same as

these papers suggested. The parameters we used are as follows: SC: We run 5 times with different

settings and investigate the average performance with standard deviation. SEC: 100 sets of basic

clusterings as the basic partitions in ensemble clustering. RMSC: the parameter λ of this method

ranges [0.005, 0.01, 0.05, 0.1, 0.5, 1]. RSEC: parameters are selected as λ1 = 0.001, λ2 = 0.01.

MVEC: parameters are selected as λ1 = 1, λ2 = 0.01. MV2EC: there are 3 parameters settled

as λ1 = 1, λ2 = [0.01 : 0.1], λ3 = 1. MMEC: one parameter range is settled as λ = [0.01 : 0.01 : 0.5].

TMEC: the method tunes one parameter λ from [0.01 : 0.01 : 0.1].

(3) Evaluation Metrics: By following [27], for the evaluation metrics, we use accuracy (ACC) and

normalized mutual information (NMI) to evaluate the effectiveness of the designed methods.

The definitions of ACC and NMI are as follows:

ACC is defined as a fraction about labels of cluster and the labels of ground-truth. With a dataset

X, which has n samples with C clusters, ACC can be defined as

ACC = max
f

1

n

n∑
i=1

δ (yi , f (π (xi ))), (24)

where 1 ≤ i ≤ n, yi ∈ [1,C] indicates the label of the ground truth for xi , xi ∈ X, π (xi ) ∈ [1,C],

π represented as the result after clustering that match X with a label set {π (x1), . . . ,π (xn )}. To

maximize the result of ACC, we utilize f (·) as permutation and search f (·) from each permutation

of C labels of clusters.

NMI investigates the shared entropy of information among cluster labels and the ground truth,

which is formulated as

NMI =

∑
a

∑
b na,b log(

nna,b

nanb
)

√
(
∑

a na log na

n
) (
∑

b nb log
nb

n
)
, (25)

whereCa is obtained by the result of a partition,Cb is extracted from the ground truth, and na and

nb denote the amount of instances with the corresponding cluster. Moreover, na,b is the amount

of instances in both Ca and Cb .

Relative Error is used to act as the stop criteria for convergence, which is formulated as

Relative Error = max

⎧⎪⎪⎨⎪⎪⎩

‖Zk+1 −Zk ‖∞,
‖Ek+1 − Ek ‖∞,
‖S − Zk+1 − Ek+1‖∞

⎫⎪⎪⎬⎪⎪⎭
≤ tol , (26)

where tol > 0 is a parameter that is pre-determined.

5.2 Experimental Results

In this section, we describe the results of clustering from the accuracy perspective and time

perspective.

(1) Clustering Performance: Generally, the results of all competing clustering models and our

proposed MMEC and TMEC are summarized in Tables 3 and 4, in which the results with best

performance are written in red and the ones with second-best performance are written in blue.

According to Tables 3 and 4, we can get the following observations:
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Table 3. Performance of Clustering (ACC%±std%) on Ten Real-world Datasets

Datasets 100leaves BBC4view Flowers MSRC-v1 Mfeat Notting-Hill ORL 3Sources 20Newsgroups Caltech101-7

SCbsv [25] 47.38±1.04 34.41±0.52 28.82±0.75 54.76±1.48 66.60±0.09 71.78±0.00 57.96±0.25 63.15±0.78 47.54±1.22 44.50±0.30
SCsum [25] 34.88±1.12 35.18±1.23 17.13±0.76 37.62±1.44 48.70±0.25 87.17±0.01 46.27±0.50 61.24±0.64 47.65±0.23 41.31±0.28
rBDLRbsv [44] 37.56±1.13 37.37±0.00 32.51±1.03 51.05±0.78 61.83±0.03 31.19±0.00 63.80±0.04 61.50±0.05 31.16±0.34 57.68±0.12
RMSC [37] 77.34±4.95 77.52±0.32 33.72±1.89 75.24±4.78 76.08±5.67 78.04±4.92 70.00±0.03 58.30±0.02 89.82±0.08 39.17±0.02

SECbsv [21] 53.84±1.90 81.75±0.00 34.09±0.61 68.95±0.62 86.20±0.40 83.69±0.00 55.70±2.25 53.58±1.94 23.80±1.22 53.85±1.13
SECsum [21] 60.58±0.25 83.80±0.00 39.78±0.23 67.71±1.03 84.00±0.00 95.21±0.00 47.25±0.82 56.80±3.50 35.40±2.22 54.99±1.45
RSECbsv [29] 23.44±0.00 31.97±6.57 22.57±0.00 67.72±0.00 59.75±0.00 74.91±0.00 63.00±1.33 65.72±0.00 21.20±0.35 54.27±0.44
RSECsum [29] 61.25±0.00 61.46±3.61 41.69±0.00 48.59±0.00 76.80±0.00 85.28±0.00 55.25±0.94 54.45±0.00 38.40±0.77 48.27±0.61
MVEC [27] 37.14±1.37 82.77±0.58 46.33±0.76 67.50±1.27 62.93±2.85 62.93±2.85 45.51±1.08 79.69±0.00 91.40±0.00 55.45±0.00
M2VEC [28] 52.41±1.52 83.07±0.00 46.77±0.27 77.62±0.00 78.83±3.02 83.52±0.00 44.87±1.10 88.53±0.75 91.20±0.00 56.39±0.21

MMEC (Ours) 64.65±1.32 83.65±0.00 42.44±0.44 80.95±0.00 87.75±4.71 17.26±0.47 53.80±4.35 75.74±0.00 88.60±0.00 63.43±0.00
MEC (Ours) 80.16±1.65 88.44±0.06 76.19±2.84 99.81±0.26 99.40±0.00 95.24±0.00 80.80±4.20 77.51±0.62 99.80±0.00 66.83±9.25

Table 4. Performance of Clustering (NMI%±std%) on Ten Real-world Datasets

Datasets 100leaves BBC4view Flowers MSRC-v1 Mfeat Notting-Hill ORL 3Sources 20Newsgroups Caltech101-7

SCbsv [25] 76.37±0.29 5.80±0.89 32.01±0.53 54.47±1.10 67.96±0.06 65.29±0.00 75.16±0.23 47.14±2.45 45.10±0.66 48.29±2.89
SCsum [25] 66.72±0.86 8.01±2.57 17.99±0.30 39.78±1.20 47.89±0.14 76.07±0.03 69.43±0.29 46.40±4.09 35.16±0.15 40.78±2.23
rBDLRbsv [44] 70.96±0.36 18.77±0.00 37.32±0.32 56.34±0.83 78.49±0.05 1.39±0.00 84.37±0.21 54.60±0.05 25.28±0.16 41.43±0.13
RMSC [37] 67.08±2.17 63.31±0.35 35.32±1.84 67.26±3.28 73.66±2.00 73.30±4.43 85.34±0.02 61.53±0.02 79.20±0.04 49.07±0.01

SECbsv [21] 78.86±0.54 64.17±0.00 36.66±0.51 63.33±2.95 80.48±1.16 75.77±0.00 35.14±1.90 55.23±1.87 17.35±0.35 53.46±1.62
SECsum [21] 84.38±0.06 68.00±0.00 43.16±0.14 65.41±0.85 87.17±0.00 91.20±0.00 32.00±1.45 59.21±3.50 86.86±4.47 22.68±1.82
RSECbsv [29] 52.45±0.00 46.17±0.00 39.09±0.00 56.39±0.00 60.67±0.00 72.04±0.00 49.31±1.01 63.60±0.00 14.80±0.68 60.52±0.72
RSECsum [29] 42.31±0.00 57.66±0.00 45.19±0.00 43.69±0.00 71.46±0.00 75.39±0.00 41.58±1.23 41.65±0.00 24.45±0.45 43.10±0.65
MVEC [27] 81.80±0.00 69.98±0.12 47.22±0.55 65.13±0.31 61.62±1.54 84.57±1.29 69.47±0.63 75.69±0.00 77.26±0.00 61.28±0.00
M2VEC [28] 75.43±0.47 66.23±0.00 48.11±1.06 66.54±0.50 68.55±0.00 77.49±0.00 69.64±0.49 77.22±0.54 86.46±0.00 63.18±0.41

MMEC (Ours) 85.77±0.71 67.60±0.00 43.15±0.38 69.41±0.00 83.57±1.20 8.07±0.82 76.90±1.80 67.41±0.00 76.75±0.00 69.07±0.00
TMEC (Ours) 92.81±0.71 80.20±0.05 89.30±1.06 99.57±0.59 98.52±0.00 91.20±0.00 91.26±1.19 71.03±0.00 99.30±0.00 72.89±4.09

• Generally, the proposed TMEC has achieved overwhelming clustering performance in most

cases in terms of ACC and NMI values, and the MMEC method has a comparable clustering

performance. In detail, our proposed MMEC method shows preferable performance except

for the Notting-Hill dataset. Compared with most EC methods, it has higher precision in

100leaves, BBC4view, MSRC-v1, Mfeat, and Caltech101-7 datasets.

• As the best-performed model, TMEC ranks first on nine datasets inclduing 100leaves,

BBC4view, Flower, MSRC-v1, Mfeat, Notting-Hill, ORL, 20Newsgroups, and Caltech101-7.

In the 3-Sources dataset, TMEC has an ACC 11.02% less than the M2EC method. However,

TMEC has at least improved 5.37% accuracy from the M2EC method for other datasets. The

improvement in the MSRC-v1 dataset is quite remarkable, with 22.19% higher accuracy than

the best performance in other ensemble clustering algorithms.

• Compared with other ensemble clustering methods, our proposed TMEC usually has better

performance in both ACC and NMI. For example, the proposed TMEC improves the two

metrics on Caltech101-7 over M2VEC by 10.44% and 9.71%, respectively. Therefore, we can

conclude that the designed TMEC has substantially enhanced the clustering results over

other ensemble clustering methods.

• For the recently proposed multi-view ensemble clustering approaches MVEC and M2VEC,

MVEC is incapable of removing noise and thus performs worse than M2VEC. However,

M2VEC uses the marginalized denoising process to reduce the disturbance of data corrup-

tions and noises.

• Our TMEC and MMEC methods and RMSC are inspired by the low-rank and sparse decom-

position for running efficiency. But, the proposed TMEC has substantial improvements over

RMSC due to the benefits of fusing high-level information and exploring high-order corre-

lation among multiple views. Compared with Equation (3), we can conclude that the joint

optimization of the low-rank representation Z and the unified indicator matrix H is not

always a better way for multi-view ensemble clustering.
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Fig. 2. Time performance on (a) 100Leaves, (b) BBC4views, (c) Flower, (d) MSRC-v1, (e) Mfeat, and (f) Notting-

Hill datasets.

(2) Time Performance: Another significant advance of our methods is the high running speed. To

speed up the algorithms of ensemble clustering, which are based on the self-representation and

thus encountered high computational cost, we utilize the scheme of low-rank and sparse decom-

position. Figure 2 shows the running times of the proposed methods with several representative

ensemble clustering methods, including RSEC, MVEC, M2VEC on 100leaves, BBC4view, Flowers,

MSRC-v1, Mfeat, and Notting-Hill datasets. More specifically, we compare the time complexity

from the co-association matrices step. As seen from Figure 2, our methods could be faster than

other state-of-art ensemble clustering algorithms to a large extent. This is because our proposed

methods without matrix inversion operation do not utilize self-representation in the objective

function, and low-rank and sparse decomposition has better generalization for low-rank proper-

ties over the existing ensemble clustering methods. MMEC and TMEC algorithms usually require

several iterations as shown in Figure 4. For most ensemble clustering methods like MVEC and

MV2EC, which followed the self-representation framework, although they have promising perfor-

mance in accuracy and other evaluation indexes, the cost of time is expensive and ineluctable. On

the Notting-Hill dataset, our proposed MMEC and TMEC cost around 12.71% and 11.82% time over

the third-fastest ensemble clustering method RSEC.

5.3 Model Analysis

In this section, we take the TMEC method as an example and provide an integrated analysis of

TMEC concerning parameter analysis and numerical convergence.

(1) Parameter Analysis: The proposed TMEC includes one free parameter λ. Parameter λ is to

equilibrium the outcome of the low-rank tensor attribute and the noise attribute. We tune it from

interval [0.01 : 0.01 : 0.1]. In addition, ACC and NMI values of TMEC with diverse λ are shown

in Figure 3. The general observation is that TMEC is insensitive to parameter λ. Specifically, on

Notting-Hill and Caltech101-7 datasets, all ACC values of TMEC are higher than that of all com-

peting methods, which consistently proves the effectiveness of TMEC. Except for the ORL dataset,

ACC values have a slight fluctuation with different parameters on other datasets.

(2) Convergence Analysis: To investigate the numerical convergence, we also try to analyze the

iteration situation of our TMEC method. Figure 4 shows the values of ACC and NMI, and relative
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Fig. 3. Parameter tuning with regard to λ on (a)100leaves, (b) MSRC-v1, (c) Mfeat, (d) Notting-Hill, (e) ORL,

and (f) Caltech101-7 datasets.

Fig. 4. Relative errors, ACC, and NMI versus iterations on 100leaves and Flowers datasets.

errors with the corresponding iterations on the 100leaves and Flower datasets. It is noted that

(1) the values of ACC and NMI have the tendency of being stable as the number of iterations

increases, and (2) after about eight iterations, the relative error values become stable. The above

phenomena indicate that TMEC converges rapidly, which is also indicated in Figure 2 where the

TMEC method has the shortest running time in the ensemble clustering algorithms.

6 CONCLUSION

In this article, we proposed an innovative ensemble clustering scheme focusing on low-rank and

sparse decomposition instead of self-representation, thus substantially reducing the computational

time and boosting clustering performance. In light of this, two multi-view ensemble clustering

methods were developed from the matrix and tensor perspectives, which learned one common

low-rank co-association matrix and one low-rank co-association tensor, respectively. Motivated
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by the tensor learning method, we split the joint co-association matrices and learn high-level in-

formation and high-order correlation from the tensor perspective, such that the designed TMEC

has enhanced the clustering performance over our matrix method MMEC. Experimental results

have shown that our methods cost fewer operation times to a greater extent than other state-

of-the-art multi-view clustering algorithms. In the foreseeable future, there are some unexplored

investigations worth pursuing, such as text clustering, image classification, image restoration, and

so on.
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