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Abstract—In multi-view subspace clustering, the low-rankness
of the stacked self-representation tensor is widely accepted to
capture the high-order cross-view correlation. However, using the
nuclear norm as a convex surrogate of the rank function, the
self-representation tensor exhibits strong connectivity with dense
coefficients. When noise exists in the data, the generated affinity
matrix may be unreliable for subspace clustering as it retains the
connections across inter-cluster samples due to the lack of sparsity.
Since both the connectivity and sparsity of the self-representation
coefficients are curial for subspace clustering, we propose a Reliable
Multi-View Affinity Learning (RMVAL) method so as to optimize
both properties in a single model. Specifically, RMVAL employs
the low-rank tensor constraint to yield a well-connected yet dense
solution, and purifies the densely connected self-representation
tensor by preserving only the connections in local neighborhoods
using the l1-norm regularization. This way, the strong connections
on the self-representation tensor are retained and the trivial
coefficients corresponding to the inter-cluster connections are
suppressed, leading to a “clean” self-representation tensor and
also a reliable affinity matrix. We propose an efficient algorithm
to solve RMVAL using the alternating direction method of
multipliers. Extensive experiments on benchmark databases have
demonstrated the superiority of RMVAL.

Index Terms—Affinity learning, connectivity and sparsity, low-
rank tensor, multi-view subspace clustering, self-representation.

I. INTRODUCTION

MULTIMEDIA data naturally exhibit high dimensional-
ity and complexity in the ambient space. Usually, the

high-dimensional data approximately lie in low-dimensional
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subspaces [1], [2], and it is possible to reconstruct the data us-
ing sparse coefficients over proper dictionaries. Considering this
fact, the sparse coding and dictionary learning methods were de-
veloped with theoretical analysis and various applications [3],
[4]. Later, the work in [5] shows that the database itself can
be used as the dictionary as long as it “linearly spans the data
space”. In addition to the sparsity of the encoding coefficients,
advanced properties of the coefficients, e.g., low-rankness [5],
block-diagonality [6], were exploited to produce the affinity ma-
trices, falling into the category of self-representation learning.
Among the applications on self-representation learning, sub-
space clustering uses the representation coefficients to form the
affinity matrix [5], [6], to which the spectral clustering is applied
for inferring the clusters [7]. The good clustering results require
reliable affinity matrices as inputs. However, due to the exis-
tence of noise and corruptions, it is non-trivial to learn accurate
affinity matrices directly from the raw data [8], [9]. Moreover,
the multimedia data usually endure the ambiguity, which further
challenges the construction of reliable affinities since a single
type of feature may not be able to portray the data relation-
ship [10].

To resolve the ambiguity, features from heterogeneous
sources or different descriptors are extracted to depict the mul-
timedia data, and multi-view subspace clustering thus takes ad-
vantage of the complementary information residing in different
views [11], [12]. Among the extensive studies, the low-rank-
representation-based methods [10], [13]–[21] have become the
mainstream owning to its robustness. The fundament beneath
is to impose the low-rank constraints on the self-representation
matrices/tensors so as to exploit the global data structure for
noise removal. Continuing along this vein, many multi-view
subspace clustering algorithms were developed considering the
consistency and/or diversity across views. A pioneer work [13]
constructed a large feature matrix by vertically concatenating
all feature matrices to ensure the cross-view consistency. Nie
et al. enforced the affinities to be consistent with the local
manifolds [22]. Later, Wang et al. utilized the complementar-
ity of multi-view features via the exclusivity-consistency reg-
ularization [23]. Considering the fact that previous works es-
sentially ignore the high-order correlation across views, many
methods [10], [14]–[21] were proposed with different high-order
correlation measures as well as various regularizers.

Although promising performance is witnessed, the afore-
mentioned methods cannot guarantee the reliability of the affini-
ties since they overlooked the properties, i.e, connectivity and
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Fig. 1. Affinity graphs of two classes from (b), (c) Extended YaleB and (e),
(f) COIL-20 (ten samples per class for good visualization).

sparsity, of the affinity matrix [8], [24], [25]. However, both
the connectivity and sparsity of the affinity matrix play impor-
tant roles in spectral clustering. Specifically, by promoting the
intra-cluster connectivity, the affinity matrix shows robustness
to the over-segmentation problem [25]. On the other hand, the
sparsity of the affinity matrix encourages a subspace-preserving
structure, i.e., samples are connected only if they come from the
same subspace.1 It has been validated that the nuclear or l2 norm
regularization leads to a dense solution [24] and the l1 or l0 norm
results in a sparse representation [25]. In light of these facts, sev-
eral methods have been developed to make a tradeoff between
the connectivity and sparsity. They can be roughly grouped into
three categories. First, the models in [26]–[28] bridged the gap
between the connectivity and sparsity using mixed norms. Also,
techniques belonging to the second category were developed to
enhance the sparsity from densely connected affinity matrices
by post-processing [9], [24] or iterative thresholding [8], [29]. In
contrast, the works in [25], [30] were proposed to seek denser so-
lutions from the initially sparse affinity matrices. Nevertheless,
these methods consider only the single-view feature, which are
not robust to the potential ambiguity residing in the multimedia
data.

Considering these facts, we propose a novel Reliable Multi-
View Affinity Learning (RMVAL) model for subspace clus-
tering. The reliability of the affinity matrix is ensured by
simultaneously optimizing the connectivity and sparsity prop-
erties. To illustrate the joint connectivity and sparsity, the affin-
ity graphs learned from the proposed RMVAL and those from
a typical work t-SVD-MVC [16] are given in Fig. 1, where
the width of connections indicates the strength of edges. It is
clear that, compared with the densely-connected affinity graphs
produced from t-SVD-MVC, the intra-cluster connections are
well preserved while the inter-cluster edges are suppressed us-
ing RMVAL. The general framework of the proposed RMVAL
model is presented in Fig. 2. Specifically, given multi-view

1The sparsity/subspace-preserving property is also called the block-diagonal
property in [6] where nonzero entries exist when samples come from the same
subspace.

features, the view-specific relationship of samples is captured
by the self-representation matrices (Step (a)). By stacking the
self-representation matrices into a third-order tensor and then
rotating, the high-order cross-view correlation is exploited with
the low-rank tensor constraint, yielding a densely connected so-
lution (Step (b)). Meanwhile, the self-representation tensor is en-
couraged to be sparse by preserving only the strongly connected
neighbors via the l1-norm regularization (Step (c)). Adopting an
iterative optimization scheme, the “clean” self-representation
tensor, in turn, promotes the learning of view-specific self-
representation matrices (Step (d)). Finally, the average of the
optimal self-representation tensor along the third dimension is
used to generate the affinity matrix, to which the standard spec-
tral clustering is applied for producing the clusters.

To sum up, the novelty and contributions of this work lie in
the following aspects:

1) We propose a Reliable Multi-View Affinity Learning (RM-
VAL) model that enhances the reliability of the affinity ma-
trix by simultaneously optimizing the connectivity and spar-
sity properties. By doing so, the intra-cluster samples exhibit
strong connections and the inter-cluster samples are discon-
nected, which simultaneously prunes erroneous connections and
avoids over-segmentation. To the best of our knowledge, this is
the first model that guarantees both properties within a single
model in the setting of multi-view affinity learning.

2) RMVAL well exploits the global and local data structures
to optimize the affinity matrix. Specifically, the global structural
constraint is adopted to ensure the high-order cross-view corre-
lation via the low-rank tensor constraint. Considering the local
data structure, in contrast to existing methods that learn smooth
self-representation coefficients with local manifolds, RMVAL
proposes to pursue the sparsity of the self-representation ten-
sor by preserving only the strong connections in local neighbor-
hoods. Therefore, it provides a simple yet effective way to purify
the densely connected self-representation tensor, and makes it
feasible to improve the robustness of the learned affinity.

3) We devise an efficient optimization algorithm to solve RM-
VAL using the alternating direction method of multipliers. Ex-
tensive experiments have demonstrated the effectiveness of the
proposed RMVAL model.

In the rest of this paper, Section II reviews the related works
and preliminaries; Section III introduces the RMVAL model;
the experimental results and model analysis are presented in
Section IV; finally, conclusions are drawn in Section V.

II. RELATED WORK AND PRELIMINARIES

In this section, we first review the state-of-the-art multi-view
affinity learning models and the pioneer works for affinity pu-
rification. Afterward, the notations and tensor representations
are introduced to facilitate the formulation of RMVAL.

A. Multi-View Affinity Learning

By far, the self-representation-based multi-view affinity
learning has attracted great attention [10]. Existing meth-
ods apply different principles to integrate the view-specific
self-representation matrices to obtain the final affinity matrix. A
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Fig. 2. Framework of the proposed RMVAL model.

common strategy is to explore the multi-view consistency. Zhang
et al. [14] stacked the representation matrices into a third-order
tensor and imposed the unfolding-based low-rank tensor con-
straint to preserve the consistency within all tensor modes. To
overcome the representation deficiency of the unfolding op-
eration, the tensor low-rankness derived from tensor-product
is exploited to holistically capture the global structure of the
self-representation tensor [15], [16]. The t-SVD-MSC model
proposed in [16] reached a milestone for multi-view learning by
jointly exploring the complicated cross-sample and cross-view
relationship. Since t-SVD-MSC considers only the global data
structure, many followers [17]–[19], [22] further improve the
performance by employing the local manifolds and/or the non-
linear data structures. Additionally, the weights of different
views are evaluated to emphasize the informative views [10],
[18], [31]. Besides, several works devised different strategies to
relieve the high computation burdens [19], [20], [32].

B. Purifying the Densely Connected Affinity Matrix

The self-representation-based multi-view affinity models rep-
resent samples as linear combinations of other samples in the
same database and enforce the specific properties, e.g., sparse,
low-rank, block-diagonal, to produce the affinity matrices. Re-
cently, the low-rank constraint is more popular since it preserves
the global data structure with a low complexity. However, the
generated affinity matrix tends to be densely connected since
the nuclear norm is used to approximate the rank function. As
pointed out in [8], [24], [25], an optimal affinity matrix should
not only exhibit strong intra-cluster connectivity but also be
sparse to produce a subspace-preserving solution. To this end,
different methods were developed to purify the dense affinity
matrix.

Note that, owing to the property of the “intra-subspace pro-
jection dominance,” the intra-cluster self-representation coeffi-
cients tend to be relatively larger than the inter-cluster coeffi-
cients in many cases [8]. Thus, a straightforward idea is to sim-
ply preserve several largest coefficients on the affinity matrix.
However, this may lead to a connectivity issue that produces

over-segmented subspaces since samples are not well-
connected [33]. Peng et al. [8] filtered out the trivial values on
the representation coefficients using iterative thresholding ridge
regression, which partially resolves this problem by the itera-
tive scheme. Yet, this method lacks the global structural con-
straint, leading to unsatisfactory clustering results. The work
in [9] devised a post-processing technique to purify the densely
connected affinity graph via selecting “good neighbors,” which
are defined as the neighbors that maintain shared neighbors. By
keeping only the good neighbors, the affinity matrix is endowed
with both connectivity and sparsity properties. Nevertheless, we
experimentally found that the effectiveness of good neighbors
relies heavily on the number of selected good neighbors, requir-
ing the prior knowledge on the size of the clusters. However, it
is impractical to estimate the number of samples per cluster in
real applications. Moreover, on the unbalanced databases, such
a number may not even exist. This observation can be confirmed
by the experiments in Section IV-C.

C. Tensor Representation

In this paper, the uppercase and calligraphy letters denote
the matrices and the third-order tensors respectively. Given
X ∈ Rn1×n2×n3 , we can split X into submodules {X(v)}n3

v=1

where X(v) denotes the v-th frontal slice. The Frobenius
norm (F-norm) and l1-norm of X are defined as ‖X‖F :=

(
∑

i,j,k |X (i, j, k)|2) 1
2 and ‖X‖1 :=

∑
i,j,k |X (i, j, k)| respec-

tively. Xf := fft(X , [ ], 3) applies Fast Fourier Transform
(FFT).

The tensor-product (t-product) generalizes the matrix multi-
plication for multi-way data [34]. Based on t-product, the tensor
low-rankness is well defined to model the global structure of the
multi-way data. Here, we briefly review the main operators and
the readers can refer to [34]–[37] for a comprehensive study.

Definition 1: [34] As shown in Fig. 3, for X ∈ Rn1×n2×n3 ,
the Singular Value Decomposition (t-SVD) is defined as X :=
W ∗A ∗ B′, where ∗ denotes t-product, W ∈ Rn1×n1×n3 and
B ∈ Rn2×n2×n3 are orthogonal tensors, and A ∈ Rn1×n2×n3 is
f-diagonal (i.e., all frontal slices are diagonal matrices).
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Fig. 3. T-SVD of an n1 × n2 × n3 tensor X .

Fig. 4. Rotation of the representation tensor.

Definition 2: [16] The t-SVD-based Tensor Nuclear Norm
(t-SVD-TNN) of X is defined as the sum of the singular val-
ues of all frontal slices of Xf , i.e., ‖X‖�̄ :=

∑n3

k=1 ‖X(k)
f ‖∗ :=∑min{n1,n2}

i=1

∑n3

k=1 |A(k)
f (i, i)|, where A

(k)
f comes from the

complex-valued matrix SVD where X
(k)
f = W

(k)
f A

(k)
f B

(k)′
f .

The t-SVD-TNN is proved to be the tightest convex re-
laxation to the l1-norm of the tensor multi-rank (Theorem
2.4.1, [38]). Nevertheless, for capturing the high-order relation-
ship in multi-view learning, directly applying the t-SVD-TNN
on the representation tensor is sub-optimal since the t-SVD-TNN
is orientation-dependent [16], and the following rotation opera-
tor is adopted to solve this problem.

Definition 3: [16] As shown in Fig. 4, a rotation operator
is defined to transform X ∈ Rn×n×V to X ∈ Rn×V ×n as X =
φ(X ) = shiftdim(X , 1).

In this work, we use � to represent the t-SVD-TNN imposed
on the rotated representation tensor. Finally, the basic notations
are summarized in Table I.

III. RELIABLE MULTI-VIEW AFFINITY LEARNING

A. Motivation

The t-SVD-based Multi-view Subspace Clustering (t-SVD-
MSC) is a typical model for multi-view learning that imposes
the t-SVD-TNN on the rotated self-representation tensor, so as
to simultaneously and thoroughly utilize the high-order correla-
tion across both views and samples. The t-SVD-MSC model is
formulated as

min
Z,E

‖Z‖� + λ‖E‖2,1

s.t. {X(v) = X(v)Z(v) + E(v)}Vv=1,

Z = (Z(1), Z(2), . . . , Z(V )),

E = [E(1);E(2); · · · ;E(V )], (1)

TABLE I
SUMMARY OF COMMONLY USED NOTATIONS

{X(v)} is interchangeable with {X(v)}n3
v=1 for concise.

where X(v) is the feature matrix from the v-th view; Z ∈
Rn×n×V is obtained by stacking the representation matrices
{Z(v)} along the third dimension, and ‖Z‖� imposes the t-
SVD-TNN on the rotated Z; E is constructed by vertically
concatenating the view-specific error matrices, and ‖E‖2,1 =∑

j(
∑

i |E(i, j)|2) 1
2 . The l2,1-norm is commonly adopted to

deal with sample-specific corruptions and outliers [5]. Af-
terward, the optimal affinity matrix is obtained from A =
1
V

∑V
v=1(|Z(v)|+ |Z(v)′ |).

Although t-SVD-MVC significantly outperforms previous
methods, the t-SVD-TNN leads to a well-connected solution
with dense coefficients. As such, the intra-cluster connectivity
of the affinity matrix is guaranteed whereas the sparsity is sac-
rificed. This way, the affinity matrix learned from t-SVD-MSC
may not be sufficiently reliable, as a dense solution is likely to
contain erroneous connections when noise exists.

B. Proposed Model

Considering the limitation of t-SVD-MSC, we propose a Re-
liable Multi-View Affinity Learning (RMVAL) model to jointly
optimize the connectivity and sparsity of the affinity matrix.
RMVAL achieves the reliability by simultaneously preserving
well-connected samples and pruning erroneous connections, re-
sulting in effective and accurate clustering results. Our RMVAL
model is formulated as

min
{Z(v)},S,
E1,E2

V∑
v=1

‖Z(v)‖∗ + λ1‖S‖� + λ2‖E1‖2,1 + λ3‖E2‖1

s.t. {X(v) = X(v)Z(v) + E
(v)
1 }Vv=1,

E1 = [E
(1)
1 ;E

(2)
1 ; · · · ;E(V )

1 ],

Z = (Z(1), Z(2), . . . , Z(V )),

Z = S + E2, (2)
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whereZ = (Z(1), Z(2), . . . , Z(V )) coincides with that in Eq. (1)
and E1 equals to E in Eq. (1). We decompose Z into S and E2,
corresponding to the “clean” self-representation tensor and triv-
ial inter-cluster connections respectively. Accordingly, the ro-
tated t-SVD-TNN ‖ · ‖� and the l1-norm are used to preserve the
global data structure and the local neighborhoods respectively.
The affinity matrix is then set toA = 1

V

∑V
v=1(|S(v)|+ |S(v)′ |).

Please note that, it is non-trivial to construct a reliable affin-
ity matrix from multi-view features mainly because (1) the noise
and corruptions naturally exist in the raw features over all views,
and (2) to deal with the high-order cross-view correlation, the
global data structure should be considered, which induces dense
solutions and tends to destroy the subspace-preserving property.
In view of improving the reliability of the affinity matrix, RM-
VAL advances in the following aspects:
� To solve (1), for each type of feature, we use the low-

rank induced self-representation matrix Z(v) to capture
the global data structure. Going beyond the local simi-
larities, the low-rank constraint shows robustness since it
can approximately recover the subspace structures when
the feature matrix is contaminated. Moreover, we concate-
nate the error matrices from different views and use the
l2,1-norm to encourage the columns of {E(v)

1 }Vv=1 to have
consistent magnitudes. Thus, it can effectively handle the
sample-specific corruptions. This way, both the intra-view
information and the consistency across all views are well
considered for eliminating the noise and corruptions.

� For (2), by representing Z = S + E2 via the tube-wise no-
tation, Z(:, j, k) = S(:, j, k) + E2(:, j, k) essentially de-
composes Z(:, j, k) into two parts: S(:, j, k) represents
the compact representation coefficients for the j-th sam-
ple from the k-th view and E2(:, j, k) denotes the trivial
values corresponding to the unwelcome inter-cluster con-
nections. Thus, we apply the t-SVD-TNN on S to find a
densely connected solution. On the other hand, the l1-norm
encourages a sparse solution since it preserves only the
large coefficients, i.e, strong connections in local neigh-
borhoods.

C. Optimization

It is intractable to solve Eq. (2) directly since variables are
coupled. We thus devise an efficient optimization algorithm
within the framework of the Alternating Direction Method
Of Multipliers (ADMM) [39]. By introducing an auxiliary set
{U (v) = Z(v)}, the augmented Lagrange function of Eq. (2) is
formulated as

L({Z(v)},{U (v)},E1,E2,S)=
V∑

v=1

‖U (v)‖∗+λ1‖S‖�

+ λ2‖E1‖2,1+λ3‖E2‖1+ ρ

2

(
V∑

v=1

(
‖U (v)−Z(v)+

Y
(v)
1

ρ
‖2F

+ ‖X(v)−X(v)Z(v)−E(v)
1 +

Y
(v)
2

ρ
‖2F
)
+‖Z−S−E2+Y3

ρ
‖2F
)
,

(3)

where {Y (v)
1 }, {Y (v)

2 }, Y3 are the Lagrange multipli-
ers, and ρ > 0 is the penalty parameter. The variables
{Z(v)}, {U (v)}, E1, E2,S can be alternately optimized by min-
imizing Eq. (3) when other variables are fixed.

1) {Z(v)}–subproblem: The optimization with respect to
{Z(v)} is view-independent, and we take the v-th view as an
example. Fixing other variables except Z(v), the problem re-
duces to

min
Z(v)

‖U (v) − Z(v) +
Y

(v)
1

ρ
‖2F + ‖X(v)−X(v)Z(v)

− E
(v)
1 +

Y
(v)
2

ρ
‖2F + ‖Z(v) − S(v) − E

(v)
2 +

Y
(v)
3

ρ
‖2F ,

(4)

where S(v), E(v)
2 , Y (v)

3 are the v-th frontal slices of S , E2, Y3

respectively. The closed-form solution to Eq. (4) is obtained by
setting its derivation to zero. Therefore,

Z(v)∗ = (X(v)X(v)′ + 2I)−1(M1 +X(v)′M2 +M3), (5)

where the temporal variables are set to M1 = U (v) +
Y

(v)
1

ρ ,

M2 = X(v) − E
(v)
1 +

Y
(v)
2

ρ , and M3 = S(v) + E
(v)
2 − Y

(v)
3

ρ .

2) {U (v)}–subproblem: The auxiliary variables {U (v)} are
introduced to separate the view-specific low-rank constraint and
self-representation learning, and the optimal U (v) is obtained by
solving

min
U(v)

‖U (v)‖∗ + ‖U (v) − Z(v) +
ρ

2

Y
(v)
1

ρ
‖2F . (6)

Eq. (6) can be optimized via the singular value shrinkage
introduced in Theorem 1 (Theorem 2.1, [40]).

Theorem 1: Given a matrix M4 whose SVD is denoted
by M4 = ABC ′ and a constant σ1 > 0, the optimal solu-
tion to minU

1
2‖U −M4‖2F + σ1‖U‖∗ is obtained at U ∗ =

A(B − diag(σ1))+C
′, where diag(σ1) constructs a diagonal

matrix whose sizes equal to those of B and the diagonal el-
ements are σ1; (·)+ denotes the positive part of (·), namely,
(B − diag(σ1))+ = max(B − diag(σ1), 0).

3) E1–subproblem: Fixing other variables except E1 and in-
troducing a temporary variable M5 by concatenating {X(v) −
X(v)Z(v) +

Y
(v)
1

ρ }Vv=1 along the column direction, the E1–
subproblem can be optimized by solving a group Lasso problem

min
E1

1

2
‖E1 −M5‖2F +

λ2

ρ
‖E1‖2,1. (7)

We introduce the following Theorem 2 (Lemma 3.1, [41]) to
solve Eq. (7).

Theorem 2: Given a matrix M5 and a constant σ2 > 0, the
optimal solution to minE1

1
2‖E1 −M5‖2F + σ2‖E1‖2,1 is ob-

tained at E∗
1(:, j) = (1− σ2

‖M5(:,j)‖2 )+M5(:, j), where j is the
column index.

4) E2–subproblem: The optimization with respect to E2 re-
duces to a tensor lasso problem:

min
E2

1

2
‖E2 −Z + S − Y3

ρ
‖2F +

λ3

ρ
‖E2‖1. (8)
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LetM6 = Z − S + Y3

ρ , e2 andm6 be the vectorization of E2
and M6 respectively. Eq. (8) is equivalent to minimize 1

2‖e2 −
m6‖22 + λ3

ρ ‖e2‖1, and the solution is obtained at

e∗2 = (1− λ3/ρ

|m6| )+m6. (9)

The optimal solution to Eq. (8) is then obtained by reshaping
e2 into a tensor form.

5) S–subproblem: Fixing other variables except S , the prob-
lem equals to solve

min
S

1

2
‖S − Z + E2 − Y3

ρ
‖2F +

λ1

ρ
‖S‖�. (10)

Eq. (10) is the t-SVD-TNN minimization problem that can
be solved via the tensor tubal-shrinkage presented in Theorem
3 (Theorem 2, [16]).

Theorem 3: Given a tensor M7 and a constant σ3 >
0, let the t-SVD of M7 be ABC′, the optimal solution
to minS 1

2‖S −M7‖2F + σ3‖S‖� is obtained at S∗ = A ∗
θn3σ3

(B) ∗ C′, where θn3σ3
(B) = B ∗ J and J is an f-diagonal

tensor whose diagonal element in the Fourier domain is
J (i, i, j) = (1− n3σ3

B(i,i,j) )+.
6) Multipliers and penalty parameter: In each iteration, the

multipliers and penalty parameter are updated as

{Y (v)∗
1 } = {Θ(v)

1 + ρ(U (v) − Z(v))};
{Y (v)∗

2 } = {Θ(v)
2 + ρ(X(v) −X(v)Z(v) − E

(v)
1 )};

Y∗
3 = Θ3 + ρ(Z − S − E2);
ρ∗ = min{β ∗ ρ, ρmax}. (11)

The parameter β is introduced to adopt the varying penalty
parameter scheme until a maximum value ρmax is achieved [39].
By doing so, the empirical convergence speed is accelerated and
the performance is less dependent to the initialization of ρ.

Since Eq. (3) consists three constraints, we define the corre-
sponding residuals as

r1 = max{‖U (v) − Z(v)‖∞};
r2 = max{‖X(v) −X(v)Z(v) − E

(v)
1 ‖∞};

r3 = ‖Z − S − E2‖∞, (12)

where ‖ · ‖∞ equals to the maximum number of the ma-
trix/tensor.

The stopping criteria is met when all residuals are small
enough as the algorithm proceeds. Finally, the affinity matrix
is calculated from the optimal self-representation tensor and
then used to yield clusters. The whole procedure of the RM-
VAL model is summarized in Algorithm 1.

D. Discussion

In the following, we analyze the convergence property and
the complexity of RMVAL.

1) Convergence Analysis: RMVAL is optimized within the
ADMM framework, consisting five subproblems (blocks) with
respect to {Z(v)}, {U (v)}, E1, E2, and S . Unfortunately, the

convergence of ADMM for multi-block optimization cannot
be proved in a theoretical manner [42]. Following previous
works [16]–[18], [21], in Section IV-C5, we will investigate the
empirical convergency of RMVAL. In brief, RMVAL exhibits
good convergence behaviors in real scenarios.

2) Computation Complexity: To solve RMVAL, an iterative
optimization algorithm is designed. Let T be the number of iter-
ations, the computation costs within one iteration are calculated
as:
� {Z(v)}–subproblem: the cost of this subproblem is in-

significant since the matrix inverse operation in Eq. (5)
can be pre-computed and is used across all iterations and
all views;

� {U (v)}–subproblem: to solve Eq. (6), the singular value
shrinkage operation necessitates the computation of matrix
SVD, and thus, it needs O(V n3) for all views;

� the E1 and E2 subproblems consist column-wise and
element-wise thresholding respectively. Their costs are
negligible;

� S–subproblem: the t-SVD-TNN optimization consists of
calculating 3D FFT, inverse FFT, matrix SVD and multi-
plication. Since the tensor tubal-shrinkage is applied on the
rotated representation tensor and n � V , this subproblem
is dominated by the FFT operations with the complexity of
O(V n2 log(n)).

As illustrated above, the total computation complexity of RM-
VAL is O(TV n3).

IV. EXPERIMENTS

In this section, RMVAL is compared with the state-of-the-arts
to examine its effectiveness, and we also provide an in-depth
analysis on the properties of RMVAL.

A. Experimental Settings

Databases. Six widely used databases are chosen for ex-
periments with the contents varying on faces (EYaleB,2

Notting-Hill [43]), scenes (Scene-15 [44], MITIndoor-67 [45]),

2[Online]. Available: https://cvc.yale.edu/projects/yalefacesB/yalefacesB.
html
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TABLE II
STATISTICS OF THE DATASETS

and objects (COIL-20,3 Caltech-101 [46]). The statistics of
databases are reported in Table II. We follow the settings
in [17] to generate the multi-view features. Specifically, the
intensity, Local binary patterns, and Gabor features are ex-
tracted for EYaleB, Notting-Hill, and COIL-20. As to Scene-15,
MITIndoor-67, and Caltech-101, we also extract three hand-
crafted features, i.e., pyramid histograms of visual words, pair-
wise rotation invariant co-occurrence local binary pattern, and
census transform histogram. Since MITIndoor-67 and Caltech-
101 are relatively challenging datasets for clustering, we further
adopt the last layers from VGG19 and Inception-V3 networks4

as the forth views respectively to take advantage of the powerful
deep features.

Competitors. Eight state-of-the-art multi-view learning algo-
rithms are chosen for comparison, including: (1) Low-rank Ten-
sor constrained Multi-view Subspace Clustering (LT-MSC, in
ICCV 2015) [14], (2) Multi-view Learning with Adaptive Neigh-
bors (MLAN, in AAAI 2017) [22], (3) Exclusivity-Consistency
regularized Multi-view Subspace Clustering (ECMSC, in CVPR
2017) [23], (4) t-SVD-based Multi-view Subspace Clustering
(t-SVD-MSC, in IJCV 2018) [16], (5) Hyper-Laplacian Regu-
larized Multi-linear Multi-View Self-representation (HLR-M2

VS, in TCybern 2018) [17], (6) Essential Tensor Learning for
Multi-view Spectral Clustering (ETLMSC in TIP, 2019) [20], (7)
Jointly Learning kernel representation tensor and affinity matrix
for Multi-View Clustering (JLMVC, in TMM 2019) [18], and
(8) Unified Graph and Low-rank Tensor Learning (UGLTL, in
AAAI 2020) [19]. In addition, the standard SPectral Clustering
(SPC) [7] and the Low-Rank Representation (LRR) based clus-
tering [5] are applied on all views, and the best clustering results
are reported as performance baselines.

Among them, LT-MSC, ECMSC, t-SVD-MSC, HLR-M2 VS,
and JLMVC are the subspace-learning-based models since they
use the self-representation matrices to capture the relationship
of samples in each view. Our RMVAL model also belongs to
this category. MLAN, ETLMSC, and UGLTL are graph-based
models by capturing the view-specific relationship of samples
using local graphs.

Evaluation Metrics. Following the literature [16]–[18], [21],
we use six popular metrics for performance evaluation, i.e., AC-
Curacy (ACC), Normalized Mutual Information (NMI), Ad-
justed Rand index (AR), F-score, precision and recall. For
all measures, higher values denote better performance. These

3[Online]. Available: https://www.cs.columbia.edu/CAVE/software/softlib/
coil-20.php

4[Online]. Available: https://keras.io/zh/applications/

metrics are correlated but each metric favors a specific charac-
teristic of the clustering results. Usually, a comprehensive com-
parison is provided by jointly considering all metrics [16].

B. Performance Comparison

To avoid the interference of randomness, all experiments are
repeated ten times and the mean results are recorded in Ta-
bles III–V. Overall, RMVAL obtains the best or comparable
performance on databases with different contents. Specifically,

1) Face Image Clustering: It is challenging to cluster the
images in EYaleB since this database is collected under well
controlled positions and scales with extreme illumination con-
ditions. For example, two images belonging to a same person
but with large illumination variations may have a larger distance
than two images from different persons taken in similar lighting
conditions (shown in Fig. 3 in [47]). That is, the intra-cluster
distances are prone to be larger than the inter-cluster distances
when there exists severe illumination changes. As shown in the
left part of Table III, RMVAL is the best-performing method on
EYaleB and it outperforms the second best competitor JLMVC
by the margins of 5.0%, 3.7%, 8.9%, 7.9%, 9.2%, 6.6% on
the six evaluation metrics respectively. Meanwhile, ETLMSC
and UGLTL produce unsatisfactory results probably because
both methods directly adopt the Euclidean distance to calcu-
late the local graphs, and thus may be easily affected by large
illumination changes. This indicates that compared with the
subspace-learning-based methods, the graph-based models, i.e.,
MLAN, ETLMSC, and UGLTL, suffer problems when the initial
data graphs are inadequate to capture the relationship of samples.

On Notting-Hill, RMVAL can correctly recover all clusters,
and HLR-M2 VS ranks in the second place with near-optimal
results. While HLR-M2 VS explores the local manifolds us-
ing the hyper-Laplacian regularizer, RMVAL works in a simple
yet effective way that emphasizes the connectivity and spar-
sity of the affinity matrix. Generally, compared to the results
on EYaleB, all algorithms obtain much better performance on
Notting-Hill. This is because the Notting-Hill database exhibits
relatively small intra-cluster discrepancies since no large illumi-
nation variations are included [48] and thus the clustering task
is relatively easy.

2) Scene Image Clustering: The Scene-15 database contains
scene images from 10 outdoor classes (forest, highway, etc.) and
5 indoor categories (office, bedroom, etc.). The performance of
different algorithms on Scene-15 are reported on the left part
of Table IV. Specifically, RMVAL, JLMVC, and UGLTL ob-
tain comparable results and show noticeable improvements over
other methods. The competitive advantages of these three mod-
els primarily stem from the t-SVD-TNN imposed on the ro-
tated representation tensor. Furthermore, they perform enhanced
affinity learning with different concerns: JLMVC adopts the ker-
nel trick to handle the nonlinear data structures; UGLTL learns
the affinity matrix based on projected graph learning; mean-
while, RMVAL carefully balances the connectivity and sparsity
of the affinity matrix via seeking the global and local data struc-
tures.
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TABLE III
CLUSTERING RESULTS ON EYALEB AND NOTTING-HILL

JLMVC runs out of memory when being applied to Notting-Hill, MITIndoor-67, and Caltech-101.

TABLE IV
CLUSTERING RESULTS ON SCENE-15 AND MITINDOOR-67

TABLE V
CLUSTERING RESULTS ON COIL-20 AND CALTECH-101

Compared to Scene-15, MITIndoor-67 is more challenging
since it contains 67 indoor scenes such that the between-cluster
distances are relatively small. By comparing the clustering re-
sults on the right part of Table IV, we find that RMVAL and
UGLTL obtain promising performance with large margins over
their competitors. Although relying on different strategies, both
methods well explore the local neighborhoods and the global
low-rankness to capture the relationship of data. In contrast, the
LRR model makes use of only the global data structure while
MLAN focuses on exploiting local neighbors. The unsatisfac-
tory performance of LRR and MLAN shows the necessity of
jointly seeking the global and local data structures when pro-
cessing complex datasets.

3) Generic Object Clustering: COIL-20 consists objects
of simple shapes (toys, cups, etc.) with different geometric

characteristics. Images of each objects are taken at pose inter-
vals of five degrees, corresponding to 72 images per class. As
such, the clusters in the COIL-20 dataset are endowed with clear
manifold structures. This can be validated from the results on
the left part of Table V, where most methods achieve promising
performance. Although good performance can be expected gen-
erally owning to the simple intrinsic data structures, RMVAL
and UGLTL consistently show advantages over their competi-
tors as they can correctly recover all subspace structures.

Compared with COIL-20, Caltech-101 is a much larger
and more complicated dataset. The challenges of processing
Caltech-101 mainly come from the large number of clusters,
uncontrolled conditions, and unbalanced clusters. As recorded
in the right part of Table V, although several algorithms achieve
good precision rates, their clustering results are still far from
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satisfactory, particularly for the recall rate and the related F-
score, AR, ACC. Since the recall rate is evaluated by taking the
clustering as a series of decisions over all sample pairs [16], the
low recall value indicates that, given a sample, previous meth-
ods cannot fully identify the samples within the same subspace.
As a comparison, RMVAL outperforms the second best method
by the margins of 48.8%, 78.0%, 80.8%, and 27.2% in terms of
the recall, F-score, AR, and ACC values. RMVAL improves the
NMI score by around 3.6% over the best competitor, and the pre-
cision rate of RMVAL ranks in the second place, slightly lower
than that of UGLTL. Overall, the proposed RMVAL model is
able to handle the relatively large and challenging dataset.

C. In-Depth Analysis of RMVAL

In this section, examples are provided to visualize the sub-
space structures and the properties of the affinity matrices
learned from RMVAL, and then, we compare RMVAL with a
newly proposed post-processing technique. Afterward, the sen-
sitivity of parameter and the empirical convergence behaviors
are examined.

1) Subspace Structures Uncovered From the Affinity Ma-
trix: To provide an intuitive illustration on the effectiveness
of the proposed RMVAL model, we visualize the discov-
ered subspace structures by setting the affinity matrix as A =
1
V

∑V
v=1(|Z(v)|+ |Z(v)′ |) and A = 1

V

∑V
v=1(|S(v)|+ |S(v)′ |)

respectively. Following the methods in [21], [49], we use the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [50] for
visualization since it is an effective technique for revealing the
structures of the high-dimensional data that lie on the union of
several subspaces. The visual comparison is shown in Fig. 5,
where different colors represent different clusters. By simulta-
neously optimizing the connectivity and sparsity properties, the
global and local data structures are jointly considered to en-
hance the reliability of the affinity matrix. Thus, as shown in the
second column of Fig. 5, the affinity matrices learned from RM-
VAL reveal relatively clear subspace structures. As a compari-
son, by setting A = 1

V

∑V
v=1(|Z(v)|+ |Z(v)′ |), only the global

low-rankness of the data structures is considered. It is obvious
that the discovered subspace structures are worse since more
clusters are mixed as shown in the first column of Fig. 5. Please
note that we omit the visualization results on the MITIndoor-67
and Caltech-101 databases since it is hard to distinguish the
subspace structures when the cluster numbers are large.

2) Visualizing the Connectivity and Sparsity of the Affinity
Matrix: As shown in Fig. 6, compared with the affinity matri-
ces learned from t-SVD-MVC [16], those from RMVAL ex-
hibit much clear connections by jointly maintaining the the con-
nectivity and sparsity. Conceptually, owing to the property of
“intra-subspace projection dominance” [8], the intra-cluster co-
efficients tend to be relatively larger than the inter-cluster coef-
ficients in many cases. Thus, by jointly considering the global
low-rankness and preserving the strong connections in local
neighborhoods, the inter-cluster connections are alleviated while
the intra-cluster connections are relatively enhanced.

3) Comparison With the Post-Processing Technique in [24]:
Given a densely connected affinity matrix, the work in [24]

Fig. 5. Visualization of the subspace structures uncovered from different affin-
ity matrices via t-SNE.

Fig. 6. Illustration of affinity matrices from t-SVD-MVC and RMVAL on (a),
(b) EYaleB and (c), (d) COIL-20.
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TABLE VI
CLUSTERING PERFORMANCE OF T-SVD-MVC, T-SVD-MVC WITH POST-PROCESSING, AND RMVAL

Fig. 7. ACC of RMVAL with different parameter settings.

developed a post-processing technique to seek sparse solutions
from the densely connected samples by keeping only the con-
nections belonging to “good neighbors”. However, as mentioned
in Section II-B, this technique may suffer problem in practi-
cal applications since it requires the prior knowledge on the
number of good neighbors. We now compare the performance
of t-SVD-MVC, t-SVD-MVC followed by the post-processing
technique, and RMVAL to discuss this issue, and the result are
recorded in Table VI. Note that we tune the parameters in [24]
in large ranges according to the statistics of the datasets so as to
always obtain its best performance. We observe that, (1) RM-
VAL obtains the best performance in all cases; (2) adopting
the post-processing technique, t-SVD-MVC exhibits noticeable
performance gains on well balanced databases, i.e., EYaleB,
MITIndoor-67, and COIL-20; (3) when being applied to the un-
balanced datasets, i.e., Notting-Hill, Scene-15, and Caltech-101,
unfortunately, the performance degrades with post-processing.

Fig. 8. NMI of RMVAL with different parameter settings.

This may come from the fact that it is hard to set an appropriate
number of “good neighbors” for the unbalanced datasets.

4) Parameter Sensitivity: There are three tradeoff parame-
ters λ1, λ2, and λ3 in RMVAL, corresponding to the terms of
global structural constraint, view-specific self-representation,
and sparsity preservation, respectively. We first coarsely lo-
cate the parameters within the range of {0.01, 0.1, 1, 10, 100},
and then narrow the ranges experimentally to select λ1 from
{1, 2, . . . , 10}, tune λ2 from {0.1, 0.2, . . . , 1}, and choose λ3

from [0.01, 1]. In the following, we plot the ACC and NMI
scores on the EYaleB and COIL-20 databases to show the perfor-
mance sensitivity over different parameter settings. Generally,
the performance of RMVAL is less sensitive to λ2, and is sig-
nificantly affected by the values of λ1 and λ3. From Figs. 7
and 8, we find that the optimal values of λ3 on EYaleB are much
larger than that on COIL-20. This is because the EYaleB dataset
may exhibit large inter-cluster similarities due to the severe
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Fig. 9. Empirical convergence curves of RMVAL.

illumination changes, and thus, the property of intra-subspace
projection dominance may broken. That is, there exists large
coefficients among inter-cluster samples and directly setting
large λ3 values may filter out too many intra-cluster connec-
tions. This observation coincides the results in Fig. 6(a), where
the sub-diagonal elements on the affinity matrices are relatively
large, corresponding to images belong to different persons but
with the same illumination conditions. In the contrary, COIL-20
consists relatively simple data structures and thus λ3 can be well
tuned from a large range.

5) Empirical Convergence: Within the ADMM framework,
a fast convergence rate can be expected by adopting the varying
penalty scheme to adjust the parameter ρ [39]. In Fig. 9, we
plot the residual curves when processing all databases. It can be
observed that the residuals tend to be stable within 10 iterations,
showing the efficiency of Algorithm 1.

V. CONCLUSION

In this paper, we propose a Reliable Multi-View Affinity
Learning (RMVAL) model that simultaneously optimizes the
connectivity and sparsity of the affinity. By doing so, the intra-
subspace samples are well-connected on the affinity matrix and
the inter-subspace samples are disconnected, leading to accu-
rate clustering results. RMVAL well exploits the global and
local data structures: it encourages the intra-subspace samples
to be densely connected via global low-rankness and purifies
the dense solution by preserving only the strong connections
in neighborhoods. We devise an efficient algorithm to solve the

RMVAL model within the ADMM framework. Extensive ex-
periments on six benchmark datasets validated the effectiveness
of RMVAL.

As RMVAL purifies the densely connected self-representation
tensor via the l1-norm regularization, it essentially assumes the
equal reliability of different views and adopts the same strategy
to process each view. However, this assumption does not always
hold. For example, some features may exhibit large inter-class
margins such that the induced self-representation matrices have
clear connectivity and sparsity. In this case, the small coefficients
also correspond to intra-cluster connections, and thus, directing
cutting off these small values may reduce the reliability of the
affinity matrix. Our future will study this problem.
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