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One-Dimensional Nonlinear Model
for Producing Chaos

Zhongyun Hua, Member, IEEE, and Yicong Zhou, Senior Member, IEEE

Abstract— Motivated by the concept of circuit design in digital
circuit, this paper proposes a one-dimensional (1D) nonlinear
model (1D-NLM) for producing 1D discrete-time chaotic maps.
Our previous works have designed four nonlinear operations
of generating new chaotic maps. However, they focus only on
discussing individual nonlinear operations and their properties,
but fail to consider their relationship among these operations. The
proposed 1D-NLM includes these existing nonlinear operations,
develops two new nonlinear operations, discusses their relation-
ship among different nonlinear operations, and investigates the
properties of different combinations of these operations. To show
the effectiveness of 1D-NLM in generating new chaotic maps,
as examples, we provide four new chaotic maps and study
their dynamics properties from following three aspects: equi-
librium point, stability, and bifurcation diagram. Performance
evaluations are provided using the Lyapunov exponent, Shannon
entropy, correlation dimension, and initial state sensitivity. The
evaluation results show that these new chaotic maps have more
complex chaotic behaviors than existing ones. To demonstrate
the performance of 1D-NLM in practical applications, we use
a pseudo-random number generator (PRNG) to compare new
and existing chaotic maps. The randomness test results indicate
that new chaotic map generated by 1D-NLM shows better
performance than existing ones in designing PRNG.

Index Terms— Chaotic behavior, chaotic map, chaotification,
1D nonlinear model.

I. INTRODUCTION

CHAOTIC behaviors widely exist in many natural and
non-natural phenomena, such as the weather and

climate [1]. It can be studied through some analytical
techniques or mathematical models, known as chaotic sys-
tems. Although there is no universally accepted mathematical
definition for chaos, a chaotic system with chaotic behav-
ior always displays the following properties: initial state
sensitivity, topological transitivity and density of periodic
orbits [2], [3]. Thus, the future behavior of a chaotic system is
fully determined by its initial state. Any arbitrarily tiny change
in the initial state results in a totally different orbit. With these
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significant properties, chaos theory has wide applications in
different fields of science and engineering [4]–[7], especially
in cryptography and communication [8]–[11]. This is due to
the facts that many properties of chaotic behavior can be found
similar counterparts in cryptography and the synchronization
of chaos is extremely suitable for designing secure communi-
cation systems [12]–[15].

A dynamical system with chaotic attractors is globally stable
but locally unstable. This means that arbitrarily close states
diverge from each other but never depart from the attractor.
However, the phase plane of finite precision platforms cannot
have infinite number of states. When chaotic behavior is sim-
ulated in a finite precision platform, the arbitrarily close states
will overlap, and thus the chaotic behavior will degrade to
periodic behavior [16]–[18]. If states of a chaotic attractor are
more concentrated, the extremely close ones are more possible
to overlap. Thus, a chaotic system with good ergodicity is
desired in real applications. On the other hand, with the
development of discerning chaos technologies, some chaotic
systems with simple definitions and behaviors can be easily
attacked using different methods [19]. Recently, many studies
are performed to predict chaotic behaviors by estimating
their states [20], identifying their chaotic signals [21], [22],
or deducing their initial conditions [23], [24]. If the future
behavior of a chaotic system is successfully predicted, its
corresponding chaos-based applications may have the high
probability of crashing [25], [26].

Recently, a wide body of research has devoted to developing
new dynamical systems with complex behaviors. These studies
can be classified into two catalogs: designing specific chaotic
maps and developing methodologies of generating a series
of chaotic maps. The former aims to produce well-defined
chaotic maps with clear mathematical definitions, such as the
Lü attractor [27], the multiwing chaotic attractors [28]–[30]
and the multiscroll chaotic attractors [31], [32]. The latter is
to propose a framework or a system that can generate a series
of chaotic maps, such as the coupling scheme [33]–[35] and
the hyperchaotic system generation methodology [36].

To generate new one-dimensional (1D) discrete-time chaotic
maps with better performance, our previous works have
designed four nonlinear operations: cascade [37], modula-
tion [38], switching [39] and fusion [40]. However, these
previous works discussed only the properties of individual
nonlinear operations and failed to consider the relationship
among different nonlinear operations. To address this problem,
this paper proposes a 1D nonlinear model (1D-NLM) to
discuss the relationship among different nonlinear operations
and to investigate the properties and chaotic behaviors of
different combinations of these nonlinear operations. New
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chaotic maps can be generated by arbitrarily combining these
nonlinear operations or by directly using them individually.
Thus, users have great flexibility to select arbitrary nonlinear
operations and any existing chaotic maps as seed maps to
produce a large number of new chaotic maps. The main
contributions of this work are as follows:

1) We propose 1D-NLM. It contains six basic nonlinear
operations, including four nonlinear operations devel-
oped in our previous works and two newly introduced
ones. These operations can be arbitrarily combined
together to form new complicated operations;

2) We propose two new nonlinear operations for 1D-NLM
and theoretically analyze their chaotic behaviors.
To investigate the relationship among these basic oper-
ations, we comprehensively analyze the properties of
different combinations of these basic operations and
their chaotic behaviors;

3) As examples, four new chaotic maps are generated
by two proposed basic nonlinear operations and com-
binations of basic operations in 1D-NLM. We study
their dynamics properties from following three aspects:
equilibrium point, stability and bifurcation diagram;

4) We quantitatively evaluate these newly generated chaotic
maps using the Lyapunov exponent, Shannon entropy,
correlation dimension and initial state sensitivity.

5) To demonstrate the performance of 1D-NLM in practical
applications, we use a pseudo-random number genera-
tor (PRNG) as an example to compare one of our new
chaotic maps with existing chaotic maps.

The rest of this paper is organized as follows. Section II
reviews three existing 1D chaotic maps and four developed
nonlinear operations as background. Section III introduces
1D-NLM and its chaotic behavior is discussed in Section IV.
Section V presents four examples of new chaotic maps gen-
erated using 1D-NLM and their performance is evaluated
in Section VI. Section VII use a chaos-based PRNG to
compare the performance of new and existing chaotic maps.
Section VIII concludes this paper.

II. BACKGROUND

This section briefly reviews three widely used 1D chaotic
maps and four developed nonlinear operations. The existing
1D chaotic maps will be used as seed maps to demonstrate
the proposed 1D-NLM in Section V and the four nonlinear
operations are components of the model.

A. Existing 1D Chaotic Maps

1) Logistic Map: The Logistic map is a first-order differ-
ence equation that widely arises in the economic, social and
biological sciences [41]. It is represented as

xi+1 = L(xi ) = 4 pxi(1 − xi ).

Its parameter p ∈ [0, 1] and variable xi is limited into the
interval [0, 1].

Equilibrium point (or fixed point) is the element of a
function’s domain that maps to itself. The Logistic map’s

Fig. 1. Equilibrium points and bifurcation diagrams of the (a) Logistic map,
(b) Sine map and (c) Tent map.

equilibrium point x̃ satisfies the equation

x̃ = 4 px̃(1 − x̃). (1)

Solve Eq. (1), we can get that the Logistic map has two
equilibrium points, i.e. x̃1 = 0 and x̃2 = 1 − 1/(4 p). Fig. 1(a)
plots the two equilibrium points and bifurcation diagram of
the Logistic map with the change of its parameter p. Observed
from the bifurcation diagram, we can get that the Logistic is
chaotic when p ∈ [0.9, 1].

2) Sine Map: The Sine map is derived from the Sine
function that maps the input angle within interval [0, 1] into
the same interval. Mathematically, the Sine map is defined as

xi+1 = S(xi ) = p sin(πxi ),

where the control parameter p ∈ [0, 1]. To find out the Sine
map’s equilibrium point x̃ , we set

x̃ = p sin(π x̃). (2)

Solve Eq. (2), we obtain that the Sine map has equilibrium
point x̃1 = 0 in the whole parameter range and another
equilibrium point x̃2 when its parameter p > 0.3184. Fig. 1(b)
shows its equilibrium points and bifurcation diagram. The Sine
map has chaotic behavior when p ∈ [0.87, 1].

3) Tent Map: The Tent map is a piecewise function that
either scales or folds the input value based on its range.
Mathematically, its generalized form can be defined as

xi+1 = T (xi ) =
{

2 pxi , for xi < 0.5,

2 p(1 − xi), for xi ≥ 0.5,

where the parameter p ∈ [0, 1]. To find out its equilibrium
point x̃ , we set

x̃ = 2 p min{x̃, 1 − x̃}. (3)

From Eq. (3), we calculate out that the Tent map has equi-
librium point x̃1 = 0 in the whole parameter range and
equilibrium point x̃2 = (2 p)/(2 p+1) in the range p ∈ [0.5, 1].
The two equilibrium points and bifurcation diagram of the
Tent map are plotted in Fig. 1(c). The Tent map has chaotic
behavior when p ∈ (0.5, 1).
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TABLE I

DEFINITIONS OF SIX BASIC NONLINEAR OPERATIONS IN 1D-NLM

B. Existing Nonlinear Operations

Here, we recall four nonlinear operations of generating
1D chaotic maps developed in our previous works.

1) Cascade: The cascade operation for generating new
chaotic maps was proposed in [37]. It connects two 1D chaotic
maps in series. The definition of the cascade operation is given
in Table I. f (x) and g(x) are two 1D chaotic maps that are
used as seed maps. The output of f (x) is fed into the input
of g(x), and the output of g(x) is the iterative value, and also
feeds back into the input of f (x) for next iteration.

2) Modulation: The modulation operation uses the output of
a chaotic map to dynamically control the parameter of another
chaotic map to exhibit chaotic behaviors [38]. Its definition is
shown in Table I, in which f (x) and g(x) are two 1D chaotic
maps, the transformation R(x) is to linearly transform the
output of f (x) into g(x)’s chaotic range, and g(x) uses the
dynamically changed parameter to generate trajectories.

3) Switching: The switching operation utilizes a wheel
switch to select one of seed maps to execute in each
iteration [39]. It contains l 1D normalized chaotic maps
as seed maps and a controlling wheel switch q. According
to the pre-defined rules in q, one seed map is selected to
generate chaotic orbit in each iteration. Its definition is shown
in Table I. As can be seen, f1(x), f2(x), · · · , fl(x) are l nor-
malized chaotic maps and q = {q1, q2, · · · , ql} is the wheel
switch, in which qi ∈ {1, 2, · · · , l}. In the i -th iteration, the
qi -th seed map fqi (x) is selected to execute.

4) Fusion: The fusion operation generates new chaotic
maps by mixing the dynamics of two seed maps in a nonlinear
way [40]. Its definition is shown in Table I. In each iteration,
the input is concurrently fed into two seed maps, and then
the outputs of the two seed maps are combined by the
modular arithmetic.

III. PROPOSED 1D-NLM

When designing digital circuit systems, complex circuit
systems can be constructed by combining several basic circuit
units. Motivated by the concept of circuit design, this section
introduces the 1D nonlinear model (1D-NLM). It contains six
basic nonlinear operations, including four developed nonlinear

Fig. 2. The scalar cascade operation.

operations presented in Section II-B and two newly introduced
ones. These nonlinear operations can be arbitrarily combined
together to form new complicated operations. Each of the
six basic nonlinear operations is designed using the concept
that complex circuit systems are a combination of basic circuit
units, while the complicated operations correspond to the
combined structures of complex circuit systems.

A. New Nonlinear Operations

Here, we introduce two nonlinear operations. Each opera-
tion can use existing chaotic maps as seed maps to generate
new ones.

1) Scalar Cascade: The scalar cascade operation generates
chaotic maps by cascading a chaotic map with itself several
times. Its definition is shown in Table I and its structure
is demonstrated in Fig. 2. The integer c indicates how
many times the seed map f (x) is cascaded with itself. The
scalar cascade operation has all the properties of the cascade
operation.

2) Scalar Modulation: The scalar modulation is defined
in Table I and its structure is shown in Fig. 3. The c is an
integer and c ≥ 2. The first c−1 maps are control maps and the
last one is the seed map. When c = 2, the scalar modulation
degrades to the modulation operation that the outputs of a
chaotic map is used to dynamically control the parameter of
itself. When c > 2, the outputs of a control map are used to
dynamically control the parameter of the next control map,
and the outputs of the last control map f (y(c−1)) are used to
dynamically control the parameter of the seed map f (x) to
generate iterative values. The transformation R(x) maps the
output of a control map into the chaotic range of the next
control map or the seed map f (x).

All the six basic nonlinear operations can generate a large
number of new chaotic maps using existing chaotic maps as
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Fig. 3. The scalar modulation operation.

seed maps. These new chaotic maps usually have much more
complex behaviors than their corresponding seed maps.

B. Combinations of Basic Nonlinear Operations

The basic nonlinear operations in 1D-NLM can be arbi-
trarily combined to form new complicated operations. For
N seed maps f1(x), f2(x), · · · , fN (x), a combination of basic
operations can be defined as

CO(x) = f1(x) � f2(x) � · · · � fN (x), (4)

where � represents one of the six basic nonlinear operations
listed in Table I. Note that if � represents the scalar cas-
cade or scalar modulation, fi (x) on the left of � is an integer
constant instead of a chaotic map. In Eq. (4), any chaotic maps
and basic nonlinear operations can be arbitrarily selected to
generate a large number of new chaotic maps.

To better demonstrate the properties of the complicated
operations, we set N = 3 and the two basic nonlinear opera-
tions as the cascade operation � and modulation operation �
as examples. A totally number of 12 different combinations
can be obtained and they are shown in Table II. According
to the order of the cascade and modulation operations, these
complicated operations can be divided into two kinds. One first
does modulation and then performs cascade. The other first
does cascade and then performs modulation. For the two kinds
of complicated operations, we separately take one example to
analyze their chaotic behaviors. The two examples are

CO1(x) = f1(x) � f2(x) � f3(x), (5)

and

CO2(x) = f1(x) � f2(x) � f3(x). (6)

1) Structure of CO1(x): The structure of CO1(x) is shown
as Fig. 4. The seed maps f1(x), f2(x) and f3(x) are
three existing chaotic maps. First, do cascade operation
to f1(x) and f2(x). Then, perform modulation operation

TABLE II

TWELVE DIFFERENT COMBINATIONS OF BASIC NONLINEAR OPERATIONS

Fig. 4. The structure of CO1(x).

to the cascade result and f3(x). Changing the positions
of f1(x), f2(x) and f3(x) can result in totally different
combinations, which can be seen in the first six rows
of Table II.

2) Structure of CO2(x): Fig. 5 displays the structure
of CO2(x). Different from CO1(x), CO2(x) first does modula-
tion operation to f1(x) and f2(x), and then performs cascade
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Fig. 5. The structure of CO2(x).

to the modulation result and f3(x). Changing the positions
of f1(x), f2(x) and f3(x) in CO2(x) also result in totally
different chaotic maps. All the different combinations with
different positions of f1(x), f2(x) and f3(x) are shown in the
last six rows of Table II.

IV. CHAOTIC BEHAVIOR ANALYSIS

Among all the methods of detecting the existence of chaos,
the Lyapunov exponent (LE) developed in [42] is a widely
accepted indictor, which denotes the average divergence of
two close trajectories of a dynamical system. The LE of a
differentiable equation xi+1 = f (xi ) can be defined as,

λ f (x) = lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′(xi )

∣∣}. (7)

A positive LE denotes that the two close trajectories of a
dynamical system exponentially diverge in each unit time and
they will be totally different eventually. Thus, a dynamical
system xi+1 = f (xi ) is considered to own chaotic behavior
if λ f (x) > 0.

The chaotic behaviors of the cascade, modulation, switching
and fusion operations have been analyzed in the previous
works in [37]–[40]. The analysis results demonstrated their
complex chaotic behaviors.

A. Chaotic Behavior of Scalar Cascade

For the scalar cascade operation U(x) = c �̃ f (x), when
c = 2, its iterative form can be rewritten as xi+1 = f ( f (xi)).
Based on the definition of LE in Eq. (7), its LE can be written
as

λU(x) = lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣( f ( f (xi )))

′∣∣}

= lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′( f (xi )) f ′(xi )

∣∣}

= lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′( f (xi ))

∣∣}

+ lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′(xi)

∣∣}

= 2λ f (x).

When c = k, it is not difficult to calculate out that λU(x) =
kλ f (x). Thus, λU(x) > 0 if λ f (x) > 0. This means that if the
seed map f (x) has chaotic behavior, the scalar cascade result
is chaotic and has larger LE than its seed map.

B. Chaotic Behavior of Scalar Modulation

Based on the definition of LE in Eq. (7), the LE of the
scalar modulation shown in Fig. 3 can be written as

λD(x) = lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′(ri+1, xi )

∣∣}, (8)

where xi is the iteration value and ri+1 is the transform result
of (c − 1)-th control map’s output that is used to control
the parameter of f (x) in each iteration. LE of the scalar
modulation result can be analyzed from the following ways:

• When the attractors of the (c − 1)-th control map
f (y(c−1)

i ) are an equilibrium point, after transforming,
the obtained ri+1 is also fixed and within the chaotic
range of f (x). Thus,

λD(x) > 0.

• When the attractors of f (y(c−1)
i ) are a limit cycle, namely,

f (y(c−1)
i ) has a periodic orbit and its outputs are a

finite number of different points, suppose {o j | j =
1, 2, · · · , k}. After transforming, the periodic sequence
{o j | j = 1, 2, · · · , k} is transformed as {r j | j =
1, 2, · · · , k}, which is also a periodic sequence and
r j ( j = 1, 2, · · · , k) is in the chaotic range of f (x).
Because k is a finite number, when the iteration number
n increases to ∞, the number of each point of the periodic
sequence {r j | j = 1, 2, · · · , k} approaches to n/k. Thus,
Eq. (8) can be rewritten as

λD(x) = lim
n→∞

⎧⎨
⎩ 1

n

n/k−1∑
i=0

ln
∣∣( f ′(r1, xi )

∣∣
⎫⎬
⎭ + · · ·

+ lim
n→∞

⎧⎨
⎩ 1

n

n/k−1∑
i=0

ln
∣∣( f ′(rk, xi )

∣∣
⎫⎬
⎭. (9)

Because k is a finite number and n → ∞, then
(n/k) → ∞. Thus,

lim
n→∞

⎧⎨
⎩1

n

n/k−1∑
i=0

ln
∣∣( f ′(r j , xi )

∣∣
⎫⎬
⎭

= 1

k
lim

(n/k)→∞

⎧⎨
⎩ 1

n/k

n/k−1∑
i=0

ln
∣∣( f ′(r j , xi )

∣∣
⎫⎬
⎭

= 1

k
λ f (r j ,x),

where j = 1, 2, · · · , k. Then Eq. (9) becomes

λD(x) = 1

k
λ f (r1,x) + 1

k
λ f (r2,x) + · · · + 1

k
λ f (rk ,x)

= 1

k

k∑
j=1

λ f (r j ,x).
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Because r j ( j = 1, 2, · · · , k) is in the chaotic range
of f (x), λ f (r j ,x) > 0 for ∀ j ∈ {1, 2, ..., k}. Thus,

λD(x) = 1

k

k∑
j=1

λ f (r j ,x) > 0.

• When f (y(c−1)
i ) has chaotic attractor, f (y(c−1)

i ) is
chaotic and ri+1 is dynamical. In this case, the seed
map f (x) achieves a different control parameter in each
unit time, which makes the iterative outputs different and
unpredictable.

From the discussions above, the scalar modulation result is
able to achieve chaotic behavior if the seed map f (x) has
continuous chaotic range. However, the scalar modulation
result may lose its chaotic behavior if the chaotic range of f (x)
is discontinuous. This occurs when the control map f (y(c−1))
is not chaotic and the fixed output(s) of f (y(c−1)) happen(s)
to be transformed into the nonchaotic ranges of f (x).

C. Chaotic Behaviors of Complicated Operations

As arbitrary numbers of basic nonlinear operations can be
selected to form complicated operations in Eq. (4), we take
CO1(x) in Eq. (5) and CO2(x) in Eq. (6) as examples to
demonstrate the chaotic behaviors of complicated operations.

1) Chaotic Behavior of CO1(x): The example CO1(x)
first performs the modulation to f1(x) and f2(x), and then
cascades the modulation result and f3(x). Suppose M(x) =
f1(x)� f2(x). According to the analysis in [38, Section III-C]
that if the seed map f2(x) has continuous chaotic range,
the modulation result M(x) always has chaotic behavior. This
means that λM(x) > 0.

The example CO1(x) can be rewritten as CO1(x) = M(x)�
f3(x), namely xi+1 = f3(M(xi)). Based on the definition of
LE in Eq. (7), the LE of CO1(x) can be defined as

λCO1(x) = lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣( f3(M(xi)))

′∣∣}

= lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′

3(M(xi))M′(xi )
∣∣}

= lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′

3(M(xi))
∣∣}

+ lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣M′(xi )

∣∣}

= λ f3(x) + λM(x).

Thus, the LE of CO1(x) is the combination of those of
M(x) and f3(x). Because λM(x) > 0, λCO1(x) > 0 if
λM(x) > −λ f3(x).

2) Chaotic Behavior of CO2(x): The example CO2(x) first
cascades f1(x) and f2(x), and then performs modulation to
the cascade result and f3(x). Suppose C(x) = f1(x) � f2(x),
then CO2(x) = C(x) � f3(x). Based on the definition of LE

in Eq. (7), the LE of CO2(x) can be written as

λCO2(x) = lim
n→∞

{
1

n

n−1∑
i=0

ln
∣∣ f ′

3(ri+1, xi )
∣∣}, (10)

where xi is the iteration value and ri+1 is the transformation
result of C(x)’s output that is used to control the parameter
of f3(x) in each iteration. Based on the chaotic behavior
analysis of modulation operation in [38, Section III-C], when
the seed map has continuous chaotic range, the modulation
result always has chaotic behavior whether the control map
is chaotic or not. Then, λCO2(x) > 0 and CO2(x) has chaotic
behavior.

V. EXAMPLES OF NEW CHAOTIC MAPS

To show the effectiveness and usability of 1D-NLM, this
section demonstrates four examples of new chaotic maps
generated by two proposed basic nonlinear operations and
the complicated operations of 1D-NLM, and studies their
dynamics properties.

A. E1

First, we demonstrate the scalar cascade operation �̃. The
constant c is set as 3 and the seed map is selected as the
Sine map S(x), then a chaotic map E1 can be generated.
Mathematically, it is represented as

xi+1 = 3 �̃ S(xi )

= p1 sin(πp2 sin(πp sin(πxi ))),

where p, p1, p2 are control parameters within the
range [0, 1]. For simplicity, we set the parameters p1 = 1,
p2 = 1 and investigate the chaotic behavior of E1 with the
change of its parameter p. Then,

xi+1 = sin(π sin(πp sin(πxi ))). (11)

1) Equilibrium Point and Stability: To find out the equilib-
rium points of E1, we set xi+1 = xi and the equilibrium points
of E1 are the roots of the equation

x̃ − sin(π sin(πp sin(π x̃))) = 0. (12)

Obviously, x̃1 = 0 is one equilibrium point of E1. Solving
Eq. (12), we can find out that E1 has more equilibrium points
when its control parameter p increases within the range [0, 1].
When p > 0.0323, Eq. (12) has another root x̃2 and thus E1
has two equilibrium points; When p > 0.3063, E1 has four
equilibrium points; When p > 0.6831, E1 has six equilibrium
points; When p > 0.9460, the number of equilibrium points
increases to eight.

The equilibrium point of a dynamical system has two states:
stable and unstable. Its stability is dependent on the slope of
the system’ curve at the point. When the slope is within the
range (−1, 1), the equilibrium point is stable and it attracts all
its neighboring trajectories to make them converge to the point
eventually; otherwise, the equilibrium point is unstable and its
neighboring trajectories escape from it as the time increases.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 13:30:55 UTC from IEEE Xplore.  Restrictions apply. 



HUA AND ZHOU: 1-D-NLM FOR PRODUCING CHAOS 241

Fig. 6. (a) Equilibrium points of E1; (b) Jacobian values of the equilibrium
points of E1.

TABLE III

EQUILIBRIUM POINTS OF E1 AND THEIR STABILITY

The Jacobian matrix can be used to calculate the slope of a
curve and that of E1 is given by

J = dE1

dxi

= cos(π sin(πp sin(πxi )))

× π cos(πp sin(πxi ))πp cos(πxi )π.

The equilibrium point is stable if the Jacobian value at the
point is within the range (−1, 1); otherwise, it is unstable.

Fig. 6 plots the equilibrium points of E1 and their Jacobian
values with different parameter settings. Table III lists the
occurrence and stable intervals of these equilibrium points.
As can be seen from the table, we can achieve that E1
has stability when p ∈ [0, 0.0875] ∪ [0.3063, 0.3352] ∪
[0.6831, 0.6961] ∪ [0.9460, 0.9490].

2) Bifurcation Diagram: As can be observed from Fig. 6(b),
when the control parameter p increases to 0.0875, the equi-
librium point x̃2 = 0.6708 becomes unstable. At the same
time, the Jacobian value at this point reduces to -1. Once
this happens, the equilibrium point x̃2 becomes two new
stable points. When p increases to 0.1109, the period-two
stable points lose their stability and generate period-four stable
points; When p increases to 0.1172, the period-four stable
points lose their stability and generate eight stable points.
For example, when p = 0.1185, the eight stable points
are 0.3521, 0.8554, 0.4890, 0.9095, 0.3217, 0.8274, 0.5646,
0.9002. By this principle, the stable points doubly increase

Fig. 7. The bifurcation diagram of E1.

and a critical value p̃ is finally achieved. When p is slightly
less than p̃, the outputs of the system are periodic with a
large period. When p is slightly larger than p̃, these points
start to become aperiodic and the system eventually routes to
chaos, which is called period-doubling bifurcation. Numerical
result shows that p̂ = 0.1190. When p increases to 0.3063,
0.6831 or 0.9460, E1 obtains the stable equilibrium points
x̃3, x̃5, x̃7, respectively. Then, it returns back to stable state.
When p increases to 0.3352, 0.6961 or 0.9490, x̃3, x̃5 and x̃7
lose their stability and E1 starts to route to chaos again. The
bifurcation diagram of E1 is plotted in Fig. 7.

B. E2

Here, we give an example of chaotic map generated by the
scalar modulation operation �̃. The coefficient c is set as 3 and
the seed map is also selected as the Sine map S(x), then a
chaotic map E2 can be generated by

xi+1 = 3 �̃ S(xi )

= ri+1 sin(πxi ), (13)

where

ri+1 = 1 − 0.13y(2)
i+1,

y(2)
i+1 = pi+1 sin(πy(2)

i ),

pi+1 = 1 − 0.13y(1)
i+1,

y(1)
i+1 = p sin(πy(1)

i ),

where p is the control parameter and p ∈ [0, 1].
Fig. 8 shows the bifurcation diagram of E2. Theoretically,

if the seed map f (x) has a continuous chaotic range, the scalar
modulation result has chaotic behavior for all the parameter
settings. This has been proved in Section IV-B. However, if the
chaotic range of f (x) is not continuous, the scalar modulation
result may lose its chaotic behavior in some parameter settings.
This occurs when the fixed outputs of a control map happen to
be transformed into the non-chaotic ranges of the next control
map or seed map, such as the white space in the chaotic ranges
of the Logistic and Sine maps (see Figs. 1(a) and (b)). As the
seed map in E2 is the Sine map, E2 losses its chaotic behavior
in few parameter settings, which can be observed from Fig. 8.

C. E3

This example demonstrates the complicated operation
CO1(x) = f1(x)� f2(x)� f3(x) in Table II. f1(x) is selected
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Fig. 8. The bifurcation diagram of E2.

Fig. 9. The bifurcation diagram of E3.

as the Tent map T (x); f2(x) is selected as the Sine map S(x);
and f3(x) is selected as the Logistic map L(x). Then, E3 is
defined by

E3(x) = T (x) � S(x) � L(x).

First, Tent map controls the parameter of the Sine map to
generate a new chaotic map M(x). Then, M(x) is cascaded
by the Logistic map to obtain E3. The iterative form of E3 is
represented as

xi+1 = 4ri+1 sin(πxi )(1 − ri+1 sin(πxi )), (14)

where ri+1 is the transformation result of yi+1, which is
defined as

ri+1 = 1 − 0.13yi+1,

where yi+1 is the output of the Tent map,

yi+1 =
{

2 py1, for yi < 0.5,

2 p(1 − yi ), for yi ≥ 0.5,

where the control parameter p ∈ [0, 1].
We use the numerical result to investigate the chaotic

properties of E3. It is obvious that x̃1 = 0 is an equilibrium
point of E3. In the generation procedure of E3, the parameter
of Sine map is modulated by the Tent map. When p ∈ [0, 0.5],
the Tent map has fixed point, which is transformed into the
chaotic range of Tent map by the following transformation;
When p ∈ (0.5, 1], the Tent map has chaotic attractors and
the Sine map gets a dynamically changed parameter in each
iteration. After cascading with the Logistic map, the obtained
E3 is dissipated in the whole parameter range [0, 1], which is
also verified by its bifurcation diagram shown in Fig. 9.

Fig. 10. The bifurcation diagram of E4.

D. E4

The example E4 demonstrates the complicated operation
CO2(x) = f1(x)� f2(x)� f3(x) in Table II. As any different
of same chaotic maps can be selected in the combination oper-
ation, we select f1(x) and f2(x) both as the Tent map T (x)
and choose f3(x) as the Sine map S(x). Then, E4 is defined
by

E4(x) = T (x) � T (x) � S(x).

First, Tent map is cascaded to itself to generate a new chaotic
map, namely C(x) = T (x) � T (x). Then, C(x) is to dynami-
cally control the parameter of the Sine map to obtain E4. The
iterative definition of E4 can be represented by

xi+1 = ri+1 sin(πxi ), (15)

where ri+1 is the transformation result of yi+1, which is
defined as

ri+1 = 1 − 0.13yi+1,

where yi+1 is the output of C(x).
The bifurcation diagram of E4 is shown in Fig. 10, from

which we can observe that E4 also has chaotic behavior in the
whole parameter range.

VI. PERFORMANCE ANALYSIS

This section evaluates the performance of the four
new chaotic maps from four aspects: Lyapunov expo-
nent (LE) [42], Shannon entropy (SE) [43], [44], correlation
dimension (CD) [45] and initial state sensitivity.

A. Lyapunov Exponent

As discussed in Section IV that LE is a widely accepted
indictor to measure the existence of chaotic behavior.
A dynamical system with at least one positive LE shows
complicated dynamics and bigger positive LE means that the
two close trajectories of a dynamical system diverge faster.
Fig. 11 plots the LEs of different chaotic maps with the
change of their parameters. As can be observed from the
figure, E1 and E2 have positive LEs in most parameter settings
while E3 and E4 have positive LEs in the whole parameter
ranges. This is consistent with their bifurcation diagrams
in Figs. 7, 8, 9 and 10. Compared with their corresponding
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Fig. 11. (a) LE comparisons of E1, E2 and Sine map; (b) LE comparisons
of E4, E3, Tent, Sine and Logistic maps.

seed maps used in the generation procedures, E1, E2, E3 and E4
have bigger positive LEs in most parameter settings. This
means that 1D-NLM can generate chaotic maps with more
complicated behaviors.

B. Shannon Entropy

The SE is a widely used standard to measure the randomness
of a data sequence or a signal. To test the randomness of
outputs of different chaotic maps, we designed the follow-
ing experiments for each chaotic map: 1) obtain a time
series z with length 10,000 for different parameter settings;
2) uniformly divide interval (0, 1) into 210 sub-intervals and
Pr(i) is the frequency of occurrence of z in the i -th sub-
interval; 3) calculate SE of z. Fig. 12 plots SEs of different
chaotic maps with different parameter settings. We can see that
E1, E2, E3 and E4 have much bigger SEs than the Sine, Tent and
Logistic maps in most parameter settings. Moreover, E3 and E4
have quite large SEs in the whole parameter settings that are
close to the theoretical maximum value 10. With a larger SE,
the outputs of a chaotic map distribute more random in the
interval (0, 1). The average SEs of different chaotic maps in
their respective chaotic ranges are listed in Table IV, from
which we can also observe that the new chaotic maps have
better ergodicity than their seed maps.

C. Correlation Dimension

The CD is a type of fractal dimensions and describes the
dimensionality of the space occupied by a set of points [46].
It can be used to measure the strangeness of chaotic attractor.

The method proposed in [46] is used to calculate the CDs of
different chaotic maps. Fig. 13 plots the experimental results.
As can be seen from the figures, the four new chaotic maps
have much bigger CDs than their corresponding seed maps in
most parameter settings. These seed maps have very small CDs
that are close to 0 in many parameter settings. This means that

Fig. 12. (a) SE comparisons of E1, E2 and Sine map; (b) SE comparisons
of E4, E3, Tent, Sine and Logistic maps.

TABLE IV

AVERAGE MEASURE RESULTS OF DIFFERENT CHAOTIC MAPS

WITHIN THEIR RESPECTIVE CHAOTIC RANGES

their attractors have low degree of freedom. The average CDs
of different chaotic maps in their respective chaotic ranges are
listed in the third column of Table IV, in which we can get
that E1, E2, E3 and E4 have larger CDs on average than their
seed maps, which means that their attractors can occupy higher
dimensionality in their phase planes to make their behaviors
more irregular.

D. Initial State Sensitivity

The initial state sensitivity of a dynamical system can be
measured by the correlation coefficient (CC) [37]. An absolute
CC closing to 0 means that the two trajectories have weak
correlation.

For each chaotic map, the experiment was designed as
follows: 1) apply a tiny change to the initial value and generate
two trajectories s1 and s2 with the same control parameter;
2) apply to a tiny change to the control parameter and
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Fig. 13. (a) CD comparisons of E1, E2 and Sine map; (b) CD comparisons
of E3, E4, Tent, Sine and Logistic maps.

TABLE V

AVERAGE ABSOLUTE CCs OF DIFFERENT CHAOTIC MAPS WITHIN

THEIR RESPECTIVE CHAOTIC RANGES

generate two trajectories s3 and s4 with the same initial value;
3) calculate CC between s1 and s2, and that between s3
and s4. Table V lists the average absolute CCs of different
chaotic maps in their respective chaotic ranges. As can be
seen from the table, the four new chaotic maps have much
smaller absolute CCs on average than their seed maps, except
for E2 in applying a tiny change in initial value. Fig. 14 plots
the output pairs of (s1, s2) and (s3, s4) of these new chaotic
maps. These output pairs randomly distribute in the whole
phase plane, which straightforwardly display that they have
weak correlations.

VII. PSEUDO-RANDOM NUMBER GENERATOR

For many chaos-based practical applications, their perfor-
mance is highly dependent on the chaos performance of their
used chaotic maps. Because new chaotic maps generated by
the proposed 1D-NLM have better chaos performance than

Fig. 14. Output trajectories generated by (a) E1, (b) E2, (c) E3, and (d) E4
with a tiny change applied to their initial values (the top row) and control
parameters (the bottom row).

their seed maps, they are more suitable for many practical
applications. To better show this advantage of 1D-NLM,
we use a simple chaos-based pseudo-random number genera-
tor (PRNG) as an example to compare one of our new chaotic
maps with three existing ones.

A. Chaos-Based PRNG

One widely used method of designing chaos-based PRNGs
is to directly use the chaotic trajectories as the random
numbers [47]. Suppose sequence S = {S(i)|i = 1, 2, · · · }
is a collection of points truncated from a chaotic trajectory.
A chaos-based PRNG can be defined as

T (t) = Bin
S(t)�32, (16)

where Bin
γ �32 is a transformation and truncation function
that first converts the float number γ into a 52-bit binary string
using IEEE 754 Standard [48] and then fetches the 32th digital
number of the binary string.

In Eq. (16), different chaotic maps can be used to generate
the chaotic sequence S. Our experiments use the new chaotic
map E3 and three existing 1D chaotic maps (the Logistic, Sine
and Tent maps) as the chaotic maps of PRNG. The PRNGs
using E3, Logistic map, Sine map and Tent map are called
E3-based PRNG (E3-PRNG), Logistic-map-based PRNG
(LM-PRNG), Sine-map-based PRNG (SM-PRNG) and Tent-
map-based PRNG (TM-PRNG), respectively.

Besides the four chaos-based PRNGs, our experiment also
added a PRNG used in MATLAB R2012a software, called
MATLAB-PRNG. It uses the built-in function rand(.) to
generate random numbers and the procedure is shown as

T (t) =
{

1, if rand(1) ≥ 0.5

0, if rand(1) < 0.5.
(17)

B. Randomness Evaluation

Here, we use the TestU01 to test the randomness of the
PRNGs. The TestU01 is a widely used and accepted software
library that provides a collection of empirical statistical tests
for random numbers [49]. It predefines six test batteries and
each test battery contains a collection of statistical tests. Each
statistical test is designed to find the non-randomness areas of a
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TABLE VI

TESTU01 RESULTS OF DIFFERENT LENGTHS OF BINARY SEQUENCES
GENERATED BY VARIOUS PRNGs. α/β INDICATES PASSING α

OUT OF β STATISTICAL TESTS

test sequence from different sides and can generate a p-value.
The test sequence is considered to pass the statistical test if
the obtained p-value falls into the interval [0.001, 0.999].

We use the software version of TestU01-1.2.3 provided
in [50] to perform our experiments. For each of the five
PRNGs, we first randomly generate three binary sequences
with lengths 220, 225 and 230 bits, and then use three test
batteries, the Rabbit, Alphabit and BlockAlphabit to test the
randomness of the three binary sequences. Alphabit applies
17 statistical tests. BlockAlphabit applies the Alphabit test
battery repeatedly after reordering the bits by blocks with dif-
ferent sizes 1, 2, 4, 8, 16, 32. Thus, it contains a total number
of 17 × 6 = 102 statistical tests. Rabbit applies 38, 39 and
40 statistical tests for binary sequences with lengths 220, 225

and 230 bits, respectively. Table VI lists the TestU01 results
for the four chaos-based PRNGs and MATLAB-PRNG. The
LM-PRNG, SM-PRNG and TM-PRGN can pass almost all
the statistical tests when the generated binary sequences are
of length 220 bits. They become to fail some of the statistical
tests when the binary sequences increase to 225 bits, and
they fail to pass most of the statistical tests when the binary
sequences increase to 230 bits. MATLAB-PRNG fails two tests
in BlockAlphabit with sequence length as 220 and 225 bits, and
one test in Rabbit with sequence length as 230 bits. On the
other hand, E3-PRGN can generate different lengths of binary
sequences that can pass all the tests. This demonstrates that
the new chaotic map E3 has better randomness and ergodicity,
and is more suitable for designing PRNGs.

VIII. CONCLUSION

This paper introduced 1D-NLM for generating new chaotic
maps. It contains six basic nonlinear operations, including four
nonlinear operations developed in our previous works and two
newly proposed ones. These basic nonlinear operations can be
arbitrarily combined to form different complicated operations.
The properties of the newly proposed nonlinear operations
and complicated operations of 1D-NLM were discussed and
their chaotic behaviors were investigated using LE. Four
examples of new chaotic maps were generated as examples in
1D-NLM to show its effectiveness and usability. Their dynam-
ics properties were carefully studied and their performance
was evaluated in terms of LE, SE, CD and initial state
sensitivity. Compared with existing ones, these newly gen-
erated chaotic maps have much wider chaotic ranges, their
outputs are more random, their attractors have higher degree of
freedom, and their initial states are more sensitive. To further
demonstrate the effectiveness of 1D-NLM in practical applica-
tions, we used chaos-based PRNG as an example to compare
one of the new chaotic maps with three existing chaotic
maps. Performance test results show that new chaotic map of
1D-NLM is suitable for designing PRNG.
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