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Abstract— Words are treated as atomic units in natural lan-
guage processing tasks and it is a fundamental step to represent
them as vectors for supporting subsequent computations. GloVe
is a widely used machine learning model to train word vectors.
Generally, a large corpus and high computation resources are
required to train high-quality word vectors using GloVe, making
it difficult for users to train their own word vectors by them-
selves. A natural choice nowadays is to outsource the training
process to the cloud. However, coming with such cloud-based
training services are serious privacy concerns, which should
be well addressed. In this paper, we design, implement, and
evaluate PPGloVe, the first system framework that supports
privacy-preserving word vectors training using GloVe over
encrypted data of multiple participants. We first decompose the
training task and show that previous privacy-preserving machine
learning techniques are not practical for this task. We then
construct a new secure training strategy to delicately bridge
lightweight cryptographic techniques with GloVe in depth to sup-
port privacy-preserving GloVe training on the cloud. By design,
the corpora of the participants and the trained word vectors
are kept private along the whole training process. Extensive
experiments over three datasets of different scales demonstrate
that PPGloVe produces word vectors with promising quality
comparable to plaintext training, with practically affordable
overhead.

Index Terms— Privacy preservation, data security, word rep-
resentation, cloud computing.
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I. INTRODUCTION

WORDS are treated as atomic units in natural language
processing (NLP) tasks and it is a fundamental step

in these tasks to convert words to vectors so as to support
subsequent computations. GloVe [1] is a widely popular word
vector model to generate high-quality word vectors and has
been widely used in NLP applications [2], [3]. Since a large
corpus and high computation resources are required to train
high-quality word vectors via GloVe, it is not easy for users
to train their own word vectors themselves. Thus, an effective
choice for a user is to collaborate with others and outsource the
training over their joint data to the cloud. However, this comes
with serious security concerns. On one hand, the corpora
may contain privacy-sensitive information and the data owners
may not be willing to share them with others. On the other
hand, users should pay for the computation resources of cloud
for the training and they may not want others to access the
well-trained word vectors without being authorised. Thus, it is
very important to protect the corpora and word vectors when
collaboratively training word vectors on the cloud.

Privacy-preserving machine learning (ML) has received
wide attentions in recent years [4], [5], [6], [7], [8], [9].
The existing privacy-preserving ML techniques can be divided
into two categories in general. The first category aims to
securely train a ML model in the dark so that the training
data and trained model can be well protected [9], [10], [11],
while the second category focuses on protecting user data and
model parameters during the model inference stage [8], [12],
[13], [14], [15]. One can use the model to obtain desired
output with his/her data being protected, but cannot know
any useful information about the model parameters. Both
categories can well protect the confidentiality of user data and
model parameters.

Along the fast growing trend in privacy-preserving ML,
a line of work has been particularly focused on the NLP
domain [16], [17], [18], [19], [20]. For example, the work
in [16] utilized secure multi-party computation techniques
to build a secure sequence-to-sequence model that can be
applied in neural machine translation applications, and the
works in [18] and [19] implemented privacy-preserving text
classification tasks using private feature extraction. Most of
these works focus on protecting user data and model parame-
ters during the inference stage. The works in [17] and [20]
utilize homomorphic encryption [21], [22] to protect the
Word2Vec model [23] and fastText model [24], respectively,
during model training. However, homomorphic cryptosystems
typically encrypt data using heavy cryptographic operations,
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incurring significant computation overhead and data size
expansion. As reported in [17], the largest size of the training
dataset being evaluated is limited to only 80 MB, which is
clearly insufficient for many practical applications.

Although there has been good progress in privacy-
preserving ML in recent years, it is yet still challenging to
securely and efficiently train word vectors using GloVe due
to the following reasons. Firstly, a new secure mechanism
should be designed to efficiently compute the natural loga-
rithm in the GloVe model. Previous privacy-preserving model
training works [6], [10], [11], [25] primarily focus on the
secure training of neural networks and realize the secure
computation of some relatively simple nonlinear functions
such as ReLU, sigmoid, and maxpool. Several secure natu-
ral logarithm computation methods have been developed in
prior works [26], [27], [28]. However, these methods either
support only a small effective domain [26] or realize secure
computation using heavyweight techniques such as garbled
circuit in [27] and homomorphic encryption in [28], which
are far from sufficient to support practical applications (more
detailed discussions are given in Section III-C-Q1). Secondly,
GloVe needs to be trained over a large amount of data for
high utility. It will lead to low efficiency if we directly follow
the plaintext-domain training strategy for ciphertext-domain
training. Thus, we should bridge cryptographic techniques
with the GloVe model in depth to achieve privacy preservation
and high efficiency.

In light of the above, in this paper, we propose, imple-
ment, and evaluate PPGloVe, the first system framework to
collaboratively train word vectors using GloVe with privacy
preservation on the cloud. Since it requires a large corpus
to train high-quality word vectors, we build on a lightweight
cryptographic technique, additive secret sharing [29], to pro-
tect the training data and word vectors. To adapt to the
ciphertext-domain training, we re-organize the workflow of
GloVe and have three stages in PPGloVe: system initialization,
data processing and secure word vectors training. All the
entities prepare for training in the first stage. We separate
the time-consuming operations and securely compute them
in advance in the second stage so that they need to be
computed only once. We securely train the word vectors in
the third stage using the previous obtained results. To reduce
the communication cost, we use a more efficient learning
rate updating strategy without communication cost to replace
the original one used in GloVe. Since the previous secure
natural logarithm computation methods [26], [27], [28] are
inefficient for our task, we design a new secure natural
logarithm computation method which is more than 104

×

faster than prior methods. Besides, we also optimize secure
multiplications which share the same multiplier and reduce
the communication overhead by nearly half. We implement
our protocols and conduct evaluations on three datasets of
different scales. The experiment results show that PPGloVe has
modest performance overhead and can generate word vectors
with comparable quality to plaintext training. We summarize
our contributions as follows.
• We present PPGloVe, the first system framework that

allows users to collaboratively train word vectors based
on the GloVe model at the cloud, while protecting user
data and word vectors during the whole training process.

TABLE I
KEY NOTATIONS

• We delicately bridge lightweight cryptographic tech-
niques with GloVe training in depth to support privacy
preservation, and design an efficient secure natural loga-
rithm computation method that is more than 104

× faster
than existing methods.

• We analyze the complexity of PPGloVe and formally
justify its security. Extensive experiments on datasets of
different scales demonstrate that PPGloVe can produce
word vectors with quality comparable to the plaintext-
domain training, with practically affordable overhead.

The rest of this paper is organized as follows. Section II
introduces some preliminaries. We give the problem statement
in Section III. Then, we present the design of PPGloVe in
Section IV. We analyze the complexity of PPGloVe and prove
its security in Section V. We then show our experiment results
in Section VI, and discuss the related work in Section VII.
Finally, we conclude this paper in Section VIII.

II. PRELIMINARIES

In this section we introduce some necessary preliminaries.
And in Table I we list some key notations used in this paper.

A. Global Vector

The Global Vector (GloVe) model is an unsupervised learn-
ing algorithm for obtaining vector representations of words [1].
It uses sliding window to traverse the corpus and updates
the co-occurrence matrix in the sliding window, combining
the advantage of the global matrix and local context window.
GloVe is one of the most popular models for training word
vectors, and has been widely used in many NLP tasks [3].
GloVe takes the co-occurrence statistics of words as the
primary information for learning word representations. Let
M denote the word-to-word co-occurrence matrix, and its
element M j,k denotes the times that the word k occurs in a
same sliding window with the word j . Specifically, the GloVe
model builds the matrix M using a decreasing weighting
function. Therefore, the word pair ( j ,k) with r words distance
in the sliding window contributes 1/r to M j,k . The element
M j =

∑
k M j,k denotes the times that any word appears in the

context of the word j . We also use Pj,k = P(k| j) = M j,k/M j
to represent the probability that the word k appears in the
context of the word j .

The starting point for learning word vectors is the ratios of
the co-occurrence probabilities, rather than the probabilities
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themselves. Specifically, given two words h and j in a partic-
ular aspect, the ratio of their co-occurrence probabilities with
probe words k is used to estimate the relationship between the
two words. For example, let h = ice and j = steam, the ratio
Ph,k/Pj,k is much larger than 1 if k has closer relationship
with the word h than with the word j (e.g., k = solid).
Otherwise, the ratio Ph,k/Pj,k is much smaller than 1 if k
has closer relationship with the word j than with the word h.
Besides, the ratio Ph,k/Pj,k approaches to 1 if k has a similar
relationship with words h and j (e.g., k = water or f ashion).

Drawing upon the above observation, a general form of the
model can be constructed as

F(vh, v j , ṽk) =
Ph,k

Pj,k
, (1)

where v ∈ Rn are word vectors and ṽ ∈ Rn are sepa-
rate context word vectors. They are initialized randomly and
trained equivalently. The function F is recommended as the
exponential function. Then vectors should satisfy that

vT
j ṽk + d j + d̃k = ln(M j,k), (2)

where d j and d̃k denote the bias for v j and ṽk . To avoid
treating all the co-occurrences of words equally, a weighting
function f (x) is introduced in the loss function and defined
as

f (x) =

{
(x/xmax)

α if x < xmax;

1 otherwise,
(3)

where xmax and α are hyperparameters and α is set to 3/4 for
empirical motivation in GloVe. Finally, the total loss function
is obtained as

J =
1
2

∑
j,k∈W

f
(
M j,k

) (
vT

j ṽk + d j + d̃k − ln(M j,k)
)2

, (4)

where W is the corpus vocabulary. It can be seen that the v j ,
ṽk , d j , and d̃k need to be updated during training. To reduce
noise for a better performance, the word i is finally represented
as (vi + ṽi )/2, rather than only vi . For simplicity, we refer to
both v and ṽ as word vectors in this paper. We use V to denote
the set of all the word vectors v and ṽ, and use D to denote
the set of all the biases d and d̃.

B. Cryptographic Primitives
1) Arithmetic Secret Sharing: Given an ℓ-bit private value

x in ring Z2ℓ , the arithmetic secret sharing [29] can protect it
by splitting it into two secret shares ⟨x⟩(1), ⟨x⟩(2)

∈ Z2ℓ such
that ⟨x⟩(1)

+ ⟨x⟩(2)
≡ x (mod 2ℓ). Each share is a uniformly

distributed random value in Z2ℓ and reveals no information
about x . We denote the arithmetic secret sharing of x as ⟨x⟩
for short. Suppose that the two secret shares of x and y are
held by two parties P(1) and P(2), respectively. Then some
computations among the two parties can be supported. Firstly,
the secure addition (SecAdd) and secure subtraction (SecSub)
over shares (⟨z⟩(b)

= ⟨x⟩(b)
±⟨y⟩(b), b ∈ {1, 2}), and the secure

multiplication over a share and a public value γ (⟨z⟩(b)
=

γ · ⟨x⟩(b)) can be computed locally at each party. Secondly,
the secure multiplication (SecMul) between two secret-shared
values (⟨z⟩ = ⟨x⟩ · ⟨y⟩) requires one round of communication.

Specifically, a Beaver triple (⟨l⟩, ⟨o⟩, ⟨p⟩) is needed to assist
in the computation [30], where p = l · o. Such triples can
be generated offline by a third party [31]. The SecMul is
realized as follows. (1) Each party P(b) (b ∈ {1, 2}) computes
⟨β⟩(b)

= ⟨x⟩(b)
− ⟨l⟩(b) and ⟨δ⟩(b)

= ⟨y⟩(b)
− ⟨o⟩(b); (2) The

two parties collaboratively reconstruct β and δ; (3) Each party
computes ⟨z⟩(b)

= (b−1) ·β · δ+ δ · ⟨l⟩(b)
+β · ⟨o⟩(b)

+⟨p⟩(b).
The communication overhead for SecMul is 4ℓ bits [32].

2) Boolean Sharing: The Boolean sharing can be regarded
as a special case of arithmetic sharing with ℓ = 1. The
Boolean shares are within the ring Z2, and the addition and
subtraction over shares can be replaced by the XOR (⊕)
operation. Besides, the multiplication operation in the Boolean
sharing can be replaced by the AND (∧) operation that needs
a Beaver AND triple to assist in computation. To distinguish
Boolean sharing from arithmetic sharing, we use JxK(1) and
JxK(2) to represent the two Boolean shares of x , and also use
JxK to denote Boolean sharing for short.

C. Real Number Representation

The operands in the secret sharing primitives are all integers
within the ring Z2ℓ . However, the computation of GloVe
in our task contains real numbers. In our design, we use
the fixed-point representation to handle the real numbers,
following the priors works in [6] and [10]. Specifically, a real
number x is scaled and rounded to an integer x = ⌊x · 2q

⌋

(mod 2ℓ) within the ring Z2ℓ , where q is the scaling factor
used to control the precision. Note that the multiplication
of two scaled fixed-point values leads to a scaling factor
2q, which may exceed the bit length ℓ in the ring Z2ℓ .
Therefore, the multiplication result should be scaled down
by 2q before the subsequent operation. Our scaling-down
operation follows the local truncation scheme in [6], which
simply discards the last q-bit fraction part. This truncation
scheme has been proved to incur at most 1-bit error with a
high probability when the ring size is large enough.

III. PROBLEM STATEMENT

Training high-quality word vectors with GloVe requires a
large corpus and significant computational resources, making
it challenging for individual users. Thus, users may try to
collaborate with others and outsource the training over their
joint data to the cloud. Since the cloud can access the plaintext
of user data and word vectors, the training process comes with
privacy concerns. To address this, we propose PPGloVe as the
first system framework that supports privacy-preserving word
vector training using GloVe. PPGloVe ensures that during
the training process, both user data and word vectors remain
encrypted. Below we first introduce the system architecture
of PPGloVe, and then introduce the threat model and design
goals. After that, we elaborate on the design challenges.

A. System Architecture

Fig. 1 illustrates the system architecture of PPGloVe. It
works under a 2PC model and contains three types of entities:
user, cloud server, and key server.
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Fig. 1. The system architecture of our PPGloVe.

1) User: The system contains N participating users and
each user is denoted as Ui (i ∈ [1, N ]). These users aim to
collaboratively train high-quality word vectors. Each user Ui
firstly counts a word-to-word co-occurrence matrix Mi using
his/her own corpus locally. Since Mi uses word pairs as indices
(e.g., the element MI,am means the co-occurrence of the word
pair (I, am)), the user Ui replaces each word appearing in Mi
with a secure token generated by a pseudo-random function
(PRF), to protect the words from being known by the servers.
Finally, each user Ui splits Mi into two shares ⟨Mi ⟩

(1) and
⟨Mi ⟩

(2) and sends them to two cloud servers, respectively, for
jointly training word vectors with the co-occurrence matrices
of other users.

2) Cloud Server: Since GloVe needs to be trained over
a large amount of data for high utility, we employ the
lightweight secret sharing technique and a 2-party computation
(2PC) model to realize PPGloVe. This 2PC model has been
increasingly adopted in recent works on privacy-preserving
ML [6], [7], [10], [33], [34]. In such a model, data are
encrypted into two shares and sent to two cloud servers in
different trust domains for secure training. The two cloud
servers collaborate to execute designated secure protocols.
Since the two cloud servers are in different trust domains,
they are assumed to not collude with each other. Our design
also follows this trend and the system has two cloud servers
CS(1) and CS(2) for collaboration in securely training word
vectors. After receiving the encrypted matrices {⟨Mi ⟩

(b)
} (b ∈

{1, 2}) from the users, each server combines these matrices
to obtain a share ⟨M⟩(b) of the big co-occurrence matrix M
that contains the global information of all users’ corpora.
Then CS(1) and CS(2) collaboratively carry out the custom
protocols in PPGlove without seeing users’ data and each of
them produces ⟨V⟩(b), which is a secret share of the trained
word vectors V.

3) Key Server: The key server K S in our system is used
to generate and issue the PRF key, which is used by all the
users to generate secure tokens for the words appearing in
the co-occurrence matrix. The K S only works during the
system’s initialization phase and it does not participate in
secure computation for the actual model training process. Once
the key has been generated and issued, the K S can be offline.
It is noted that the key server is not a necessary entity in our
design, e.g., its functionality could be replaced through group
key agreement protocols run among the users.

B. Threat Model and Design Goals
Similar to prior works on privacy-preserving ML [35],

[36], [37] under the two-server model, PPGloVe considers

a semi-honest and non-colluding adversary model regarding
the two cloud servers. Specifically, we consider the scenario
where the two cloud servers honestly execute the designated
protocols and do not collude with each other, but they are
interested in learning the users’ private data and trained
word vectors from the protocol execution. This assumption
is reasonable because cloud service providers typically come
from well-established companies like Amazon and Google,
and thus, they have little incentive to compromise their repu-
tation [33]. In addition, the key server K S and the users are
considered to be trustworthy [17], [38].

Under the above threat model, our PPGloVe aims to provide
privacy-preserving and fast collaborative training for GloVe.
The specific design goals are as follows.
• Security: The security goals include data security and

model security. (a) The data security indicates that the
user’s word-word co-occurrence matrix Mi and the words
appearing in it should not be leaked to the cloud servers.
(b) The model security indicates that the cloud servers
can not learn anything about the trained word vectors.

• Efficiency: The communication and computation cost
during the whole training process should be as small as
possible.

• Utility: The word vectors trained in the ciphertext domain
should have comparable utility to that trained in the
plaintext domain.

C. Design Challenges
To achieve the aforementioned design goals, the following

questions should be specially considered.
Q1: How to efficiently and securely compute the natural

logarithm ln(x) during training? As shown in Eq. (4), the
loss function of GloVe contains the natural logarithm ln(x). To
securely compute the nonlinear functions is a time-consuming
and difficult problem in privacy-preserving ML. Several secure
natural logarithm computation methods have been proposed in
prior works [26], [27], [28]. The method in [26] is based on
the secret sharing technique and it uses McLaughlin series
to approximate the natural logarithm. It is only effective for
inputs near zero, because the McLaughlin series converges
slowly when the input is far from 0, making its effective
input domain very small. However, the input values (elements
in co-occurrence matrix M) in our task have a large range
(e.g., (10−2, 106)) and large errors will occur if directly using
this method to our task. Therefore, this method is not suitable
for our task. The other methods in [27] and [28] implement
secure natural logarithm computation using either garbled
circuit or homomorphic encryption. However, both of the
used techniques are time-consuming. According to the results
in [28], it takes about 6s for the method [28] and about 10s
for the method [27] to securely compute the natural logarithm
using a workstation (Intel Xeon 2.3 GHz CPU (16 cores)).
For a corpus with size 91MB, it is estimated to take more
than 3,000 days to compute all the secure natural logarithms
in our task when using these methods, which is unacceptable in
practice. Thus, it is required to design a more efficient secure
natural logarithm computation method. Besides, the training
will iterate several epochs, leading to the repeat of the natural
logarithm computation ln(x) and weighting function f (x) in
the ciphertext-domain for the same training sample. So the
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whole process of GloVe should be re-designed to achieve
computation savings in ciphertext-domain training.

Q2: How to reduce the communication overhead of
vector-element multiplication in the ciphertext-domain? The
secure vector-element multiplication accounts for a large pro-
portion of the communication cost between two cloud servers
in the training process. One implementation of the secure
vector-element multiplication is to convert it into multiple
element-element multiplications in the ciphertext domain.
However, due to the high dimension of word vectors and
large number of training samples, such way will introduce
substantial communication overhead. For example, when the
size of the corpus is around 600MB and the dimension of
the word vectors is 100, the communication cost of secure
vector-element multiplication exceeds 3,000GB in one training
epoch. Thus, the secure vector-element multiplication should
be optimized to reduce communication overhead.

Q3: How to dynamically adjust the learning rate? During
the training process, ML model parameters will gradually
converge to the optimal point. Therefore, the learning rate
should also be gradually reduced to achieve fine-tuning of
the model. The Adagrad optimizer [39] is used to realize
the dynamic adjustment of the learning rate in GloVe. This
optimizer involves division and square root operations, which
can not be performed directly in the secret sharing domain.
Previous study [40] uses the Newton-Raphson [41] method
for approximation to solve this. However, due to the large
number of parameters and training samples, this method will
incur large communication overhead in our task and cannot
meet the requirements of practicability. Taking a corpus with
about 600MB as an example, this method will require more
than 105 GB communication cost in one training epoch in
our task, according to our estimation. Therefore, we should
adopt an efficient and secure strategy to dynamically adjust the
learning rate during the process of ciphertext-domain training.

IV. DESIGN OF PPGLOVE

A. Design Overview
Here, we present an overview about how our design can

address the challenges described in Section III-C. Firstly,
we propose a new mechanism to securely and efficiently
compute the nonlinear functions from two aspects. (1) We
propose a new secure natural logarithm computation method
SecLn(·) using the lightweight secret sharing technique. Fol-
lowing prior work in [28], we also adopt the scaling-first and
approximating-second computation order, but propose a novel
and more effective realization fully based on the lightweight
secret sharing. Concretely, for each input, we use secure
comparison to determine a factor s = 2n , where s is the
smallest power of 2 that is larger than the input, and use this
factor to scale the input into the range of [− 1

2 , 0). Then we
use the Taylor series to approximate the final result in the
secret sharing domain. This design has a very high efficiency
and supports the input with large value, causing only a minor
accuracy loss. (2) Considering that the natural logarithm ln(x)

and weighting function f (x) are computed repeatedly for
each training sample, we aim to compute them only once
by separating their computations with other operations and
reuse the results. To implement this, we divide the training
process of GloVe into three stages: system initialization, data

processing and secure word vectors training, and move
the computations of f (x) and ln(x) to the stage of data
processing. Besides, the f (x) and ln(x) with different inputs
can be computed in advance with parallel processing, which
can further accelerate the calculation process.

Secondly, we optimize the secure vector-element multipli-
cation to reduce the communication overhead between the
two cloud servers. The secure vector-element multiplication
contains numerous independent element-element multiplica-
tions. Since these element-element multiplications have a
common multiplier, we follow the very recent work in [42]
and use the correlated Beaver triples to replace the multiple
independent Beaver triples to assist the secure multiplica-
tion operation. By this design, the common multiplier of
these element-element multiplications needs to be masked
and reconstructed only once, resulting in half communication
overhead reduction.

Thirdly, we adopt an efficient strategy from [43] to dynam-
ically adjust the learning rate, ensuring that the learning rate
adjustment can meet the security and performance require-
ments of practical training. This strategy calculates the learn-
ing rate using the numbers of all the training samples and
currently used samples, which guarantees that the learning
rate gradually decreases as the training progresses. Since this
method does not involve any private information of the training
data, it can be computed in the plaintext-domain without
introducing any communication overhead. Fig. 2 illustrates a
high-level overview of the system initialization, data process-
ing, and secure word vectors training in PPGloVe.

B. System Initialization

All the entities in PPGloVe participate in the system ini-
tialization. The key server K S generates a secret key key

$
←−

{0, 1}λ for a PRF function Fkey(·), and then sends it to all
the users through a secure channel. After this operation is
performed, we emphasize that the key server can go offline
and does not participate in the subsequent secure computation
process. Only the two cloud servers in our PPGloVe participate
in the subsequent secure computation for the actual model
training process.

Each user Ui generates two shares of co-occurrence matrix
and sends them to the two cloud servers as follows.
• Construct a word-to-word co-occurrence matrix Mi using

his/her own private corpus locally. The construction pro-
cess is the same with that in GloVe [1], which is described
in Section II-A.

• Generate a token π j = Fkey( j) for each word j appearing
in Mi and replace the word using the token. During
the training process, these tokens will be used as secure
indices to index the elements in ⟨Mi ⟩ by cloud servers
without exposing the original words.

• Convert all the non-zero elements in Mi to fixed-point
representation.

• Share Mi to generate ⟨Mi ⟩
(1) and ⟨Mi ⟩

(2), where
⟨Mi ⟩

(1)
+ ⟨Mi ⟩

(2)
≡Mi (mod 2ℓ).

• Send ⟨Mi ⟩
(1) and ⟨Mi ⟩

(2) with the secure tokens to C S(1)

and C S(2), respectively. Only non-zero items are set to
the cloud servers, since the zero values are not used for
training.
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Fig. 2. Workflow of our PPGloVe model.

Each cloud server C S(b) (b ∈ {1, 2}) merges the received
{⟨Mi ⟩

(b)
} of all the users into ⟨M⟩(b) by summing the values

of the same token-pairs in {⟨Mi ⟩
(b)
}. Then, C S(b) randomly

initializes ⟨V⟩(b) as the share of the word vectors and ⟨D⟩(b)

as the share of the bias values. Both of them are indexed by
the secure tokens, rather than the original words.

C. Data Processing
Since the natural logarithm ln(x) and weighting function

f (x) in Eq. (4) are computed repeatedly with the same inputs
M j,k in each training epoch of GloVe, we calculate them in
the ciphertext-domain in advance and reuse the results later.
Besides, as the computations for each training sample are
independent, all the natural logarithm and weighting function
computations can be executed with parallel processing, which
can greatly reduce the communication rounds and accelerate
the computation process.

1) Secure Natural Logarithm: The natural logarithm is a
kind of complex nonlinear operations and is difficult to be
directly computed in the ciphertext-domain. A commonly used
method is to approximate the natural logarithm using some
basic arithmetic operations such as Taylor series. However, the
Taylor series of the natural logarithm will cause a large error if
its input is a large value. To overcome this, prior works in [27]
and [28] first convert the input range of the natural logarithm
by scaling the input, and then compute the Taylor series to
approximate the natural logarithm in the ciphertext-domain.
However, these prior works use either heavy homomorphic
encryption or garbled circuit to implement secure computa-
tion. Both the technologies are time-consuming and far from
satisfying the efficiency requirements of our task, as discussed
in Section III-C-Q1.

We also follow this computation flow but design a more
efficient secure computation method SecLn(·). Firstly, we can
represent any x ∈ R+ as

x = 2n(1+ ε), (5)

where n = ⌊log2(x)+1⌋ and ε = −1+x/2n . Then the natural
logarithm ln(x) can be converted as

ln(x) = ln(2n(1+ ε)) = n ln(2)+ ln(1+ ε), (6)

where n satisfies that 2n−1
≤ x < 2n and ε ∈ [− 1

2 , 0).
Then the computation of ln(x) can be decomposed into the
computations of n ln(2) and ln(1 + ε). Since n ln(2) can be

directly computed in the secret sharing domain, we only need
to compute ln(1+ ε). Because ε ∈ [− 1

2 , 0), ln(1+ ε) can be
directly approximated using Taylor series with a minor error,
which is represented as

ln (1+ ε) =

∞∑
i=1

(−1)i−1εi

i
= ε −

ε2

2
+

ε3

3
−

ε4

4
+ · · · (7)

As a result, our SecLn(·) can be divided into two stages.
(1) Compute sharings ⟨n⟩ and ⟨ε⟩ for input sharing ⟨x⟩;
(2) Compute ⟨n⟩ · ln(2) and the Taylor series of ln(1 + ε) in
the secret sharing domain, and add the two results to obtain
the natural logarithm result.

a) The first stage of SecLn(·): This stage computes shar-
ings ⟨n⟩ and ⟨ε⟩ for input sharing ⟨x⟩. For clear description,
we suppose that the input x (i.e., M j,k) of the natural logarithm
is within the range x ∈ [2τ−1, 2ω), where ω is a positive
integer and τ is a negative one. Because a word pair in users’
corpus has countable co-occurrences, the input x has a upper
bound and thus ω can be empirically determined. We can also
evaluate the lower bound of x empirically to determine τ .
Note that our method still works when x < 2τ−1, which will
be discussed in the following Remark part.

We set a control bit ci (i ∈ [τ, ω]) for each possible value
of n, where cn = 1 and ci = 0 (i ̸= n). Then n and 1

2n can
be computed with these control bits as

n =
ω∑

i=τ

ci · i and
1
2n =

ω∑
i=τ

ci ·
1
2i . (8)

According to Eq. (5), ε can be computed as

ε = −1+ x ·

(
ω∑

i=τ

ci ·
1
2i

)
(9)

The computations of n and ε are thereby converted to
determine the ci . We use ρi to denote the comparison result
of x and 2i . Specifically, ρi = 1 if x ≥ 2i ; otherwise ρi = 0.
Recall that n satisfies that 2n−1

≤ x < 2n . Because i and
n are integers, n > i is equal to n − 1 ≥ i . For all i < n,
we can get that x ≥ 2n−1

≥ 2i , which means that ρi = 1.
For all i ≥ n, we can get that x < 2n

≤ 2i , which means
that ρi = 0. It is obvious that for pairs (ρi−1, ρi ) (i ∈ [τ, ω]),
only ρn−1⊕ ρn = 1, and ρi−1⊕ ρi = 0 (i ̸= n). Thus we can
assign ci as ci = ρi−1 ⊕ ρi .
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Algorithm 1 Secure Natural Logarithm SecLn(·)

Input: ⟨x⟩ ∈ Z2ℓ .
Output: ⟨ln(x)⟩ ∈ Z2ℓ .
The first stage of computing SecLn(·):
1: for i = τ to ω − 1 do
2: C S(1) and C S(2) compute Jρi K = SecComp(⟨x⟩, 2i ).
3: C S(1) and C S(2) set Jρτ−1K = J1K, JρωK = J0K.
4: for i = τ to ω do
5: Each C S(b) (b ∈ {1, 2}) computes Jci K(b)

=

Jρi−1K(b)
⊕ Jρi K(b).

6: for i = τ to ω do
7: C S(1) and C S(2) compute ⟨ci ⟩ =B2A(Jci K).

8: Each C S(b) computes ⟨n⟩(b)
=

ω∑
i=τ

⟨ci ⟩
(b)
· i .

9: C S(1) and C S(2) compute ⟨ε⟩ = −1+ ⟨x⟩ ·
ω∑

i=τ

⟨ci ⟩ ·
1
2i .

The second stage of computing SecLn(·):
10: C S(1) and C S(2) compute ⟨Tθ (ε)⟩.
11: Each C S(b) computes ⟨ln(x)⟩(b)

= ⟨n⟩(b)
· ln(2) +

⟨Tθ (ε)⟩
(b).

In our design, the cloud servers C S(1) and C S(2) first
compute the Boolean sharing Jci K and then convert Jci K into
arithmetic sharing ⟨ci ⟩. Let SecComp(⟨x⟩, y) denote secure
comparison function that takes secret sharing ⟨x⟩ and public
value y as input, and outputs Boolean sharing J1K if x ≥ y, and
J0K otherwise. C S(1) and C S(2) collaboratively calculate Jci K
in two steps. Firstly, they use function SecComp to calculate
Jρi K = SecComp(⟨x⟩, 2i ) (i ∈ [τ − 1, ω]). Secondly, each
C S(b) (b ∈ {1, 2}) calculates Jci K(b)

= Jρi−1K(b)
⊕ Jρi K(b)

(i ∈ [τ, ω]) locally. The implementation of SecComp is
based on the idea of secure bit decomposition. Concretely,
the comparison of two fixed-point integers X , Y ∈ Z2ℓ under
binary complement representation can be converted as the
comparison of X − Y and 0. Then the most significant bit
(MSB) can be used to represent the relationship between X−Y
and 0. The msb(X − Y ) is 1 if X − Y < 0; otherwise it is
0. We use the secure parallel prefix adder (PPA) introduced
in [7] to extract the MSB of the given arithmetic sharing
⟨X − Y ⟩ and outputs the Boolean sharing Jmsb(X − Y )K in
Z2. Fig. 3 shows an example of extracting the MSB using an
8-bit PPA. The secure PPA only relies on XOR and AND
operations in the secret sharing domain and can overcome
the serial execution restriction of the full adder, resulting in
fewer communication rounds. By this design, C S(1) and C S(2)

can obtain Jmsb(x − 2i )K. Specifically, they obtain J0K if
x ≥ 2i and obtain J1K if x < 2i . However, we need J1K for
x ≥ 2i and J0K for otherwise. To achieve this, we let C S(1)

negate its result locally. We describe the secure comparison
Jρi K = SecComp(⟨x⟩, 2i ) as follows:
• C S(1) and C S(2) collaboratively extract the Boolean shar-

ing Jρi K = Jmsb(x − 2i )K using secure PPA.
• C S(1) reverses its result Jρi K(1) to 1⊕ Jρi K(1).
Since 2τ−1

≤ x < 2ω, ρτ−1 = 1 and ρω = 0 are
always true. According to this, we can let C S(1) and C S(2)

collaboratively set Jρτ−1K = J1K and JρωK = J0K. In this
way, we only need to preform the secure comparison for
i ∈ [τ, ω − 1]. After the secure comparison, each C S(b)

Fig. 3. An example of extracting the MSB using an 8-bit PPA.

computes Jci K(b)
= Jρi−1K(b)

⊕ Jρi K(b) (i ∈ [τ, ω]) locally
to finish the computation of Jci K.

After obtaining the Boolean shares Jci K(1) and Jci K(2), C S(1)

and C S(2) collaboratively convert them into arithmetic shares
⟨ci ⟩

(1) and ⟨ci ⟩
(2) and use these values to compute ⟨n⟩ and ⟨ε⟩.

We adopt the secure B2A function from [33] to achieve this
conversion. Specifically, given a secret value x , B2A function
can convert its Boolean sharing JxK in Z2 to the arithmetic
sharing ⟨x⟩ in Z2ℓ . Given two cloud servers C S(1) and C S(2),
the secure B2A(JxK) is performed as follows:
• C S(1) sets ⟨u⟩(1)

= JxK(1), ⟨h⟩(1)
= 0.

• C S(2) sets ⟨u⟩(2)
= 0, ⟨h⟩(2)

= JxK(2).
• C S(1) and C S(2) collaboratively compute ⟨x⟩ = ⟨u⟩ +
⟨h⟩ − 2 · ⟨u⟩ · ⟨h⟩.

After obtaining ⟨ci ⟩, C S(1) and C S(2) calculate ⟨n⟩ and ⟨ε⟩ in
the secret sharing domain following Eq. (8) and Eq. (9). Note
that C S(1) and C S(2) compute ⟨n⟩ locally, but compute ⟨ε⟩
collaboratively because multiplication over arithmetic sharing
is involved.

b) The second stage of SecLn(·): In the second stage,
C S(1) and C S(2) compute ⟨n⟩ · ln(2) and use Taylor series
to approximate ln(1 + ε) in the secret sharing domain. The
computation of ⟨n⟩ · ln(2) can be performed by each cloud
server locally. We use Tθ (·) to denote the computation of the
Taylor series defined in Eq. (7), where θ is the number of
used terms. To compute Tθ (·) in the secret sharing domain,
C S(1) and C S(2) first agree upon the parameter θ and then
collaboratively compute Tθ (·) with the input ⟨ε⟩ by executing
the addition and multiplication operations in the secret sharing
domain. After the computations, each C S(b) (b ∈ {1, 2}) gets
the share ⟨Tθ (ε)⟩

(b). Finally, each C S(b) outputs ⟨ln(x)⟩(b)
=

⟨n⟩(b)
·ln(2)+⟨Tθ (ε)⟩

(b) to finish the second phase of SecLn(·).
Algorithm 1 shows the whole steps of our secure natural
logarithm SecLn(·).

Remark: To better describe our design, we suppose that the
input x is larger than a fixed small value, namely x ≥ 2τ−1.
However, our SecLn(·) can still work when the input x <

2τ−1. Following the aforementioned computation steps, we can
obtain that n = τ when x < 2τ−1. Since ε = −1 + x/2n ,
we then get that ε ∈ (−1,− 1

2 ), namely (1 + ε) ∈ (0, 1
2 ). As

a result, when x is a little smaller than 2τ−1, we can obtain
that ε is a little smaller than − 1

2 and the Taylor series of
ln(1 + ε) can still achieve a close approximation with small
error. However, the error will increase with the decrease of x .

2) Secure Weighting Function: In PPGloVe, we should
securely compute the weighting function f (x) defined in
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Algorithm 2 Secure Weighting Function SecW (·)

Input: ⟨x⟩ ∈ Z2ℓ .
Output: ⟨ f (x)⟩ ∈ Z2ℓ .
Calculate the control bit:
1: C S(1) and C S(2) compute the Boolean sharing Jt1K =

SecComp(⟨x⟩, xmax ).
2: C S(1) computes Jt2K(1)

= 1⊕ Jt1K(1).
3: C S(2) computes Jt2K(2)

= Jt1K(2).
Convert the Boolean sharing to arithmetic sharing:
4: C S(1) and C S(2) compute ⟨t1⟩ =B2A(Jt1K) and ⟨t2⟩ =

B2A(Jt2K).
Calculate Eq. (10) in the secret sharing domain:
5: Each C S(b) (b ∈ {1, 2}) computes ⟨x⟩(b)/xmax .
6: C S(1) and C S(2) compute ⟨ f (x)⟩ = 1·⟨t1⟩+⟨x⟩/xmax ·⟨t2⟩.

Eq. (3) in the secret sharing domain. The power exponent α

in f (x) is set to 1 in our design since it has few impact to
the training result. Then the function f (x) can be converted
as two polynomials that are triggered by two opposite control
bits t1 and t2. Suppose that t1 = 0 and t2 = 1 if x < xmax ;
otherwise, t1 = 1 and t2 = 0. Then f (x) can be rewritten as

f (x) = 1 · t1 + (x/xmax ) · t2. (10)

Since t2 = ¬t1, the key point to implement the secure
weighting function SecW (·) is to compute ⟨t1⟩ and ⟨x⟩/xmax .
The two cloud servers C S(1) and C S(2) perform the following
steps to obtain the secret sharing of f (x).
• C S(1) and C S(2) use the function SecComp introduced

in Section IV-C.1 to compute the Boolean sharing Jt1K =
SecComp(⟨x⟩, xmax ).

• C S(1) negates Jt1K(1) to obtain Jt2K(1)
= 1 ⊕ Jt1K(1) and

C S(2) sets Jt2K(2)
= Jt1K(2), implementing Jt2K = J¬t1K.

• C S(1) and C S(2) convert the Boolean sharing Jt1K, Jt2K
into the arithmetic sharing ⟨t1⟩ and ⟨t2⟩ using the secure
B2A function introduced in Section IV-C.1.

• Each C S(b) (b ∈ {1, 2}) computes ⟨x⟩(b)/xmax locally.
• C S(1) and C S(2) obtain the sharing of f (x) by computing
⟨ f (x)⟩ = 1 · ⟨t1⟩ + ⟨x⟩/xmax · ⟨t2⟩.

Algorithm 2 presents the construction for secure weighting
function SecW (·).

D. Secure Word Vectors Training

During the training process, the cloud servers C S(1) and
C S(2) use the tokens of words to index the word vectors and
biases without knowing the original words. They compute the
gradient values and update the word vectors v j , ṽk and their
biases d j , d̃k in the secret sharing domain. Then, each C S(b)

(b ∈ {1, 2}) returns a share ⟨V⟩(b) of the trained word vectors
V to the user Ui , where V is the set of all the v j and ṽk .
Finally, Ui restores V using V = ⟨V⟩(1)

+ ⟨V⟩(2) and recovers
the related words using PRF and his/her kept key locally.

The parameters ⟨v j ⟩, ⟨ṽk⟩, ⟨d j ⟩, and ⟨d̃k⟩ are learned upon
each training sample (π j , πk, ⟨M j,k⟩), where π j and πk are the
tokens of the words j and k, respectively. We use the stochastic
gradient descent algorithm to learn the parameters. To obtain
the word vectors updating equations, we first calculate the

derivatives of the loss function J (shown in Eq. (4)) regarding
to v j and ṽk in the plaintext-domain as follows

gv j =
∂ J
∂v j
= ṽk f

(
M j,k

) (
vT

j ṽk + d j + d̃k − ln(M j,k)
)

,

(11)

gṽk =
∂ J
∂ṽk
= v j f

(
M j,k

) (
vT

j ṽk + d j + d̃k − ln(M j,k)
)

.

(12)

Then the updating equations for word vectors v j and ṽk can
be obtained as

v j = v j − ηgv j and ṽk = ṽk − ηgṽk , (13)

where η denotes a positive learning rate. Similarly, we can get
the gradients and updating equations for biases d j and d̃k as

gd j = gd̃k
= f

(
M j,k

) (
vT

j ṽk + d j + d̃k − ln(M j,k)
)

, (14)

d j = d j − ηgd j and d̃k = d̃k − ηgd̃k
. (15)

After obtaining the updating equations, C S(1) and C S(2) can
train the word vectors in the secret sharing domain as follows.
• C S(1) and C S(2) collaboratively calculate the gradients

for word vectors v j and ṽk in the secret sharing domain.
• Each C S(b) (b ∈ {1, 2}) uses the intermediate result

obtained in the previous step to calculate the gradients
for biases b j and b̃k in the secret sharing domain locally.

• Each C S(b) updates the four parameters in the secret shar-
ing domain locally according to their updating equations
to complete secure word vectors updating.

Algorithm 3 presents the whole operations of secure word
vectors updating for one training sample in secret sharing
domain and we use symbol ⊙ to denote the inner product
of two secret-shared vectors. All the training tasks can be
performed with parallel processing by dividing the training
set into multiple sub-sets and processing simultaneously.

1) Dynamic Adjustment of the Learning Rate: The learning
rate η is a critical hyperparameter in the training process
and it should be dynamically adjusted to implement self-
adaptation. In GloVe, the Adagrad optimizer [39] is used to
dynamically adjust the learning rate. However, this optimizer
involves division and square root operations, which can not be
directly performed in the secret sharing domain.

To adapt to our task, we use an efficient strategy [43] to
update the learning rate η as follows

η = η0(1−
used_samples
total_samples

), (16)

where η0 is the initial value of the learning rate,
used_samples is the number of the currently used training
samples, and total_samples represents the total number of the
training samples. At the first beginning of training, η = η0 and
the model has a faster convergence rate. As the training
progresses, the word vector parameters are getting closer to
the optimal values and η becomes small. So the fine-tuning
of the parameters can be achieved. Note that this learning rate
adjustment strategy utilizes only the number of the training
samples, which is no need to be protected. Thus, the learning
rate updating is performed in the plaintext-domain and does
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Algorithm 3 Secure Word Vectors Updating
Input: A training sample (π j , πk, ⟨M j,k⟩).
Output: Updated secret-shared word vectors ⟨v j ⟩, ⟨ṽk⟩ and
updated secret-shared biases ⟨d j ⟩, ⟨d̃k⟩.
Calculate the sharing of gradients for word vectors:

1: C S(1) and C S(2) compute ⟨G⟩ = ⟨ f (M j,k)⟩·(⟨v
T
j ⟩⊙⟨ṽk⟩+

⟨d j ⟩ + ⟨d̃k⟩ − ⟨ln(M j,k)⟩).
2: C S(1) and C S(2) compute ⟨gv j ⟩ = ⟨ṽk⟩ · ⟨G⟩.
3: C S(1) and C S(2) compute ⟨gṽk ⟩ = ⟨v j ⟩ · ⟨G⟩.
Calculate the shares of gradients for biases:
4: Each C S(b) (b ∈ {1, 2}) sets local shares ⟨gd j ⟩

(b)
= ⟨G⟩(b)

and ⟨gd̃k
⟩
(b)
= ⟨G⟩(b).

Update the shares of word vectors:
5: Each C S(b) updates ⟨v j ⟩

(b)
= ⟨v j ⟩

(b)
− η · ⟨gv j ⟩

(b).
6: Each C S(b) updates ⟨ṽk⟩

(b)
= ⟨ṽk⟩

(b)
− η · ⟨gṽk ⟩

(b).
Update the shares of biases:
7: Each C S(b) updates ⟨d j ⟩

(b)
= ⟨d j ⟩

(b)
− η · ⟨gd j ⟩

(b).
8: Each C S(b) updates ⟨d̃k⟩

(b)
= ⟨d̃k⟩

(b)
− η · ⟨gd̃k

⟩
(b).

not introduce additional communication overhead. Note that
our implementation of GloVe has replaced the learning rate
dynamic adjustment mechanism and modified the value of α

in the weighting function f (x). Thus, we use the adapted-
GloVe to represent the modified model in this paper.

2) Optimization: When computing the gradients ⟨gv j ⟩ and
⟨gṽk ⟩ (lines 2-3 of Algorithm 3), we should compute the multi-
plications of two m-dimensional secret-shared vectors ⟨ṽk⟩ and
⟨v j ⟩ with a value ⟨G⟩ in the secret sharing domain, namely
⟨ṽk⟩·⟨G⟩ and ⟨v j ⟩·⟨G⟩. This indicates that each element in the
two vectors needs to be multiplied by ⟨G⟩. A straightforward
approach is to convert these vector-element multiplications
into 2m independent element-element multiplications, using
2m independent Beaver triples. Then the communication cost
is 8mℓ bits, according to the discussion in Section II-B.1.

Since the above 2m multiplications have the same multiplier
⟨G⟩ that is masked multiple times when using independent
Beaver triples, we can integrate the computations of ⟨gv j ⟩

and ⟨gṽk ⟩ into one protocol and optimize the computations
following the prior work [42]. Specifically, we replace the 2m
independent Beaver triples with 2m correlated Beaver triples
(⟨l⟩, ⟨o1⟩, · · · , ⟨o2m⟩, ⟨p1⟩, · · · , ⟨p2m⟩), where pi = l · oi
(i ∈ [1, 2m]). The sharing ⟨l⟩ is used to mask ⟨G⟩, and ⟨oi ⟩ is
used to mask the elements in the secret-shared vectors. In this
way, the constant multiplier ⟨G⟩ needs to be masked only once.
Note that these correlated Beaver triples can be pre-generated
using the same way as the standard triples [42].

Algorithm 4 shows the secure vector-element multiplication
protocol using correlated Beaver triples. We use the symbol
v(i) to denote the i-th element in vector v. Since β, {δi },
and {δm+i } (i ∈ [1, m]) can be reconstructed in one com-
munication round, C S(1) and C S(2) can execute this protocol
by communicating once. The communication overhead for
reconstructing β is 2ℓ bits, and that for reconstructing {δi } and
{δm+i } (i ∈ [1, m]) is 4mℓ bits. Thus, the total communication
overhead is 2ℓ+4mℓ bits, which is nearly cut in half compared
to 8mℓ bits in the original computations.

Algorithm 4 Secure Vector-Element Multiplication
Input: Two m-dimensional secret-shared vectors ⟨ṽk⟩ and
⟨v j ⟩, a secret-shared element ⟨G⟩, and correlated Beaver
triples (⟨l⟩, ⟨o1⟩, · · · , ⟨o2m⟩, ⟨p1⟩, · · · , ⟨p2m⟩).
Output: Secret-shared vectors ⟨ṽk · G⟩ and ⟨v j · G⟩.
1: Each C S(b) (b ∈ {1, 2}) computes ⟨β⟩(b)

= ⟨G⟩(b)
−⟨l⟩(b).

2: C S(1) and C S(2) reconstruct β.
3: for i ∈ [1, m] do
4: Each C S(b) computes ⟨δi ⟩

(b)
= ⟨ṽk(i)⟩(b)

− ⟨oi ⟩
(b).

5: Each C S(b) computes ⟨δm+i ⟩
(b)
= ⟨v j (i)⟩(b)

−

⟨om+i ⟩
(b).

6: C S(1) and C S(2) reconstruct δi , δm+i .
7: Each C S(b) computes ⟨ṽk(i)·G⟩(b)

= (b−1)·β ·δi+β·

⟨oi ⟩
(b)
+ ⟨l⟩(b)

· δi + ⟨pi ⟩
(b).

8: Each C S(b) computes ⟨v j (i) ·G⟩(b)
= (b−1) ·β · δm+i

+β · ⟨om+i ⟩
(b)
+ ⟨l⟩(b)

· δm+i + ⟨pm+i ⟩
(b).

V. COMPLEXITY ANALYSIS AND SECURITY ANALYSIS

A. Complexity Analysis

Since our PPGloVe involves only a limited number of
additions and multiplications that have low computation cost,
we focus on analyzing the communication complexity of our
design. Our PPGloVe contains three fundamental building
blocks: secure natural logarithm SecLn(·), secure weighting
function SecW (·), and secure word vectors updating.

1) Complexity of SecLn(·): The SecLn(·) contains ω − τ

SecComp operations, ω− τ + 1 B2A operations, one compu-
tation for ⟨ϵ⟩, one computation for ⟨n⟩ and one computation
for the sharing ⟨Tθ (ϵ)⟩ of Taylor series. The communica-
tion overhead and communication round for performing one
secure comparison function SecComp on ℓ-bit secret sharing
are 12ℓ − 16 bits and log(ℓ) + 1, respectively [35]. Thus,
the communication overhead for SecComp in SecLn(·) is
(ω−τ)(12ℓ−16) bits. Because the ω−τ SecComp operations
are independent and can be performed with parallel processing,
the communication round for these ω − τ SecComp opera-
tions is still log(ℓ) + 1. Each B2A operation has only one
secure multiplication operation that requires interaction. So the
communication cost is 4ℓ bits and the communication round
is one. Since these ω − τ + 1 B2A operations can also be
computed with parallel processing, the communication cost
caused by B2A operations is 4(ω − τ + 1)ℓ bits, and the
communication round is one. The computation for ⟨ε⟩ requires
one secure multiplication with 4ℓ bits of communication
overhead and one communication round. The computation
for ⟨n⟩ can be performed locally with no communication
overhead. The computation for ⟨Tθ (ϵ)⟩ requires ⌈log(θ)⌉ com-
munication rounds. For example, the communication round is
3 when θ = 5. Specifically, ⟨ϵ2

⟩ can be calculated in the
first communication round; ⟨ϵ3

⟩ and ⟨ϵ4
⟩ can be calculated in

the second communication round; and ⟨ϵ5
⟩ can be calculated

in the third communication round. Since the calculation for
⟨Tθ (ϵ)⟩ requires θ − 1 multiplications in the secret sharing
domain, its communication overhead is 4(θ − 1)ℓ bits. As
a result, the communication overhead of the SecLn(·) is
(ω − τ)(12ℓ − 16) + 4(ω − τ + 1)ℓ + 4θℓ bits, and its
communication round is 3+ log(ℓ)+ ⌈log(θ)⌉.
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2) Complexity of SecW (·): The SecW (·) includes one
SecComp operation, two B2A operations, and one multi-
plication operation in the secret sharing domain. Thus its
communication overhead is 24ℓ− 16 bits and its communica-
tion round is log(ℓ)+ 3.

3) Complexity of Secure Word Vectors Updating: The
secure word vectors updating contains one secure multipli-
cation, one secure m-dimensional vector inner product and
computations of ⟨gv j ⟩ and ⟨gṽk ⟩. The communication overhead
and communication round for one secure multiplication is 4ℓ

bits and one. The secure m-dimensional vector inner product
can be divided as m independent secure multiplications and
m − 1 additions. Then its communication overhead is 4mℓ

bits and communication round is one. The computations of
⟨gv j ⟩ = ⟨ṽk⟩ · ⟨G⟩ and ⟨gṽk ⟩ = ⟨v j ⟩ · ⟨G⟩ are implemented
by the secure vector-element multiplication protocol shown in
Algorithm 4. Then the communication overhead is 2ℓ+ 4mℓ

bits and the communication round is one, according to the
discussion in Section IV-D.2. As a result, the communication
overhead of the secure word vectors updating is (8m + 6)ℓ

bits and its communication round is 3.

B. Security Analysis

We now analyze the security of PPGloVe. As per the
specification of our proposed PPGloVe model, we replace the
words in the users’ co-occurrence matrices {Mi } with secure
tokens generated by PRF and encrypt {Mi } and word vectors
V as secret shares based on the secret sharing technique. The
interactions between the two non-colluding cloud servers are
supported by the Beaver triples that can provide provable
security guarantees. During the execution of PPGloVe, the two
non-colluding cloud servers receive only their corresponding
secret shares that are uniformly distributed and reveal nothing
about the private data. Thus the privacy of the user data and
word vectors is preserved.

We follow the standard simulation-based paradigm to prove
the security, as in recent works on privacy-preserving machine
learning [6], [13], [35], [40], [44]. Formally, we first define
an ideal functionality F to capture the security requirements
PPGloVe aims to achieve.
• Input. The users submit the matrices {Mi } to F .
• Computation. After receiving {Mi }, F merges these

matrices and adopts the adapted-GloVe model to train
word vectors.

• Output. F returns the trained word vectors V to users.
Let 5 denote the protocol that realizes the ideal functional-
ity F . We formally define the security of 5 as in Definition 1
and take the following Lemma 1 [44] and Lemma 2 [6] to
simplify the proofs.

Definition 1: Let view5
(b) denote each C S(b)’s (b ∈ {1, 2})

view during the execution of 5. 5 is secure in the semi-honest
and non-colluding setting, if for each C S(b) there exists a prob-
abilistic polynomial-time simulator such that S5

(b)

c
≡ view5

(b),
where S5

(b) is a simulated view of C S(b) generated by the

simulator, and
c
≡ means indistinguishable.

Lemma 1: The whole system is simulatable if all of its
building blocks are simulatable.

Lemma 2: The operations SecMul and SecAdd are simu-
latable in the semi-honest and non-colluding setting.

Theorem 1: PPGloVe can securely realize the ideal func-
tionality F in the semi-honest and non-colluding setting
according to Definition 1.

Proof: Note that PPGloVe consists of several subroutines:
system initialization (SI ), secure comparison (SecComp),
secure natural logarithm (SecLn(·)), secure weighting function
(SecW (·)), and secure word vectors updating (SW V ). Accord-
ing to Lemma 1, we can conclude that PPGloVe is secure if the
simulator for each subroutine exits. We use Sim(b)

1 to represent
the simulator which generates C S(b)’s view in the execution of
subroutine 1. As the roles of C S(1) and C S(2) are symmetric
in these protocols, it suffices to demonstrate the existence of
simulators for C S(1) in these subroutines.

1) Existence of Simulator Sim(1)
SI : During system initial-

ization, the words in ⟨Mi ⟩
(1) are replaced with secure tokens

generated by PRF and C S(1) performs only SecAdd oper-
ation to sum up the values of the same token-pairs in
{⟨M1⟩

(1), ⟨M2⟩
(1), · · · , ⟨Mi ⟩

(1), · · · }. According to Lemma 2,
the simulator Sim(1)

SI exists.
2) Existence of Simulator Sim(1)

SecComp: Since the SecComp
function is implemented using a PPA in the secret sharing
domain, which involves only secret sharing XOR (identical
to SecAdd) and AND (identical to SecMul). According to
Lemmas 1 and 2, the view of C S(1) in SecComp is simulatable
and the simulator Sim(1)

SecComp exits.

3) Existence of Simulator Sim(1)
SecLn: The SecLn(·) con-

tains SecComp, B2A, SecMul, and SecAdd operations.
C S(1) first performs SecComp function for input ⟨x⟩(1).
Since SecComp has been proven to be simulatable, the out-
put {Jρτ K(1), Jρτ+1K(1),· · · ,Jρω−1K(1)

} can be simulated. Then
C S(1) performs B2A function. As introduced in Section IV-
C.1, the B2A function contains only the SecMul and SecAdd
operations. Thus, the simulator for C S(1) in B2A also exists.
So the output of B2A {⟨cτ ⟩

(1), ⟨cτ+1⟩
(1),· · · ,⟨cω⟩

(1)
} can be

simulated. Since other intermediate results in SecLn(·) can
be computed using SecMul and SecAdd that have been
proven to be simulatable, these intermediate results can also
be simulated. As a result, the simulator Sim(1)

SecLn exists.
4) Existence of Simulator Sim(1)

SecW : The SecW (·) also
contains the SecComp, B2A, SecMul and SecAdd oper-
ations. Both the SecComp and B2A operations have been
proven to be simulatable. So the output of SecComp, Jt1K(1)

and the output of B2A, {⟨t1⟩(1), ⟨t2⟩(1)
} can be simulated.

Other intermediate results in SecW (·) can be computed using
SecMul and SecAdd, so these results can also be simulated.
As a result, the simulator Sim(1)

SecW exists.
5) Existence of Simulator Sim(1)

SW V : The SW V involves the
optimized secure vector-element multiplication (Algorithm 4).
As introduced in Section IV-D.2, we optimize the
vector-element multiplication by replacing the 2m independent
Beaver triples with 2m correlated Beaver triples (⟨l⟩, ⟨o1⟩, · · · ,
⟨o2m⟩, ⟨p1⟩, · · · , ⟨p2m⟩), where pi = l · oi (i ∈ [1, 2m]).
The sharing ⟨l⟩ is used to mask the constant multiplier ⟨G⟩
and ⟨oi ⟩ is used to mask the element in the secret-shared
vectors. Since the correlated Beaver triples can be generated
based on the standard secret sharing, their shares received
by C S(1) are randomly-distributed values. Thus the view
of C S(1) on the correlated Beaver triples can be simulated.
Then C S(1) receives the shares ⟨G − l⟩(2), {⟨ṽk(i) − oi ⟩

(2)
},
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TABLE II
DATASET STATISTICS

and {⟨v j (i) − om+i ⟩
(2)
} from C S(2), and outputs the results

{⟨ṽk(i) · G⟩(1)
}, {⟨v j (i) · G⟩(1)

} (i ∈ [1, m]). Note that
⟨ṽk(i)−oi ⟩

(2)/⟨v j (i)−om+i ⟩
(2) is a function of the correlated

Beaver triples shares, G − l, and ⟨ṽk(i) · G⟩(1)/⟨v j (i) · G⟩(1).
Therefore, these values are uniformly random and independent
and their joint distributions in the real view and simulated
view are identical [42]. So the simulator for C S(1) in the
optimized secure vector-element multiplication exists. Since
other intermediate results in SW V can be computed using
SecMul and SecAdd that have been proven to be simulatable,
the simulator Sim(1)

SW V exists, according to Lemmas 1 and 2.
The above concludes the proof of Theorem 1.

VI. SIMULATION EVALUATION

A. Experimental Settings
We implement a prototype of our PPGloVe using C pro-

gramming language and all experiments are run on a machine
with 16 Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz cores,
256GB RAM, and Ubuntu 16.04 OS.1 In line with exist-
ing literatures [6], [7], [45] using similar privacy-preserving
techniques, we also consider the local area network (LAN) sce-
narios for the communication between the two cloud servers
in our PPGloVe. The network bandwidth and delay are set to 1
GB/s and 0.17 ms, respectively, following the settings in [6].
We use the file system to simulate the communication for
LAN network scenarios. In our PPGloVe, the communication
through the LAN occurs only between the two cloud servers
during the model training.

PPGloVe works in secret sharing domain and we set the ring
size as Z2128 in our experiments. We set the scaling factor q
as 22 to present a real value to 128-bit fixed-point integer. To
implement SecLn(·), we set the term number θ in Taylor series
as 16, and the parameters τ and ω as −4 and 22, respectively.
We assume that the participation user number is 10, and all
the users have almost the same size of data. The dimension of
a word vector is set to m = 100 by default, and the window
size in the model is set to 15. Besides, the number of training
epochs is set as 10 and the number of threads during training
is 50.

The public Wikimedia dump is widely used in word vectors
training task [1], [46] and our experiment also uses it as
our training corpus. More specifically, we generate three
sub-datasets with different scales, which are listed in Table II.

B. Miscrobenchmarks
We firstly evaluate SecLn(·) and SecW (·), which are the

two most important building blocks in PPGloVe. Since these
two building blocks can be executed with parallel processing

1Our implementation is available at https://github.com/TTigerTT/PPGloVe

Fig. 4. Performance of the SecLn(·) and SecW (·). (a) The running time
with serial processing and parallel processing; (b) the average relative errors
with the plaintext-domain computations on randomly distributed data.

in data processing stage, we evaluate their performance with
serial processing and parallel processing, respectively. Fig. 4(a)
shows the running time of SecLn(·) and SecW (·) with dif-
ferent numbers of executions in our simulation. As can be
seen, SecLn(·) and SecW (·) separately take about 2.4 ms and
1.5 ms to complete one execution with serial processing, and
separately take about 0.015 ms and 0.001 ms with parallel
processing. This indicates that SecLn(·) and SecW (·) have
very fast execution speed, and their efficiency is much higher
with parallel processing.

We also evaluate the accuracy of SecLn(·) and SecW (·)

on randomly distributed data and calculate their average rela-
tive errors with the plaintext-domain computations. Fig. 4(b)
demonstrates the average relative errors with different execu-
tion numbers. The relative error of SecLn(·) is 3.6× 10−7 on
average, and that of SecW (·) is 0. This indicates that SecLn(·)

causes only an extremely small error and SecW (·) does not
cause any error.

C. Performance of PPGloVe

1) Performance on Data Processing: We first evaluate the
running time and error of the system in data processing stage,
and show the results in Fig. 5. As can be observed in Fig. 5(a),
the computation of SecLn(·) accounts for the most time at
data processing stage. For example, it takes 58.7 minutes to
compute SecLn(·) and 2.9 minutes to compute SecW (·) on
Dataset3. These time cost is practically acceptable, indicating
the efficiency of our design. Fig. 5(b) shows the average
relative errors of the two secure computations compared to
their plaintext-domain operations. The average relative errors
of SecLn(·) and SecW (·) on the three datasets are about
2.3×10−4 and 1.4×10−5, respectively. The relative errors are
a little larger than that in miscrobenchmarks shown in Fig. 4(b)
and the difference is caused by the different distributions of the
test data. In real datasets, many elements M j,k in the matrix
M are close to 1, causing that ln(M j,k) is close to 0.

We also compare the efficiency of our secure natural
logarithm SecLn(·) with previous secure natural logarithm
computation methods in [27] and [28]. We select these
two works as our comparison baselines because they are
the only secure natural logarithm computation methods that
can support a wide range of inputs. Although comparing
these secure natural logarithm computation methods utilizing
different privacy-preserving techniques may not be entirely
equitable, the results can demonstrate that previous works
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Fig. 5. Performance of data processing stage. (a) The running time; (b) the
average relative errors with the plaintext-domain computations.

TABLE III
TIME OF SECURELY COMPUTING ALL THE NATURAL LOGARITHMS IN

OUR TASK USING DIFFERENT METHODS

Fig. 6. Performance of word vectors training. (a) Running time; (b) com-
munication overhead.

cannot meet our computational efficiency goal. This highlights
the necessity of designing a new secure natural logarithm
computation method. We separately apply each computation
method to our task and Table III lists the estimated time cost.
The work [28] has reported the time cost of one execution
of the Lindell et al.’s [27] and Teo et al.’s [28] methods on
a workstation with Intel Xeon 2.3 GHz CPU (16 cores) and
20 threads. Specifically, one execution of Lindell et al.’s [27]
method takes about 10s with parallel processing, while that
of Teo et al.’s [28] method takes about 6s and 40s with
parallel processing and serial processing, respectively. We
directly refer to these results. The used thread number in our
SecLn(·) is also set as 20 in this comparison, to provide a
relatively fair comparison and one execution of our SecLn(·)

takes about 0.016ms and 2.4ms with parallel processing and
serial processing respectively in our simulation. As can be
seen, it takes around 7,300 days for Teo et al.’s method [28]
to securely compute all the natural logarithms with serial
processing when training the smallest Dataset1, which is

TABLE IV
TRAINING OVERHEAD OF SEVERAL SECURE TRAINING SCHEMES UNDER

THE 2-PARTY COMPUTATION (2PC) SETTING

TABLE V
EXAMPLE QUESTIONS IN THE TEST DATASET

completely unacceptable in practice. However, our SecLn(·)

only takes about 0.5 days for Dataset1, which is more than
104
× faster than the previous methods. Besides, the results

also show that our SecLn(·) is up to 105
× faster in parallel

processing than the previous methods.
2) Performance on Secure Word Vectors Training: We eval-

uate the efficiency of traning process in terms of training time
and communication cost. Fig. 6(a) shows the training time
of GloVe and PPGloVe. It can be seen that our PPGloVe
requires 16.80 hours to train on the biggest Dataset3, and
only 1.0 hour on the smallest Dataset1. Fig. 6(b) shows the
communication overhead of PPGloVe. GloVe is trained in
plaintext-domain with no communication cost. For the smallest
Dataset1, PPGloVe requires about 1,911.2GB to transfer data,
and the communication cost increases with the increase of
dataset. This training overhead is acceptable, aligning with
the levels observed in prior secure 2PC training models [6],
[10], [11], as demonstrated in Table IV. Note that the reported
results of prior works are from their respective papers.

3) Effectiveness of PPGloVe: We also evaluate the effec-
tiveness of PPGloVe on practical task. Note that our PPGloVe
is the first privacy-preserving GloVe model, so there are no
previous works for direct performance comparison. Since we
have modified the original GloVe model, we also use the
adapted-GloVe to train word vectors in the plaintext-domain to
study the impact of these modifications. We use the parameter
setting in Section VI-A to test the quality of the word vectors
trained by GloVe, adapted-GloVe, and PPGloVe. Specifically,
we measure the quality of these word vectors by using them
on word analogies tasks [43]. The word analogy task consists
of questions such as “a is to b as c is to ?”. The test set
has 19,544 questions consisting of 8,869 semantic questions
and 10,675 syntactic questions. Table V shows some example
questions. We answer the question “a is to b as c is to ?” by
searching the vector space for the word d closest to vb−va+vc
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TABLE VI
WORD ANALOGIES ACCURACY OF USING WORD VECTORS

GENERATED BY DIFFERENT MODELS

by cosine distance. The question is answered correctly only
when the word d is the same as the correct answer.

We first generate word vectors by training the three models
on Dataset3. We set the training epoch and initialized learning
rate of GloVe as 50 and 0.05, respectively, according to
the setting in [1]. The initialized learning rate of PPGloVe
and adapted-GloVe is set to 0.13, ensuring that they can
achieve a good performance. We train each model five times
to obtain the average value. Table VI shows the accuracy of
using different word vectors. The total accuracy of PPGloVe
has fallen only 0.16% when compared to the adapted-GloVe,
indicating that the errors caused by our SecLn(·), SecW (·),
and other secure operations have very little impact on the
system’s accuracy. Meanwhile, the total accuracy of PPGloVe
falls only 1.49% compared to GloVe. Such accuracy drop is
common in secure training protocols. This decline is mainly
caused by the insufficient training epochs (only 10 epochs for
efficiency consideration). The quality of the obtained word
vectors can be further improved by increasing the training
epochs. Note that it typically occurs accuracy drop exceeding
2% in various secure protocols like [47], [48]. Thus, our
design losses only a little accuracy and is suitable for practical
tasks.

VII. RELATED WORKS

A. Privacy-Preserving Machine Learning

Existing privacy-preserving ML models can be divided into
two categories. The first category focuses on secure ML
inference tasks [7], [12], [13], [14], [49], which indicates that
users can get correct inference results without exposing their
data and model parameters to the adversaries. For example,
Niu et al. [14] used the homomorphic encryption to build a
secure SVM model to provide online diagnosis. The users can
be offline after they have uploaded their data. Liu et al. [7] used
secret sharing technique to build a secure neural network infer-
ence framework which can provide medical diagnostic service.
The second category focuses on ML training tasks [6], [10],
[11], which enables a ML model to be trained in the dark such
that user data and trained model can be protected. Specifically,
Mohassel et al. [6] combine secret sharing, garbled circuit, and
oblivious transfer to realize the privacy-preserving protocol
to train neural networks. Agrawal et al. [10] ternarize the
network weights and design a new fixed-point optimization
algorithm to make the training faster. Watson et al. [11] adopt
the GPU to accelerate the secure training of neural networks.
However, these representative works are different from ours.
They focus on the secure training of neural networks and deal

TABLE VII
RELATED WORKS IN THE FIELD OF PRIVACY-PRESERVING

MACHINE LEARNING

with different types of nonlinear functions compared to our
research. Thus, their developed techniques cannot be applied
in our specific task.

B. Privacy-Preserving NLP Models
Recently, some researches are proposed to provide secu-

rity guarantee to the ML models in NLP tasks [16], [17],
[18], [19], [20]. Among them, Feng et al. [16] proposed a
SecureNLP scheme, focusing on the privacy preservation in
a sequence-to-sequence model for neural machine translation.
They combine multiplicative sharing and additive sharing to
compute the nonlinear functions sigmoid(·) and T anh(·),
achieving a quicker speed than the garbled circuit-based
computation. Reich et al. [19] used secure multi-party com-
putation to implement a secure text classification system.
They proposed a privacy-preserving text feature extraction
protocol and adopted logistic regression and AdaBoost model
as the classifier. Resende et al. [18] optimized the work
in [19] by using a faster secure comparison to implement
the privacy-preserving extraction of text feature and replacing
the classifier with Naive Bayes. However, both works in [19]
and [18] require that the users should participate in inference
process and cannot be offline.

There exist several research studies that focus on designing
secure protocols for word vector models [17], [20]. Specifi-
cally, Wang et al. [17] present a secure training protocol for
the Word2Vec model [23]. They use Paillier encryption [21]
as the cryptographic primitive and the quality of word vectors
obtained in the ciphertext domain is comparable with that
in the plaintext domain. The work in [20] adopts CKKS
encryption scheme [22] to realize a secure protocol for the fast-
Text [24] model and uses GPU to accelerate the computation
process. However, both of the works use homomorphic encryp-
tion algorithms, causing significant computation burden on the
cloud side. As reported in [17], the largest size of the training
dataset being evaluated is limited to only 80 MB, which is
clearly insufficient for many practical applications. Differently,
PPGloVe utilizes lightweight secret sharing technique, leading
to low computational overhead. Besides, PPGloVe necessitates
the secure computation of the natural logarithm, which is
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not involved in these previous works. Table VII provides
a summary of comparison with the related works we have
mentioned.

VIII. CONCLUSION

In this paper, we present PPGloVe, the first system frame-
work that enables many collaborating users to securely train
word vectors using GloVe on the cloud. We use the lightweight
additive secret sharing to ensure the security of system and
devise some secure and lightweight arithmetic primitives as
components of our design. We propose a fast secure natu-
ral logarithm computation method that is 104

× faster than
previous methods. By design, the corpus information from
participants and the trained word vectors are all kept pri-
vate along the whole training flow. We theoretically analyze
the complexity of PPGloVe and justify its security in the
semi-honest and non-colluding adversary model. The extensive
experiments demonstrate that PPGloVe can achieve word
vectors with comparable quality to the results obtained in the
plaintext-domain, with practically affordable overhead.

REFERENCES

[1] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[2] L. Burgueño, R. Clarisó, S. Gérard, S. Li, and J. Cabot, “An NLP-based
architecture for the autocompletion of partial domain models,” in Proc.
Conf. Adv. Inf. Syst. Eng., Jun. 2021, pp. 91–106.

[3] Y. Sharma, G. Agrawal, P. Jain, and T. Kumar, “Vector representation
of words for sentiment analysis using GloVe,” in Proc. Int. Conf. Intell.
Commun. Comput. Techn. (ICCT), Dec. 2017, pp. 279–284.

[4] X. Liu, R. H. Deng, K. R. Choo, and Y. Yang, “Privacy-preserving
outsourced support vector machine design for secure drug discovery,”
IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 610–622, Apr. 2020.

[5] H. Chen, H. Li, Y. Wang, M. Hao, G. Xu, and T. Zhang, “PriVDT:
An efficient two-party cryptographic framework for vertical decision
trees,” IEEE Trans. Inf. Forensics Security, vol. 18, pp. 1006–1021,
2023.

[6] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Security Privacy
(SP), 2017, pp. 19–38.

[7] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Towards secure and lightweight
deep learning as a medical diagnostic service,” in Proc. Eur. Symp. Res.
Comput. Secur., Oct. 2021, pp. 519–541.

[8] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “CrypTFlow: Secure TensorFlow inference,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 336–353.

[9] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2018, pp. 35–52.

[10] N. Agrawal, A. Shahin, M. J. Kusner, and A. Gascón, “QUOTIENT:
Two-party secure neural network training and prediction,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, London, U.K., 2019,
pp. 1231–1247.

[11] J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU platform
for secure computation,” in Proc. USENIX Secur. Symp., Aug. 2022,
pp. 827–844.

[12] B. Xie, T. Xiang, X. Liao, and J. Wu, “Achieving privacy-preserving
online diagnosis with outsourced SVM in Internet of Medical Things
environment,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 6,
pp. 4113–4126, Nov. 2022.

[13] J. Wang, D. He, A. Castiglione, B. B. Gupta, M. Karuppiah, and
L. Wu, “PCNNCEC: Efficient and privacy-preserving convolutional
neural network inference based on cloud-edge-client collaboration,”
IEEE Trans. Netw. Sci. Eng., early access, May 26, 2022, doi:
10.1109/TNSE.2022.3177755.

[14] C. Niu, F. Wu, S. Tang, S. Ma, and G. Chen, “Toward verifiable and pri-
vacy preserving machine learning prediction,” IEEE Trans. Dependable
Secure Comput., vol. 19, no. 3, pp. 1703–1721, May 2022.

[15] J.-C. Bajard, P. Martins, L. Sousa, and V. Zucca, “Improving the
efficiency of SVM classification with FHE,” IEEE Trans. Inf. Forensics
Security, vol. 15, pp. 1709–1722, 2020.

[16] Q. Feng, D. He, Z. Liu, H. Wang, and K. R. Choo, “SecureNLP:
A system for multi-party privacy-preserving natural language process-
ing,” IEEE Trans. Inf. Forensics Security, vol. 15, pp. 3709–3721, 2020.

[17] Q. Wang et al., “Privacy-preserving collaborative model learning:
The case of word vector training,” IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 12, pp. 2381–2393, Dec. 2018.

[18] A. Resende, D. Railsback, R. Dowsley, A. C. A. Nascimento, and
D. F. Aranha, “Fast privacy-preserving text classification based on
secure multiparty computation,” IEEE Trans. Inf. Forensics Security,
vol. 17, pp. 428–442, 2022.

[19] D. Reich, A. Todoki, R. Dowsley, M. D. Cock, and A. C. A. Nascimento,
“Privacy-preserving classification of personal text messages with secure
multi-party computation,” in Proc. Adv. Neural Inf. Process. Syst.,
Dec. 2019, pp. 3752–3764.

[20] A. A. Badawi, L. Hoang, C. F. Mun, K. Laine, and K. M. M. Aung,
“PrivFT: Private and fast text classification with homomorphic encryp-
tion,” IEEE Access, vol. 8, pp. 226544–226556, 2020.

[21] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.,
Jan. 1999, pp. 223–238.

[22] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur., 2017, pp. 409–437.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2013,
pp. 3111–3119.

[24] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proc. 15th Conf. Eur. Chapter Assoc.
Comput. Linguistics, 2017, pp. 427–431.

[25] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “FALCON: Honest-majority maliciously secure framework
for private deep learning,” in Proc. Priv. Enhancing Technol. Symp.,
Jul. 2021, pp. 188–208.

[26] Z. Ma, Y. Liu, X. Liu, J. Ma, and F. Li, “Privacy-preserving outsourced
speech recognition for smart IoT devices,” IEEE Internet Things J.,
vol. 6, no. 5, pp. 8406–8420, Oct. 2019.

[27] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Proc.
Annu. Int. Cryptol. Conf., Aug. 2000, pp. 36–54.

[28] S. G. Teo, J. Cao, and V. C. S. Lee, “DAG: A general model for privacy-
preserving data mining,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 1,
pp. 40–53, Jan. 2020.

[29] D. Demmler, T. Schneider, and M. Zohner, “ABY—A framework for
efficient mixed-protocol secure two-party computation,” in Proc. Netw.
Distrib. Syst. Secur. Symp., Feb. 2015, pp. 1–15.

[30] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proc. Annu. Int. Cryptol. Conf., 1991, pp. 420–432.

[31] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proc. Asia Conf. Comput.
Commun. Security, 2018, pp. 707–721.

[32] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Improved
mixed-protocol secure two-party computation,” in Proc. USENIX Secur.
Symp., Aug. 2021, pp. 2165–2182.

[33] Y. Zheng, H. Duan, and C. Wang, “Towards secure and efficient
outsourcing of machine learning classification,” in Proc. Eur. Symp. Res.
Comput. Security, 2019, pp. 22–40.

[34] D. Rathee et al., “CrypTFlow2: Practical 2-party secure inference,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 325–342.

[35] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Securely outsourcing neural
network inference to the cloud with lightweight techniques,” IEEE
Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 620–636,
Jan. 2023.

[36] M. Li, S. S. M. Chow, S. Hu, Y. Yan, C. Shen, and Q. Wang,
“Optimizing privacy-preserving outsourced convolutional neural net-
work predictions,” IEEE Trans. Dependable Secure Comput., vol. 19,
no. 3, pp. 1592–1604, May 2022.

[37] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“DELPHI: A cryptographic inference service for neural networks,” in
Proc. 29th USENIX Secur. Symp., 2020, pp. 2505–2522.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:27 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNSE.2022.3177755


3658 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[38] N.-W. Lo and J.-L. Tsai, “An efficient conditional privacy-preserving
authentication scheme for vehicular sensor networks without pairings,”
IEEE Trans. Intell. Transp. Syst., vol. 17, no. 5, pp. 1319–1328,
May 2016.

[39] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. 61, pp. 2121–2159, 2011.

[40] S. Wang, Y. Zheng, X. Jia, and X. Yi, “Privacy-preserving analytics
on decentralized social graphs: The case of eigendecomposition,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 7341–7356, Jul. 2023.

[41] S. Akram and Q. U. Ann, “Newton Raphson method,” Int. J. Sci. Eng.
Res., vol. 6, no. 7, pp. 1748–1752, 2015.

[42] M. Kelkar, P. H. Le, M. Raykova, and K. Seth, “Secure Poisson
regression,” in Proc. USENIX Secur. Symp., Aug. 2022, pp. 791–808.

[43] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[44] D. Bogdanov, S. Laur, and J. Willemson, “SHAREMIND: A framework
for fast privacy-preserving computations,” in Proc. Eur. Symp. Res.
Comput. Secur., Oct. 2008, pp. 192–206.

[45] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “XONN: XNOR-based oblivious deep neural network inference,” in
Proc. USENIX Secur. Symp., Aug. 2019, pp. 1501–1518.

[46] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[47] M. Abspoel, D. Escudero, and N. Volgushev, “Secure training of decision
trees with continuous attributes,” in Proc. Priv. Enhancing Technol.
Symp., Jan. 2021, pp. 167–187.

[48] Q. Li, Z. Wu, Z. Wen, and B. He, “Privacy-preserving gradient boosting
decision trees,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 784–791.

[49] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via MiniONN transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 619–631.

Zhongyun Hua (Senior Member, IEEE) received
the B.S. degree in software engineering from
Chongqing University, Chongqing, China, in 2011,
and the M.S. and Ph.D. degrees in software engineer-
ing from the University of Macau, Macao, China, in
2013 and 2016, respectively.

He is currently an Associate Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China.
His works have appeared in prestigious venues,
such as IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, IEEE TRANSACTIONS ON IMAGE PROCESSING,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE TRANSACTIONS ON
MULTIMEDIA, and ACM Multimedia. He has published about 80 papers on
the subject, receiving more than 6000 citations. His current research interests
include chaotic systems, multimedia security, and secure cloud computing. He
has been recognized as a Highly Cited Researcher 2023 and a Highly Cited
Researcher 2022.

Yan Tong received the B.E. degree in computer
science and technology from the Harbin Institute
of Technology, Harbin, China, in 2021. He is cur-
rently pursuing the degree with the Harbin Insti-
tute of Technology, Shenzhen, China. His current
research interests include cloud computing security
and secure machine learning.

Yifeng Zheng received the Ph.D. degree in
computer science from the City University of
Hong Kong, Hong Kong, in 2019. He was a Post-
Doctoral Researcher with the Commonwealth Scien-
tific and Industrial Research Organization (CSIRO),
Australia, and the City University of Hong Kong. He
is currently an Assistant Professor with the School
of Computer Science and Technology, Harbin Insti-
tute of Technology, Shenzhen, China. His work has
appeared in prestigious venues, such as ESORICS,
DSN, ACM AsiaCCS, IEEE INFOCOM, IEEE

ICDCS, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUT-
ING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,
and IEEE TRANSACTIONS ON SERVICES COMPUTING. His current research
interests include security and privacy related to cloud computing, the IoT,
machine learning, and multimedia. He received the Best Paper Award from the
European Symposium on Research in Computer Security (ESORICS) in 2021.

Yuhong Li received the bachelor’s degree in soft-
ware engineering from Xidian University, Xi’an,
China, in 2010, and the Ph.D. degree from the
Department of CIS, University of Macau, Macau,
China, in 2016.

He is currently a Senior Staff Engineer with
Xiaohongshu Technology Company Ltd., Shanghai,
China. He has authored more than 20 papers
on top-tier conferences and journals, including
The VLDB Journal, ICDE, ICASSP, CIKM, IEEE
TRANSACTIONS ON VISUALIZATION AND COM-

PUTER GRAPHICS, and EDBT. His current research interests include AI for
social good, multimodal understanding, self-supervised learning on big data,
and edge computing. He was a recipient of the Stars of Tomorrow (Award
of Excellent Intern), Microsoft Research Asia, Technology Talent of Xidian
University, and AliStar.

Yushu Zhang (Senior Member, IEEE) received the
B.S. degree from the School of Science, North Uni-
versity of China, Taiyuan, China, in 2010, and the
Ph.D. degree from the College of Computer Science
and Technology, Chongqing University, Chongqing,
China, in 2014. He held various research positions
with the City University of Hong Kong, Southwest
University, the University of Macau, and Deakin
University. He is currently a Professor with the Col-
lege of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, China.

His research interests include multimedia security, blockchain, and artificial
intelligence security. He is an Associate Editor of Information Sciences,
Journal of King Saud University-Computer and Information Sciences, and
Signal Processing.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 02:00:27 UTC from IEEE Xplore.  Restrictions apply. 


