
Computer Networks 224 (2023) 109600

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

PPTA: A location privacy-preserving and flexible task assignment service for
spatial crowdsourcing
Menglun Zhou a, Yifeng Zheng a,∗, Songlei Wang a, Zhongyun Hua a, Hejiao Huang a,
Yansong Gao b, Xiaohua Jia a,c

a School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
b School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
c Department of Computer Science, City University of Hong Kong, Hong Kong, China

A R T I C L E I N F O

Keywords:
Spatial crowdsourcing
Task assignment
Location privacy

A B S T R A C T

With the rapid growth of sensor-rich mobile devices, spatial crowdsourcing (SC) has emerged as a new
crowdsourcing paradigm harnessing the crowd to perform location-dependent tasks. To appropriately select
workers that are near the tasks, SC systems need to perform location-based task assignment, which requires
collecting worker locations and task locations. Such practice, however, may easily compromise the location
privacy of workers. In light of this, in this paper, we design, implement, and evaluate PPTA, a new system
framework for location privacy-preserving task assignment in SC with strong security guarantees. PPTA takes
advantage of only lightweight cryptography (such as additive secret sharing, function secret sharing, and
secure shuffle), and provides a suite of tailored secure components required by practical location-based task
assignment processes. Specifically, aiming for practical usability, PPTA is designed to flexibly support two
realistic task assignment settings: (i) the online setting where tasks arrive and get processed at the SC platform
one by one, and (ii) the batch-based setting where tasks arrive and get processed in a batch. Extensive
experiments over a real-world dataset demonstrate that while providing strong security guarantees, PPTA
supports task assignment with efficacy comparable to plaintext baselines and with promising performance.
1. Introduction

The rapid growth of sensor-rich mobile devices enables individuals
to easily collect various kinds of valuable information about their sur-
roundings. Along with such growth is the emergence of a new crowd-
sourcing paradigm called spatial crowdsourcing (SC) [1,2], which har-
nesses the crowd to perform location-dependent tasks (e.g., taking
photos at certain spots). In particular, workers in SC systems are
required to move physically to designated locations to conduct the
assigned tasks. Location-based task assignment is thus a fundamental
demand in SC systems, where the SC platform needs to assign tasks to
eligible workers based on their spatial proximity [3,4].

Such location-based task assignment requires collecting the loca-
tions of both tasks and workers. However, while being interested in
contributing to the SC service, workers may not be willing to expose
their private locations as this would violate their privacy [2]. Such
privacy concerns, if not addressed appropriately, will seriously hinder
the growth and deployment of SC systems in practice. It is noted that
task locations, if not protected, can also be exploited to infer worker

∗ Corresponding author.
E-mail addresses: menglun.zhou@outlook.com (M. Zhou), yifeng.zheng@hit.edu.cn (Y. Zheng), songlei.wang@outlook.com (S. Wang),

huazhongyun@hit.edu.cn (Z. Hua), huanghejiao@hit.edu.cn (H. Huang), yansong.gao@njust.edu.cn (Y. Gao), csjia@cityu.edu.hk (X. Jia).

locations based on the task assignment result. Specifically, workers that
get selected for a task are close to the location of that task (say within
a certain distance). So knowing the task assignment result along with
the task locations will allow an adversary to infer information about
the workers’ current locations. Therefore, there is an urgent demand
that security must be embedded in such SC service paradigm from the
very beginning, providing protection for worker locations as well as
task locations.

In the literature, location privacy-preserving task assignment in
SC has received increasing attentions in recent years [5–8]. Existing
works can be generally divided into two categories based on the task
assignment settings considered: the online setting and the batch-based
setting. For the online setting, tasks arrive at the SC platform one by
one. Once a task arrives, the SC platform assigns it to eligible workers.
The goal in this setting is to minimize the average distance between
a task and the workers assigned to this task [5]. In the batch-based
setting, tasks are delivered to the SC platform batch by batch. Given
a batch of tasks, the goal in this setting is to maximize the number of
successfully matched worker-task pairs [7,8].
vailable online 31 January 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.109600
Received 26 September 2022; Received in revised form 2 January 2023; Accepted
 27 January 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:menglun.zhou@outlook.com
mailto:yifeng.zheng@hit.edu.cn
mailto:songlei.wang@outlook.com
mailto:huazhongyun@hit.edu.cn
mailto:huanghejiao@hit.edu.cn
mailto:yansong.gao@njust.edu.cn
mailto:csjia@cityu.edu.hk
https://doi.org/10.1016/j.comnet.2023.109600
https://doi.org/10.1016/j.comnet.2023.109600
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109600&domain=pdf

Computer Networks 224 (2023) 109600M. Zhou et al.
Despite being valuable, existing works on location privacy-
preserving task assignment are customized for either the online set-
ting [5,6] or the batch-based setting [7,8]. Yet, in practice the locations
of workers may be used in different assignment settings and the SC
platform needs to flexibly switch among them. For example, in scenar-
ios like ride hailing [9,10], a passenger publishes a single ride hailing
task and wants the SC platform to provide instant task assignment
services (i.e., the online task assignment setting). In other scenarios
like environmental data collection [11,12], a task requester may want
to monitor multiple areas for a research study, where the monitoring
of each area corresponds to a task. So the task requester publishes the
tasks in a batch and wants the SC platform to assign tasks in a batch
to maximize the number of matched worker-task pairs. Therefore, it
is practically important for a SC system to flexibly support both the
online setting and the batch-based setting. Meanwhile, the SC platform
should be able to flexibly switch between different task assignment
settings. Consider the fact that workers who are not selected in the
current round of task assignment will continue to participate in the
next round. If the two rounds have different task assignment settings,
the SC platform is then required to switch to another task assignment
setting on the same workers left from the previous round. Therefore, a
SC system with flexible support for different task assignment settings
should allow the SC platform to directly do the switch.

The overarching challenge in supporting flexible location privacy-
preserving task assignment is how to allow the workers to be agnostic
to the specific task assignment settings when uploading their locations
in protected form, while still enabling the SC platform to flexibly switch
between different settings. In prior works, workers are required to
protect their locations via a tailored approach to make the protected
locations compatible with the designated setting of task assignment.
However, in practical SC systems, workers normally have no knowledge
in the subsequent setting of task assignment when uploading their
locations to the SC platform. In addition, with prior works, if the SC
platform wants to change the setting of task assignment on the same
workers, they require the workers to re-upload their protected locations
specific to the new setting. This will heavily hinder the secure task
assignment process because the SC platform has to wait for all the
workers to re-upload their protected locations. Hence, it remains to
be explored how to allow one-off encryption of workers’ locations and
enable the SC platform to securely execute different task assignment
strategies on demand.

In addition, it is important to offer strong security without sacri-
ficing the utility of task assignment. Note that prior works supporting
single setting are faced with notable information leakages (e.g., ex-
posing the distances between tasks and locations [5,8]), or produce
coarse-grained/inaccurate assignment results due to the use of approx-
imated locations [7], or noise addition techniques based on differential
privacy [6,8]. Hence, we need to design a framework for flexible
location privacy-preserving task assignment from the ground up.

In light of the above, in this paper, we design, implement, and
evaluate PPTA, the first system framework for privacy-preserving and
flexible location-based task assignment in SC, which embraces both
the online setting and batch-based setting with strong security guar-
antees. PPTA is built from a delicate synergy of insights on practical
location-based task assignment strategies and advanced lightweight
cryptography, allowing the SC platform to assign tasks to workers
based on their encrypted locations. Specifically, we first deeply examine
and adequately decompose the process of practical location-based task
assignment into three phases: available workers labeling, 𝑘-nearest
available workers search, and 𝑘-nearest available workers revealing.
To meet the functionalities and security demands of these phases, we
design a suite of tailored secure components based on lightweight
cryptography (such as additive secret sharing, function secret sharing,
and secure shuffle).

From a high-level point of view, PPTA provides two protocols for
2

privacy-preserving location-based task assignment under the online
setting and the batch-based setting, respectively. In both protocols,
the locations of tasks and workers are protected with a lightweight
cryptographic technique called additive secret sharing [13], which
works by generating secret shares for the input data. For compatibility
with the working paradigm of additive secret sharing, the SC platform
in PPTA is jointly empowered by two SC service providers. Such two-
server model has seen increasing adoption in academia [14–16] as well
as in industry [17]. The adoption of such model in PPTA follows this
trend. Upon receiving the secret shares of task locations and worker
locations, the SC service providers perform task assignment according
to customized secure protocols developed in PPTA. For both settings,
PPTA ensures that the SC service providers can effectively perform the
task assignment without knowing locations of tasks and workers, and
only learn which workers are assigned to which tasks. Also, in contrast
with prior works, PPTA provides strong security guarantees by keeping
confidential the distances between tasks and workers, as well as hides
the relative proximity of each matched worker to a task, i.e., the order
information regarding which matched worker is closer to a task. We
highlight our contributions below:

• We propose PPTA, a new system framework supporting location
privacy-preserving and flexible task assignment in SC, simultane-
ously embracing both the online setting and batch-based setting
with strong security guarantees.

• We adequately decompose the process of secure location-based
task assignment and devise a suite of corresponding secure com-
ponents for both settings, including secure available workers
labeling, secure 𝑘-nearest available workers search, and secure
𝑘-nearest available workers revealing.

• We formally analyze the security of PPTA, and conduct extensive
experiments on a real-world dataset. The results demonstrate
that while providing security guarantees, PPTA can support task
assignment with efficacy comparable to as plaintext baselines and
with promising performance.

The rest of this paper is organized as follows. We first review the
related work in Section 2 and introduce preliminaries in Section 3.
Then we present the problem statement in Section 4. We elaborate on
the designs of PPTA in Sections 5 and 6, where Section 5 presents the
secure task assignment protocol under the online setting and Section 6
presents the secure task assignment protocol under the batch-based
setting. The security analysis is presented in Section 7, followed by the
experiments in Section 8. Finally, we conclude this paper in Section 9.

2. Related work

In recent years, there have been a variety of schemes for privacy-
preserving location-based task assignment in SC [4–8,18,19]. According
to the techniques used for location protection during task assign-
ment, these schemes can be divided into three categories: (i) cloaking-
based [4,19], (ii) perturbation-based [6,18], and (iii) encryption-based
[5,7]. Cloaking-based schemes [4,19] protect the locations of tasks and
workers by obfuscating a location into a cloaked region. Perturbation-
based schemes [6,18] distort locations by adding artificial noises gen-
erated based on geo-indistinguishability [20], which is an extension
of the conventional differential privacy notion [21]. Encryption-based
schemes usually encrypt the locations of workers and tasks into ci-
phertexts through custom encryption schemes [5,7]. However, we note
that all of them are customized for location privacy-preserving task
assignment in either the online setting or the batch-based setting,
lacking flexibility for meeting practical demands.

Furthermore, prior works are also confronted with issues of inaccu-
rate task assignment and/or notable information leakages. In particular,
the cloaking-based and perturbation-based schemes [4,6,18,19] have
the shortcomings of inaccurate task assignment. The (state-of-the-art)
encryption-based schemes [5,7] are faced with notable leakages and/or

inaccurate task assignment. Specifically, the work [7] leaks the relative

Computer Networks 224 (2023) 109600M. Zhou et al.
Table 1
Comparison of PPTA with Existing Works on Privacy-Preserving Location-Based Task
Assignment.

Property [5] [7] [8] [6] PPTA

Supporting online setting ✓ × × ✓ ✓

Supporting batch-based setting × ✓ ✓ × ✓

Distance protection × ✓ × ✓ ✓

Relative proximity protection × × × ✓ ✓

Accurate assignment ✓ × × × ✓

Offline requesters/workers × ✓ × ✓ ✓

Workers agnostic to settings × × × × ✓

proximity between workers and tasks to the SC platform, which has
been shown to be exploitable for various attacks [22,23]. In addition,
the work [7] cannot support fine-grained and accurate task assignment
since it uses a grid-based encryption scheme to encrypt approximate lo-
cations of workers and tasks and then assigns tasks based on the grids of
tasks and workers. The work [5] has weaker security guarantees since
it directly exposes the distances between tasks and workers. Besides,
the task requester and workers in its design has to stay online during
the task assignment since they have to undertake some processing
workload.

In additional recent work [8], Li et al. propose a scheme that
combines the strategies of perturbation and encryption. However, it has
limited security guarantees and practicability like [5] since it also di-
rectly exposes the task-worker distances and requires the task requester
and workers to stay online during the task assignment process.

Different from existing works, PPTA can flexibly support location
privacy-preserving task assignment for both the online setting and
the batch-based setting. The prominent benefit is that the workers
are allowed to be agnostic to the subsequent task assignment settings
when uploading their encrypted locations and the SC platform can
flexibly switch between different settings. In prior works workers have
to protect their locations via approaches tailored for the subsequent
task assignment setting. Meanwhile, PPTA ensures stronger security
guarantees by keeping confidential the distances between tasks and
workers throughout the whole secure task assignment process, as well
as hides the relative proximity of each matched worker to a task in
the assignment result. Furthermore, PPTA allows the process of secure
task assignment to be fully processed at the SC platform. Table 1
summarizes the prominent advantages of our PPTA over existing works
on privacy-preserving location-based task assignment.

3. Preliminaries

3.1. Additive secret sharing

Additive secret sharing (ASS) [13] is a cryptographic primitive
which provides protection for a private value 𝑥 in two-party setting by
splitting it into two secret shares, where each of the share alone reveals
nothing about 𝑥. For convenience, we represent the ASS of 𝑥 by [[𝑥]].
There are two types of ASS: (1) Arithmetic sharing : 𝑥 = [[𝑥]]𝐴0 + [[𝑥]]𝐴1 ,
where 𝑥, [[𝑥]]𝐴0 , [[𝑥]]

𝐴
1 ∈ Z2𝑙 , 𝑙 > 1 and the shares [[𝑥]]𝐴0 , [[𝑥]]

𝐴
1 are held by

two parties respectively. (2) Binary sharing : 𝑥 = [[𝑥]]𝐵0 ⊕ [[𝑥]]𝐵1 , where
𝑥, [[𝑥]]𝐵0 , [[𝑥]]

𝐵
1 ∈ Z2 and the shares [[𝑥]]𝐵0 , [[𝑥]]

𝐵
1 are held by two parties

respectively. Given two secret-shared values [[𝑥]]𝐴 and [[𝑦]]𝐴, and a
constant 𝑎, the following operations can be supported securely:

• Linear operation: Linear operation includes addition/subtraction
[[𝑥 ± 𝑦]]𝐴 = [[𝑥]]𝐴 ± [[𝑦]]𝐴 and scalar multiplication [[𝑎 ⋅ 𝑥]]𝐴 =
𝑎 ⋅ [[𝑥]]𝐴. The linear operation can be performed locally and does
not require communication.

• Multiplication: The multiplication [[𝑥 ⋅ 𝑦]]𝐴 = [[𝑥]]𝐴 ⋅ [[𝑦]]𝐴 can
be securely performed with the use of Beaver’s triples which
can be prepared offline in advance. The multiplication between
two arithmetic secret-shared values requires one round of online
communication.
3

Fig. 1. The system architecture of PPTA.

Note that for binary sharing, the addition can be replaced with XOR (⊕)
and the multiplication can be replaced with AND (⊗). To reconstruct
a value from its shares, the two parties need to send their own shares
[[𝑥]]𝐴∕𝐵𝑖 , 𝑖 ∈ {0, 1} to each other, then locally computes 𝑥 = [[𝑥]]0 + ∕⊕
[[𝑥]]1 to obtain 𝑥 in plaintext. We denote the reconstruction operation
above as 𝐑𝐞𝐜(⋅, ⋅).

3.2. Function secret sharing

Function secret sharing (FSS) [24,25] allows secure two-party eval-
uation of non-linear functions (e.g., comparison) with low interactions
in the secret sharing domain. Specifically, in a two-party FSS scheme,
a target function 𝑓 is split into two succinct keys. Each key alone does
not reveal private information about the target function 𝑓 . A formal
definition is given below:

Definition 1. A two-party FSS scheme consists of two probabilistic
polynomial-time (PPT) algorithms (KeyGen, Eval), which are formally
defined as follows.

• (𝑘0, 𝑘1) ←KeyGen(1𝜆, 𝑓): Given a security parameter 𝜆 and the
function description 𝑓 , output a pair of succinct FSS keys (𝑘0, 𝑘1).

• Eval(𝑘𝑖, 𝑥): Given a FSS key 𝑘𝑖 and an evaluation point 𝑥, output
the secret share of the evaluation result [[𝑓 (𝑥)]]𝑖.

The security assurance of FSS is that an adversary with access to
one of (𝑘0, 𝑘1) cannot infer any private information about the target
function 𝑓 and the output 𝑓 (𝑥).

4. Problem statement

4.1. System model

PPTA is aimed at allowing location privacy-preserving and flexible
task assignment in SC. As illustrated in Fig. 1, there are three kinds of
entities in PPTA: the task requester (abbr. requester), the SC platform,
and workers. The requester holds a set of location-dependent tasks,
each of which is tagged with a location, a search range 𝑟, and a task
description. It wants to have the tasks assigned to available workers
who can travel to the designated locations to perform the tasks. Each
task can only be assigned to at most 𝑘 workers whose distances to the
task are within its search range 𝑟. Such task assignment is facilitated by
the SC platform, which serves as a bridge between the requester and
the workers. To this end, the SC platform needs to collect the locations
of tasks and workers and then perform task assignment according to
designated mechanisms.

However, for privacy concerns, the workers may not want to expose
their locations in the service, which thus poses a demand for protecting
the locations of both the tasks and workers. That is, the functionality
of task assignment should be supported without the SC platform seeing
the actual locations of the tasks and workers. Therefore, in PPTA the
locations of tasks and workers are provided to the SC platform in

Computer Networks 224 (2023) 109600M. Zhou et al.
Fig. 2. Illustration of the secure task assignment workflow in PPTA for both the online
setting and the batch-based setting.

encrypted form for protection. For high efficiency, PPTA resorts to
the lightweight cryptographic technique named additive secret sharing
for location encryption and for supporting subsequent secure process-
ing for task assignment at the SC platform. For compatibility with
the working paradigm of additive secret sharing, the SC platform in
PPTA is jointly run by two SC service providers (denoted by 0 and
1), which collaboratively empower the location privacy-preserving SC
service. Such two-server model has seen increasing adoption in both
academia [14–16,26,27] as well as in industry [17]. PPTA follows such
trend and contributes a new design point to location privacy-preserving
and flexible task assignment in SC.

To cater for realistic demands, PPTA is designed to flexibly support
two realistic settings for location privacy-preserving task assignment:
the online setting and the batch-based setting. In the online setting, the
requester delivers the tasks one by one to the SC platform. Once a
task arrives, the SC platform will assign it to available workers whose
distance is less than its search range 𝑟. The aim is to minimize the
average distance required by workers to travel to the task location.
In this paper we follow the online assignment strategy in [5], which
assigns each task to 𝑘-nearest available workers. Note that in the online
setting, once a worker is assigned with a task, it will be unavailable for
the upcoming tasks.

In the batch-based setting, the requester delivers tasks batch by
batch to the SC platform. Given a batch of tasks  , a set of workers
 , task assignment in the batch-based setting [7,8] aims to find an
optimal match  =

{(

𝑤𝑖, 𝑡𝑗
)

|𝑤𝑖 ∈  , 𝑡𝑗 ∈  , 𝑑𝑖𝑠𝑡
(

𝑤𝑖, 𝑡𝑗
)

≤ 𝑟𝑗
}

such
that |(𝑡𝑗)| ≤ 𝑘, |(𝑤𝑖)| ≤ 𝑏 and || is maximized, where 𝑑𝑖𝑠𝑡(⋅) is
the Euclidean distance function, 𝑏 is the maximum number of tasks a
worker can handle, (𝑡𝑗) is the set of workers assigned with task 𝑡𝑗 ,
(𝑤𝑖) is the set of tasks assigned to worker 𝑤𝑖, and || is the number
of matched worker-task pairs.

PPTA provides customized secure protocols (see Section 5 and Sec-
tion 6 respectively) to embrace both settings for location-privacy task
assignment in SC. It is noted that our protocols will focus on introducing
how to support task assignment given that the locations of tasks and
workers are protected. For each task’s description, the requester can
simply secret-share it and distribute the shares among 0 and 1. Once
the (secure) task assignment process is completed, the shares of the task
descriptions and task locations can be delivered to the corresponding
workers.

4.2. Threat model

Along the service flow in PPTA, we consider that the threats to
worker location privacy primarily come from the SC service providers,
4

which are assumed to be honest-but-curious and non-colluding adver-
saries. In particular, each SC service provider in PPTA will honestly
follow our protocols but may individually attempt to infer worker loca-
tions and task locations (which, if known, can also reveal information
regarding the locations of workers assigned to the corresponding tasks).
PPTA is thus aimed at providing protections for the worker locations as
well as task locations throughout the task assignment process. The SC
service providers can only learn the task assignment results, i.e., which
workers are assigned to a specified task. Following prior works in
location privacy-preserving SC [8,18], we assume no collusion among
the parties in PPTA.

5. Location privacy-preserving task assignment in the online set-
ting

5.1. Overview

For the online setting, each registered worker 𝑤𝑖 with identifier
𝑖𝑑𝑖 first distributes the secret shares of its location ([[𝑥𝑖]]𝐴, [[𝑦𝑖]]𝐴) to
the SC service providers 0 and 1, respectively, where 𝑖 ∈ [1, 𝑁]
and 𝑁 is the number of workers. Note that the locations here are
assumed to in Cartesian coordinates, which can be converted from
the raw GIS coordinates (i.e., longitude and latitude) using a common
technique—Miller cylindrical projection [28]. Hereafter, for ease of
presentation, we will refer to 0 and 1 simply as {0,1}. The IDs of
all workers (denoted as ) are represented by the set  = {𝑖𝑑𝑖}𝑖∈[1,𝑁]
and the encrypted locations of all workers are represented by the set
[[]]𝐴 = {([[𝑥𝑖]]𝐴, [[𝑦𝑖]]𝐴)}𝑖∈[1,𝑁]. It is noted that hereafter we will omit
the subscript 𝑖 ∈ [1, 𝑁] for sets when it does not affect the presentation.
For a task 𝑡, the requester distributes the secret shares of its location
[[𝜏]]𝐴 = ([[𝑎]]𝐴, [[𝑏]]𝐴) and its encrypted search range [[𝑟]]𝐴 to {0,1},
respectively. Upon receiving the encrypted location of task 𝑡, {0,1}
securely assign the task to appropriate workers as per the design of
PPTA. Recall that task assignment in the online setting aims to find 𝑘
workers from the available workers to minimize the average distance
for workers to travel to the task location.

As illustrated in Fig. 2, our construction of secure task assignment in
the online setting is comprised of three components: (i) secure available
workers labeling (denoted as 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅); (ii) secure 𝑘-nearest available
workers search (denoted as 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁); (iii) secure 𝑘-nearest available
workers revealing (denoted as 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅). At a high level, secure task
assignment in the online setting proceeds as follows in PPTA. Given
the encrypted location ([[𝑎]]𝐴, [[𝑏]]𝐴) of task 𝑡 and the encrypted location
([[𝑥𝑖]]𝐴, [[𝑦𝑖]]𝐴) of each worker 𝑤𝑖, PPTA provides 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅 to have the
SC platform securely calculate the encrypted distance between the
task 𝑡 and 𝑤𝑖, and then obliviously label available workers whose
distance from the task is within its search range 𝑟. Then, based on the
encrypted distances and labels, PPTA provides 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁 to allow the
SC platform to securely fetch 𝑘-nearest available workers for the task,
which produces the encrypted IDs of the 𝑘-nearest available workers.
Afterwards, to protect the order information about which workers in
the 𝑘-nearest available workers are closer to the task, PPTA provides
𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅 to allow the SC platform to securely reveal the 𝑘-nearest
available workers’ IDs. In Algorithm 1, we give an overview of PPTA’s
complete construction for secure task assignment in the online setting,
which relies on the coordination of the three components: 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅,
𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁, and 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅. In what follows, we elaborate on the design
of each component.

5.2. Secure available workers labeling

Given the secret sharings of the task location and the worker lo-
cations, the secure available workers labeling component 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅 is
to compute a secret-shared label for each worker, the value of which
indicates whether the corresponding worker is an available one (i.e., its
distance to the task location is within its search range). Algorithm 2

Computer Networks 224 (2023) 109600M. Zhou et al.

O

O

i

E

[

f
c
t
r

c
c
s
t
i
s
𝑔

Algorithm 1 Secure Task Assignment in the Online Setting

Input: Task 𝑡’s encrypted location [[𝜏]]𝐴 and its encrypted search range
[[𝑟]]𝐴, registered workers’ ID set  and encrypted location set [[]]𝐴.

utput: 𝑘-nearest available workers’ IDs �̂�⋆ for task 𝑡.
Phase (i): secure available workers labeling:

1: ([[]]𝐵 , [[]]𝐴) = 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅([[𝜏]]𝐴, [[]]𝐴, [[𝑟]]𝐴).
Phase (ii): secure 𝑘-nearest workers search:

2: [[𝐈⋆]]𝐴 = 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁([[]]𝐵 , [[]]𝐴,).
Phase (iii): secure 𝑘-nearest workers revealing:

3: �̂�⋆ = 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅([[𝐈⋆]]𝐴).
4: Outputting 𝑘-nearest available workers’ ID �̂�⋆ for task 𝑡.

Algorithm 2 Secure Available Workers Labeling 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅

Input: Task 𝑡’s encrypted location [[𝜏]]𝐴 and its encrypted search range
[[𝑟]]𝐴, registered workers’ encrypted location set [[]]𝐴.

utput: Encrypted label set [[]]𝐵 and encrypted distance set [[]]𝐴.
1: Initializing two empty sets [[]]𝐵 = ∅ and [[]]𝐴 = ∅.
2: for all 𝑖 ∈ [1, 𝑁] do
3: [[𝑑𝑖]]𝐴 = ([[𝑥𝑖]]𝐴 − [[𝑎]]𝐴)2 + ([[𝑦𝑖]]𝐴 − [[𝑏]]𝐴)2.
4: [[𝑟2]]𝐴 = [[𝑟]]𝐴 ⋅ [[𝑟]]𝐴.
5: [[𝑙𝑖]]𝐵 = [[(𝑑𝑖 − 𝑟2 ≤ 0)]]𝐵 .
6: [[]]𝐴.𝑎𝑑𝑑([[𝑑𝑖]]𝐴).
7: [[]]𝐵 .𝑎𝑑𝑑([[𝑙𝑖]]𝐵).
8: end for
9: Outputting the encrypted label set [[]]𝐵 and encrypted distance set

[[]]𝐴.

provides the detailed construction of 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅. Specifically, {0,1} first
securely compute the encrypted distance (i.e., [[𝑑𝑖]]𝐴) between the task
𝑡 and each worker 𝑤𝑖, and then securely compute the encrypted label
[[𝑙𝑖]]𝐵 for each worker 𝑤𝑖. Here, 𝑙𝑖 = 1 if the distance between 𝑤𝑖
and 𝑡 is within 𝑟, i.e., 𝑤𝑖 is within the search range 𝑟 and so 𝑤𝑖 is an
available worker. Otherwise, 𝑙𝑖 = 0. All workers’ labels are represented
by [[]]𝐵 = {[[𝑙𝑖]]𝐵} and distances from the task 𝑡 are represented by
[[]]𝐴 = {[[𝑑𝑖]]𝐴}. Therefore, the procedure is comprised of two steps:
(i) secure distance calculation and (ii) secure worker labels calculation,
which are introduced below.
Secure distance calculation. In the plaintext domain, given the lo-
cations ((𝑎, 𝑏), (𝑥𝑖, 𝑦𝑖)) of the task and worker 𝑤𝑖, the commonly used
distance metric is the Euclidean distance:

𝑑𝑖 =
√

(𝑥𝑖 − 𝑎)2 + (𝑦𝑖 − 𝑏)2. (1)

However, the square root operation is not naturally supported in secret
sharing domain. We note that in our context, only the comparison results
between distances are required instead of the distances. Therefore,
PPTA utilizes a roundabout strategy to omit the square root opera-
tion in Eq. (1). Specifically, PPTA uses the squared Euclidean distance
between the task 𝑡 and each worker 𝑤𝑖, and then compares their
squared Euclidean distance (i.e., 𝑑𝑖) with 𝑟2 to evaluate whether 𝑤𝑖
s an available worker. Correctness holds since 𝑑𝑖 ≤ 𝑟 is equivalent

to 𝑑𝑖 ≤ 𝑟2. Therefore, PPTA lets {0,1} securely calculate the squared
uclidean distance between the task 𝑡 and each worker 𝑤𝑖 by

[𝑑𝑖]]𝐴 = ([[𝑥𝑖]]𝐴 − [[𝑎]]𝐴)2 + ([[𝑦𝑖]]𝐴 − [[𝑏]]𝐴)2. (2)

It is noted that due to the correctness of calculation in the secret
sharing domain, the magnitude relationship is consistent in the plain-
text domain and the secret sharing domain (i.e., Eq. (2)). Since ad-
dition/subtraction and squaring (i.e., multiplication) operations are
naturally supported in secret sharing domain, {0,1} can securely calcu-
late the squared Euclidean distance between the task and each worker,

2 𝐴
5

as well as the squared search range [[𝑟]] .
Secure worker labels calculation. After securely calculating the en-
crypted squared Euclidean distance [[𝑑𝑖]]𝐴 between the task 𝑡 and each
worker 𝑤𝑖, {0,1} should obliviously evaluate the availability of each
worker. Our insight is to compute an encrypted label (i.e., a bit) [[𝑙𝑖]]𝐵

or each worker 𝑤𝑖, where [[𝑙𝑖]]𝐵 = [[𝑑𝑖 − 𝑟2 ≤ 0]]𝐵 . Then we should
onsider how to allow {0,1} to securely evaluate [[𝑑𝑖 − 𝑟2 ≤ 0]]𝐵 given
he encrypted squared Euclidean distance [[𝑑𝑖]]𝐴 and the squared search
ange [[𝑟2]]𝐴.

We identify the state-of-the-art construction of FSS-based secure
omparison [24] as a promising choice, which is named as distributed
omparison function (DCF) and allows low-interaction secure compari-
on in the secret sharing domain. FSS-based DCF can securely compute
he function 𝑔≤𝛼,𝛽 (𝑥), which outputs 𝛽 if the input 𝑥 ≤ 𝛼 and outputs 0
f the input 𝑥 > 𝛼. To apply DCF for secure comparison in a two-party
cenario, each party should hold a DCF key 𝑘𝑖, 𝑖 ∈ {0, 1} for the function
≤
𝛼,𝛽 (⋅) and then evaluate the DCF key over the public input 𝑥 ∈ Z2𝑙 by

invoking Eval(𝑘𝑖, 𝑥). This allows each party to produce a share of the
output 𝑔≤𝛼,𝛽 (𝑥).

However, since the FSS-based DCF evaluation requires the two
parties to work on identical inputs, the evaluation of DCF over a
private (secret-shared) value cannot be achieved by the above process
and requires a delicate treatment. To deal with the challenge, PPTA
keeps the private value 𝑥 secret by letting the two parties open the
masked version of 𝑥, inspired by [24]. More specifically, given the
target function 𝑔≤𝛼,𝛽 , a pair of DCF keys for 𝑔≤𝛼,𝛽 ’s offset function 𝑔≤𝛼,𝛽,𝛾
is generated, where 𝑔≤𝛼,𝛽 (𝑥) = 𝑔≤𝛼,𝛽,𝛾 (𝑥 + 𝛾), and 𝛾 is a random value
and is split into additive secret shares 𝛾 = [[𝛾]]𝐴1 + [[𝛾]]𝐴2 , each for one
party. After that, each party sends the masked share [[𝑥]]𝐴𝑖 + [[𝛾]]𝐴𝑖 to
each other to open 𝑥 + 𝛾 without leaking 𝑥. Finally, the two parties
securely evaluate the FSS keys about the offset function 𝑔≤𝛼,𝛽,𝛾 on the
public input 𝑥 + 𝛾 to output the secret sharing of 𝑔≤𝛼,𝛽,𝛾 (𝑥 + 𝛾), where
𝑔≤𝛼,𝛽,𝛾 (𝑥 + 𝛾) = 𝑔≤𝛼,𝛽 (𝑥).

We now show how PPTA builds on the DCF to allow {0,1} to
securely evaluate [[𝑑𝑖 − 𝑟2 ≤ 0]]𝐵 given the encrypted squared Euclidean
distance [[𝑑𝑖]]𝐴 and the squared search range [[𝑟2]]𝐴. To use the FSS-
based DCF, PPTA sets the input domain as Z2𝑙 , 𝛼 = 0, and the output
domain as Z2 and 𝛽 = 1. With these parameters, the DCF keys 𝑘0
and 𝑘1 and the secret shares [[𝛾]]𝐴1 , [[𝛾]]

𝐴
2 of the random offset 𝛾 can be

prepared offline and distributed to {0,1}, respectively. Note that such
offline preparatory work can be done by a third-party in practice [24].
Upon receiving the DCF key 𝑘𝑐 and the secret share [[𝛾]]𝐴𝑐 , 𝑐 ∈ {0, 1}, to
securely evaluate [[𝑑𝑖 − 𝑟2 ≤ 0]]𝐵 , 𝑐 first locally computes [[𝑑𝑖 − 𝑟2]]𝐴

and exchanges [[𝑑𝑖− 𝑟2]]𝐴𝑐 +[[𝛾]]𝐴𝑐 to reveal 𝑑𝑖− 𝑟2+ 𝛾, and then evaluates
Eval(𝑘𝑐 , 𝑑𝑖 − 𝑟2 + 𝛾), which will output [[1]]𝐵𝑐 if 𝑑𝑖 ≤ 𝑟2. Otherwise, [[0]]𝐵𝑐
is outputted.

5.3. Secure 𝑘-nearest available workers search

We now introduce how {0,1} obliviously search for 𝑘-nearest avail-
able workers for task 𝑡. Our solution is to securely instantiate the
bubble sort [29] in the secret sharing domain to allow {0,1} to obliv-
iously fetch 𝑘-nearest available workers’ encrypted IDs (denoted as
an encrypted array [[𝐈⋆]]𝐴 = [[[𝑖𝑑⋆1]]

𝐴,… , [[𝑖𝑑⋆𝑘]]
𝐴]), without knowing

the relative proximity of each worker to task 𝑡. It is noted that since
the number of available workers is likely to be less than 𝑘, 𝐈⋆ may
contain some dummy IDs. We use −1 to represent dummy ID, which
is distinguished from all other IDs of workers in the system.

A plausible approach is to let {0,1} first sort workers’ encrypted
IDs based on their encrypted distances (i.e., [[]]𝐴) to task 𝑡 and then
fetch the first 𝑘 IDs from the sorted encrypted IDs as [[𝐈⋆]]𝐴. However, if
the number of available workers is less than 𝑘, [[𝐈⋆]]𝐴 generated by the
method may contain the IDs of unavailable workers, which will result
in incorrect assignment. Therefore, PPTA lets {0,1} obliviously fetch
[[𝐈⋆]]𝐴 via a different strategy.

At a high level, PPTA lets {0,1} set each ID 𝑖𝑑⋆𝑖 in [[𝐈⋆]]𝐴 to [[−1]]𝐴
at the beginning. Meanwhile, PPTA lets {0,1} define an encrypted

Computer Networks 224 (2023) 109600M. Zhou et al.

O

a
s
r
[

a

Algorithm 3 Secure 𝑘-Nearest Available Workers Search 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁

Input: Encrypted label set [[]]𝐵 ; encrypted distance set [[]]𝐴; public
ID set .

utput: 𝑘-nearest workers’ encrypted IDs [[𝐈⋆]]𝐴.
1: Initializing [[𝐈⋆]]𝐴 = [[[𝑖𝑑⋆1]]

𝐴,⋯ , [[𝑖𝑑⋆𝑘]]
𝐴] and [[𝐃⋆]]𝐴 =

[[[𝑑⋆1]]
𝐴,⋯ , [[𝑑⋆𝑘]]

𝐴], where [[𝑖𝑑⋆𝑖]]
𝐴 = [[−1]]𝐴 and [[𝑑⋆𝑖]]

𝐴 =
[[𝑀𝐴𝑋]]𝐴, 𝑖 ∈ [1, 𝑘].

2: Parsing  into secret sharing [[]]𝐴.
3: for all 𝑖 ∈ [1, 𝑘] do
4: for all 𝑗 ∈ [1, 𝑁] do
5: [[𝛿]]𝐵 = [[𝑑𝑗 < 𝑑⋆𝑖]]

𝐵 . # by FSS-based DCF
6: [[𝛿′]]𝐵 = [[𝛿]]𝐵 ⊗ [[𝑙𝑗]]𝐵 .

Obliviously swapping [[𝑖𝑑⋆𝑖]]
𝐴 and [[𝑖𝑑𝑗]]𝐴:

7: [[𝜌]]𝐴 = [[𝑖𝑑⋆𝑖]]
𝐴 + [[𝛿′]]𝐵 ⋅ ([[𝑖𝑑𝑗]]𝐴 − [[𝑖𝑑⋆𝑖]]

𝐴).
8: [[𝜑]]𝐴 = [[𝑖𝑑𝑗]]𝐴 + [[𝛿′]]𝐵 ⋅ ([[𝑖𝑑⋆𝑖]]

𝐴 − [[𝑖𝑑𝑗]]𝐴).
9: [[𝑖𝑑⋆𝑖]]

𝐴 = [[𝜌]]𝐴; [[𝑖𝑑𝑗]]𝐴 = [[𝜑]]𝐴.
10: Obliviously swapping [[𝑑⋆𝑖]]

𝐴 and [[𝑑𝑗]]𝐴 based on [[𝛿′]]𝐵 by the
same way.

11: end for
12: end for
13: Outputting 𝑘-nearest workers’ encrypted IDs [[𝐈⋆]]𝐴.

array [[𝐃⋆]]𝐴 = [[[𝑑⋆1]]
𝐴,… , [[𝑑⋆𝑘]]

𝐴] to store 𝑘-nearest available workers’
encrypted distances to task 𝑡, where [[𝑑⋆𝑖]]

𝐴 is set to [[𝑀𝐴𝑋]]𝐴 at the
beginning and 𝑀𝐴𝑋 is a pre-set system-wide maximum value. After
that, given each [[𝑖𝑑⋆𝑖]]

𝐴, [[𝑑⋆𝑖]]
𝐴, 𝑖 ∈ [1, 𝑘], PPTA provides techniques to

allow {0,1} to obliviously compare [[𝑑⋆𝑖]]
𝐴 and each [[𝑑𝑗]]𝐴 ∈ [[]]𝐴,

and then obliviously swap ([[𝑖𝑑⋆𝑖]]
𝐴, [[𝑑⋆𝑖]]

𝐴) and ([[𝑖𝑑𝑗]]𝐴, [[𝑑𝑗]]𝐴) when
the underlying 𝑑𝑗 < 𝑑⋆𝑖 and 𝑙𝑗 = 1 (i.e., worker 𝑤𝑗 is an available
worker). Obviously, if the number of available workers is less than 𝑘,
there will be some [[−1]]𝐴 in [[𝐈⋆]]𝐴. Therefore, after securely revealing
[[𝐈⋆]]𝐴 (as later introduced in Section 5.4), {0,1} can filter out invalid
IDs to obtain the IDs of matched available workers.

We next introduce how to securely realize the above idea. Firstly,
the secure comparison between [[𝑑⋆𝑖]]

𝐴 and [[𝑑𝑗]]𝐴 can be realized by the
FSS-based DCF introduced in Section 5.2. We represent the comparison
as [[𝛿]]𝐵 = [[𝑑𝑗 < 𝑑⋆𝑖]]

𝐵 . It is noted that the FSS-based DCF 𝑔<𝛼,𝛽 (𝑥) is anal-
ogous to 𝑔≤𝛼,𝛽 (𝑥). However, {0,1} cannot simply swap ([[𝑖𝑑⋆𝑖]]

𝐴, [[𝑑⋆𝑖]]
𝐴)

and ([[𝑖𝑑𝑗]]𝐴, [[𝑑𝑗]]𝐴) based on [[𝛿]]𝐵 because the worker 𝑤𝑗 may not be
an available worker, i.e., 𝑤𝑗 is out of the search range 𝑟. Therefore,
PPTA further lets {0,1} AND [[𝛿]]𝐵 by 𝑤𝑗 ’s label [[𝑙𝑗]]𝐵 . Formally, {0,1}
perform the following

[[𝛿′]]𝐵 = [[𝛿]]𝐵 ⊗ [[𝑙𝑗]]𝐵 ,

where 𝛿′ = 1 indicates that the worker 𝑤𝑗 is an available worker as
well as closer to the task 𝑡 than the worker with ID 𝑖𝑑⋆𝑖 . Correctness
holds since 𝛿′ = 1 if and only if 𝛿 = 1 and 𝑙𝑗 = 1, where 𝛿 = 1
indicates that 𝑤𝑗 is closer to the task and 𝑙𝑗 = 1 indicates that 𝑤𝑗 is
an available worker. We then should consider how to allow {0,1} to
obliviously swap ([[𝑖𝑑⋆𝑖]]

𝐴, [[𝑑⋆𝑖]]
𝐴) and ([[𝑖𝑑𝑗]]𝐴, [[𝑑𝑗]]𝐴) based on [[𝛿′]]𝐵 .

Our main idea is to first transform the secure swapping operation
into:
⎧

⎪

⎨

⎪

⎩

[[𝜌]]𝐴 = [[𝑖𝑑⋆𝑖]]
𝐴 + [[𝛿′]]𝐵 ⋅ ([[𝑖𝑑𝑗]]𝐴 − [[𝑖𝑑⋆𝑖]]

𝐴);
[[𝜑]]𝐴 = [[𝑖𝑑𝑗]]𝐴 + [[𝛿′]]𝐵 ⋅ ([[𝑖𝑑⋆𝑖]]

𝐴 − [[𝑖𝑑𝑗]]𝐴);
[[𝑖𝑑⋆𝑖]]

𝐴 = [[𝜌]]𝐴; [[𝑖𝑑𝑗]]𝐴 = [[𝜑]]𝐴,

where 𝜌 and 𝜑 are two temporary variables to store the swapped values.
The secure swapping of [[𝑑⋆𝑖]]

𝐴 and [[𝑑𝑗]]𝐴 is similar to the above process.
It is noted that the addition and subtraction are naturally supported in
the secret sharing domain. The multiplication between a binary secret-
shared value and an arithmetic secret-shared value (e.g., [[𝛿′]]𝐵 ⋅([[𝑖𝑑𝑗]]𝐴−
[[𝑖𝑑⋆𝑖]]

𝐴)), however, is not naturally supported in the secret sharing
domain and tailored protocol is required.
6

Algorithm 4 Secure 𝑘-Nearest Available Workers Revealing 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅

Input: 𝑘-nearest workers’ encrypted IDs [[𝐈⋆]]𝐴.
Output: 𝑘-nearest workers’ shuffled IDs �̂�⋆ in plaintext.
1: [[�̂�⋆]]𝐴 = 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾([[𝐈⋆]]𝐴).
2: {0,1} perform 𝐑𝐞𝐜([[�̂�⋆]]𝐴0 , [[�̂�

⋆]]𝐴1) to securely reveal the shuffled �̂�⋆.
3: Outputting 𝑘-nearest workers’ IDs �̂�⋆.

Given that {0,1} hold a binary secret-shared value [[𝜎]]𝐵 and an
rithmetic secret-shared value [[𝜇]]𝐴, {0,1} can proceed as follows to
ecurely calculate [[𝜎 ⋅ 𝜇]]𝐴 (inspired by [30]). Firstly, 0 generates a
andom value 𝑟 ∈ Z2𝑙 and then sends two messages 𝑚𝑖 = (𝑖 ⊕ [[𝜎]]𝐵0) ⋅
[𝜇]]𝐴0 − 𝑟, 𝑖 ∈ {0, 1} to 1. Secondly, 1 keeps 𝑚0 if [[𝜎]]𝐵1 = 0, and
otherwise 1 keeps 𝑚1. Therefore, 1 holds the share 𝑚[[𝜎]]𝐵1

= 𝜎 ⋅[[𝜇]]𝐴0 −𝑟
nd 0 holds the share 𝑟. For the other share [[𝜇]]𝐴1 , 1 in turn acts as

the sender and 0 acts as receiver to perform the above two steps again.
At the end of the evaluation, {0,1} hold the secret sharings of [[𝜎 ⋅𝜇]]𝐴.
With the above tailored design, {0,1} can obliviously fetch 𝑘-nearest
available workers’ encrypted IDs [[𝐈⋆]]𝐴, as detailed in Algorithm 3.

5.4. Secure 𝑘-nearest available workers revealing

Upon producing the encrypted 𝑘-nearest available workers’ IDs
[[𝐈⋆]]𝐴, {0,1} then need to decrypt them to obtain the plaintext IDs 𝐈⋆,
so as to assign the task 𝑡 to the corresponding workers. To decrypt
the encrypted IDs, a naive method is to let {0,1} simply exchange
the secret shares of [[𝐈⋆]]𝐴 they hold. Such naive method, however,
will leak the orders regarding the matched workers’ distances from the
task because the bubble sort outputs ordered results. This leakage has
been shown to be exploitable for various attacks [22,23]. Therefore,
a custom approach is needed to allow {0,1} to securely reveal the
𝑘-nearest workers’ IDs without knowing their original orders.

Our key idea is to first have {0,1} obliviously shuffle the encrypted
𝑘-nearest available workers’ IDs [[𝐈⋆]]𝐴, i.e., a shuffle is performed
without {0,1} knowing the permutation, so as to break the orders of
IDs in 𝐈⋆. Since [[𝐈⋆]]𝐴 is shuffled, we can let {0,1} securely reveal
the IDs in the shuffled [[𝐈⋆]]𝐴 (denoted as [[�̂�⋆]]𝐴) to identify which
workers are the matched ones for task 𝑡. Here what we need is a
technique to allow {0,1} to securely perform the shuffle in the secret
sharing domain. In particular, given a secret-shared array with ordered
elements [[𝐗]]𝐴, we need a secret-shared shuffle protocol that allows
the SC service providers to collaboratively shuffle the elements in [[𝐗]]𝐴
and produce the secret shares of the shuffled array [[𝜋(𝐗)]]𝐴, while no
party can learn the permutation 𝜋(⋅). We identify that the state-of-the-
art construction of secret-shared shuffle from [31] is well suited for
our purpose, since it allows secret-shared shuffling on additive secret
shares. We encapsulate the secret-shared shuffle protocol as 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾,
which inputs the ordered array [[𝐗]]𝐴, and outputs the shuffled array
[[𝜋(𝐗)]]𝐴.

PPTA adapts 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾 to instantiate the secure 𝑘-nearest available
workers revealing process, where the encrypted 𝑘-nearest available
workers’ ID array [[𝐈⋆]]𝐴 is set as the input array and each encrypted
ID in [[𝐈⋆]]𝐴 is an element in the input array. Algorithm 4 describes
our protocol for secure 𝑘-nearest workers revealing, which inputs the
encrypted IDs [[𝐈⋆]]𝐴, and outputs the shuffled IDs �̂�⋆ in plaintext. It
is noted that since the number of available workers is probably less
than 𝑘, �̂�⋆ may contain dummy IDs, each of which is equal to −1 (as
introduced above in 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁). Therefore, {0,1} can filter IDs from �̂�⋆
if they are equal to −1.

Finally, based on the valid IDs in �̂�⋆, {0,1} send the secret shares
of the task 𝑡’s locations and description to the corresponding workers
for decryption. Each matched worker then obtains the task description
and location, and can move to the specified task location to perform
the task according to the task description.

Computer Networks 224 (2023) 109600M. Zhou et al.

a

𝑘

Algorithm 5 Secure Task Assignment in the Batch-based Setting

Input: The encrypted location [[𝜏𝑗]]𝐴 and encrypted search range [[𝑟𝑗]]𝐴

of each 𝑡𝑗 , 𝑗 ∈ [1, 𝑆], workers’ ID set  and encrypted location set
[[]]𝐴.

Output: 𝑘-nearest workers’ IDs �̂�⋆𝑗 for each task 𝑡𝑗 .
1: Initializing counter set  = {𝑐𝑖 = 0}𝑖∈[1,𝑁].
2: for all 𝑗 ∈ [1, 𝑆] do
3: # Phase i: secure available workers labeling:
4: ([[𝑗]]𝐵 , [[𝑗]]𝐴) = 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄([[𝜏𝑗]]𝐴, [[]]𝐴, [[𝑟𝑗]]𝐴,).

Phase ii: secure 𝑘-nearest available workers search:
5: [[𝐈⋆𝑗]]

𝐴 = 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁([[𝑗]]𝐵 , [[𝑗]]𝐴,).
Phase iii: secure 𝑘-nearest available workers revealing:

6: �̂�⋆𝑗 = 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅([[𝐈⋆𝑗]]
𝐴).

7: for all 𝑖𝑑⋆ ∈ �̂�⋆𝑗 do
8: Updating the counter 𝑐𝑖 corresponding to the worker with ID

𝑖𝑑⋆: 𝑐𝑖 = 𝑐𝑖 + 1.
9: end for

10: end for
11: Outputting 𝑘-nearest workers’ IDs �̂�⋆𝑗 for each task 𝑡𝑗 .

6. Location privacy-preserving task assignment in the batch-based
setting

In this section, we present our secure task assignment protocol for
the batch-based setting. As aforementioned, in such setting, the re-
quester will distribute a batch of tasks to the SC platform. Once receiv-
ing a task batch  = {𝑡𝑗 , 𝑗 ∈ [1, 𝑆]}, the SC platform will perform task
assignment to output an optimal match  =

{(

𝑤𝑖, 𝑡𝑗
)

|𝑤𝑖 ∈  , 𝑡𝑗 ∈  ,
𝑑
(

𝑤𝑖, 𝑡𝑗
)

≤ 𝑟𝑗
}

such that |(𝑡𝑗)| ≤ 𝑘, |(𝑤𝑖)| ≤ 𝑏 and || is maximized,
where (𝑡𝑗) is the set of workers assigned with task 𝑡𝑗 , (𝑤𝑖) is the
set of tasks assigned to worker 𝑤𝑖, and || is the number of matched
worker-task pairs.

The problem of optimal task assignment in the batch-based setting
can be transformed into the maximum flow (Max-Flow) problem [32].
However, although the Max-Flow based approach can produce the
optimal result, directly applying it may lead to high performance over-
heads [7,32]. Therefore, we turn to leverage a greedy method to design
our secure task assignment protocol in the batch-based setting, inspired
by [7]. The basic idea of the greedy method for task assignment in
the batch-based setting is as follows. Given each 𝑡𝑗 ∈  in turn, the
SC platform selects 𝑘-nearest workers for 𝑡𝑗 from the workers who are
available workers for 𝑡𝑗 and have been assigned less than 𝑏 tasks until
now. As will be later shown in the experiments, the greedy method
based secure task assignment in the batch-based setting can generate
results with quality similar to the optimal results generated by the
Max-Flow based approach.

Algorithm 5 shows our design for secure task assignment in
the batch-based setting. Given the encrypted location [[𝜏𝑗]]𝐴 =
([[𝑎𝑗]]𝐴, [[𝑏𝑗]]𝐴) of task 𝑡𝑗 ∈  and the encrypted location ([[𝑥𝑖]]𝐴, [[𝑦𝑖]]𝐴)
of each worker 𝑤𝑖 ∈  , similar to the secure task assignment in
the online setting, {0,1} need to first obliviously label the available
workers who are within the search range 𝑟𝑗 . However, since in the
batch-based setting, each worker is limited to a maximum of 𝑏 tasks, the
secure available workers labeling component 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅 in online setting
(i.e., Algorithm 2) cannot be directly used in batch-based setting and a
delicate treatment is required.

Our solution is to let {0,1} maintain a public counter 𝑐𝑖 for each
worker 𝑤𝑖. At the beginning of the secure task assignment, 𝑐𝑖 = 0.
Afterwards, at the end of assignment for each task 𝑡𝑗 ∈  , if a worker
𝑤𝑖 is assigned to task 𝑡𝑗 , the counter 𝑐𝑖 of worker 𝑤𝑖 will be set as
𝑐𝑖 + 1. During the process of secure available workers labeling, instead
of letting {0,1} obliviously label a worker 𝑤𝑖 by [[𝑙𝑖]]𝐵 = [[(𝑑𝑖−𝑟2 ≤ 0)]]𝐵
as in the online setting, PPTA lets {0,1} obliviously label 𝑤𝑖 by

𝐵 2 𝐵
7

[[𝑙𝑖]] = [[(𝑑𝑖 − 𝑟 ≤ 0)]] ⊗ (𝑐𝑖 < 𝑏),
Algorithm 6 Secure Available Workers Labeling 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄

Input: Task 𝑡’s encrypted location [[𝜏]]𝐴 and its encrypted search range
[[𝑟]]𝐴, registered workers’ encrypted location set [[]]𝐴, and counter
set .

Output: Workers’ encrypted label set [[]]𝐵 and encrypted distance set
[[]]𝐴.

1: Initializing two empty sets [[]]𝐵 = ∅ and [[]]𝐴 = ∅.
2: for all 𝑖 ∈ [1, 𝑁] do
3: [[𝑑𝑖]]𝐴 = ([[𝑥𝑖]]𝐴 − [[𝑎]]𝐴)2 + ([[𝑦𝑖]]𝐴 − [[𝑏]]𝐴)2.
4: [[𝑟2]]𝐴 = [[𝑟]]𝐴 ⋅ [[𝑟]]𝐴.
5: [[𝑙𝑖]]𝐵 = [[(𝑑𝑖 − 𝑟2 ≤ 0)]]𝐵 ⊗ (𝑐𝑖 < 𝑏).
6: [[]]𝐴.𝑎𝑑𝑑([[𝑑𝑖]]𝐴).
7: [[]]𝐵 .𝑎𝑑𝑑([[𝑙𝑖]]𝐵).
8: end for
9: Outputting the encrypted label set [[]]𝐵 and encrypted distance set

[[]]𝐴.

where (𝑐𝑖 < 𝑏) = 1 ∈ Z2 if 𝑐𝑖 < 𝑏. With this way, if and only if the
worker 𝑤𝑖 is within the search range and its counter 𝑐𝑖 < 𝑏 (i.e., the
number of tasks assigned to 𝑤𝑖 is still smaller than 𝑏), 𝑤𝑖’s encrypted
label [[𝑙𝑖]]𝐵 will be set to [[1]]𝐵 . We present our new component for
secure available workers labeling in Algorithm 6 (denoted as 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄),
which inputs the encrypted location [[𝜏]]𝐴 = ([[𝑎]]𝐴, [[𝑏]]𝐴) and the search
range 𝑟 of a task 𝑡 ∈  , workers’ encrypted location set [[]]𝐴, and
counter set  = {𝑐𝑖}, and outputs workers’ encrypted label set [[]]𝐵
nd encrypted distance set [[]]𝐴 for the task 𝑡. Note that Algorithm 6

is same as Algorithm 2 except for line 5.
After obliviously labeling available workers, {0,1} securely search

-nearest available workers for the task 𝑡𝑗 by the component 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁
(i.e., Algorithm 3), which inputs the label set [[𝑗]]𝐵 , the distance set
[[𝑗]]𝐴 and public ID set , and outputs the 𝑘-nearest available workers’
encrypted IDs [[𝐈⋆𝑗]]

𝐴 for task 𝑡𝑗 . After that, {0,1} securely reveal the
encrypted IDs [[𝐈⋆𝑗]]

𝐴 by the secure component 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅 (i.e., Algorithm
4), which inputs the encrypted IDs [[𝐈⋆𝑗]]

𝐴, and outputs the shuffled IDs
�̂�⋆𝑗 in plaintext.

After {0,1} obtain 𝑘-nearest available worker IDs �̂�⋆𝑗 for each task
𝑡𝑗 ∈  , {0,1} send the secret shares of each task 𝑡𝑗 ’s locations and
description to the corresponding workers for decryption. After the 𝑘-
nearest available workers obtain the task description and location,
they move to the specified location to perform the task based on the
description.

Remark. It is noted that although the secure task assignment algo-
rithms for the online setting and the batch-based setting are not the
same, the workers only need to upload their secret-shared locations
once, and the remaining processing of secure task assignment under
different settings is fully performed at the SC platform, which will
decide which algorithms to use based on the specific setting. Therefore,
PPTA does ensure that task assignment can be securely performed with
workers being agnostic to the specific settings.

7. Security analysis

Our secure task assignment protocols guarantee that throughout the
process of task assignment, 0 and 1 only know the assignment result
for tasks, i.e., which workers are the eligible ones for a specific task.
Next, we follow the standard simulation-based paradigm [33] to prove
the confidentiality that PPTA provides for the locations used for task
assignment in SC. We first analyze the online setting. We start with
defining the corresponding ideal functionality  , which comprises the
following parts:

• Input. The requester submits its task 𝑡 to  , and each worker

submits its ID and location to  .

Computer Networks 224 (2023) 109600M. Zhou et al.

s
g
f

T
t


P
o
a
n
𝑘
s
p
f
i
t
P


• Task assignment. Upon receiving task 𝑡 from the requester, and
the ID and location from each worker,  performs task assignment
to search 𝑘-nearest available workers for task 𝑡. After that,  sends
the task description to the assigned workers.

• Output. The assigned workers perform the task based on its
requirement at the specified location.

Let ∏ denote the protocol for securely realizing the ideal function-
ality  . ∏’s security is formally defined as follows.

Definition 2. Let view𝑖
𝛱 denote each 𝑖’s view during the execution

of 𝛱 . We say that 𝛱 is secure in the semi-honest and non-colluding
etting, if for each corrupted 𝑖 there exists a PPT simulator who can
enerate a simulated view Sim𝑖 such that Sim𝑖 is indistinguishable
rom view𝑖

𝛱 .

heorem 1. In the semi-honest and non-colluding threat model and given
he security of ASS and FSS, PPTA securely realizes the ideal functionality
according to Definition 2.

roof. Recall that our protocol for secure task assignment in the
nline setting (i.e., Algorithm 1) consists of three subroutines: i) secure
vailable workers labeling 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅 (i.e., Algorithm 2); ii) secure 𝑘-
earest available workers search 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁 (i.e., Algorithm 3); iii) secure
-nearest available workers revealing 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅 (i.e., Algorithm 4). Each
ubroutine in Algorithm 1 is invoked in order as per the processing
ipeline and their inputs are secret shares that are indistinguishable
orm random values. If the simulator for each subroutine exists, PPTA
s secure [34–36]. We next analyze the existence of simulators for the
hree subroutines in turn. It is noted that since the roles of {0,1} in
PTA are symmetric, it suffices to prove the existence of simulators for
0.

• Simulator for 0 in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅. Since the operations apart from
line 5 in Algorithm 2 are basic additions and multiplications
over additive secret shares, we only prove that the simulator
for 0 exists in the execution of line 5, i.e., [[(𝑑𝑖 − 𝑟2 ≤ 0)]]𝐵 .
At the beginning, 0 holds the FSS-based DCF key 𝑘0 and the
secret share [[𝑑𝑖− 𝑟2]]𝐴0 , and later receives the masked secret share
[[𝑑𝑖 − 𝑟2]]𝐴1 + [[𝛾]]𝐴1 from 1, followed by outputting the evaluation
result [[(𝑑𝑖 − 𝑟2 ≤ 0)]]𝐵0 . Since all the information 0 receives is all
legitimate in FSS-based DCF, the simulator for 0 can be trivially
constructed by invoking the simulator of FSS-based DCF. From the
security of ASS [13] and FSS [24], the simulator for 0 in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅
exists.

• Simulator for 0 in 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁. Note that the operations apart
from line 5, line 7, and line 8 in Algorithm 3 are basic addi-
tions and multiplications over additive secret shares, we only
prove that the simulator for 0 exists in the execution of line 5,
i.e., [[𝑑𝑗 < 𝑑⋆𝑖]]

𝐵 , and line 7, and line 8, i.e., the multiplication
between a binary secret-shared value and an arithmetic secret-
shared value, denoted as [[𝜎 ⋅ 𝜇]]𝐴 given that {0,1} hold [[𝜎]]𝐵
and [[𝜇]]𝐴. Since [[𝑑𝑗 < 𝑑⋆𝑖]]

𝐵 is the standard use of FSS-based
DCF, the simulator for 0 can be trivially constructed by invoking
the simulator of FSS-based DCF. We then analyze the operation
[[𝜎 ⋅ 𝜇]]𝐴. At the beginning, 0 holds [[𝜎]]𝐵0 and [[𝜇]]𝐴0 , and later
receives two messages 𝑚𝑖 = (𝑖 ⊕ [[𝜎]]𝐵0) ⋅ [[𝜇]]

𝐴
0 − 𝑟, 𝑖 ∈ {0, 1} to

1. We need to prove that 𝑚𝑖, 𝑖 ∈ {0, 1} are uniformly random
in 0’s view. Since 𝑟 is uniformly random in 0’s view, which
implies that 𝑚𝑖, 𝑖 ∈ {0, 1} are also uniformly random in 0’s view
since 𝑟 is independent of other values used in the generation of
𝑚𝑖, 𝑖 ∈ {0, 1} [37]. Therefore, from the security of ASS [13] and
FSS [24], the simulator for 0 in 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁 exists.

• Simulator for 0 in 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅. At the beginning of 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅, 0
has the secret share [[𝐈⋆]]𝐴0 , and later receives secret shares in
secure shuffle (i.e., 𝗌𝖾𝖼𝖲𝗁𝗎𝖿𝖿 𝗅𝖾) and secret shares [[�̂�⋆]]𝐴1 from 1
to recover �̂�⋆. Therefore, from the security of secret shuffle [31]
and ASS [13], the simulator for  in 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅 exists. □
8

0

We next analyze the security of task assignment in the batch-based
setting. We start with defining the corresponding ideal functionality  ′,
which comprises the following parts:

• Input. The requester submits its task batch  to  ′; each worker
submits its ID and location to  ′.

• Task assignment. Upon receiving the task batch  from the
requester, and the ID and location from each worker,  ′ performs
task assignment as per the greedy method. After that,  ′ sends
each task content 𝑡 to its assigned workers.

• Output. The assigned workers perform the task 𝑡 ∈  based on
its requirement at the specified location.

Let ∏′ denote the protocol for security protocol realizing the ideal
functionality  ′. The security of ∏ can be formally defined as in
Definition 2.

Theorem 2. In the semi-honest and non-colluding threat model and given
the security of ASS and FSS, PPTA securely realizes the ideal functionality
 ′ according to Definition 2.

Proof. Recall that our protocol for secure task assignment in the batch-
based setting (i.e., Algorithm 5) consists of three subroutines: i) secure
available workers labeling (i.e., Algorithm 6 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄); ii) secure 𝑘-
nearest available workers search (i.e., Algorithm 3 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁); iii) secure
𝑘-nearest workers available revealing (i.e., Algorithm 4 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅). Each
subroutine in Algorithm 5 is invoked in order as per the processing
pipeline and their inputs are random secret shares. Therefore, if the
simulator for each subroutine exists, PPTA is secure [34–36]. It is noted
that the simulators for {0,1} in 𝗌𝖾𝖼𝖲𝖾𝖺𝗋𝖼𝗁 and 𝗌𝖾𝖼𝖱𝖾𝗏𝖾𝖺𝗅 exist based on
Proof 1. In addition, the only difference between 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄ and 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅
is line 5. Specifically, line 5 in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄ is [[(𝑑𝑖 − 𝑟2 ≤ 0)]]𝐵 ⊗ (𝑐𝑖 < 𝑏)
and line 5 in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅 is [[(𝑑𝑖 − 𝑟2 ≤ 0)]]𝐵 , namely, line 5 in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄ has
one more basic multiplication than that in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅. Since the simulator
for {0,1} in 𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅 exists based on Proof 1, the simulator for {0,1} in
𝗌𝖾𝖼𝖫𝖺𝖻𝖾𝗅⋄ also exists. □

8. Experiments

8.1. Setup

Implementation. We implement the protocols in PPTA with C++.
Our implementation is comprised of about 1800 lines of C++ code
(excluding the code of libraries). We also implement a test module with
another 400 lines of C++ code. All experiments are conducted on a
workstation with 16 cores and 64 GB RAM running on a 3.8 GHz Intel
i7-10700k CPU. The server-side communication on the workstation
is emulated by the loopback filesystem, where the delay is fixed at
2 ms. For the primitive of ASS, we set the ring size to 264, which
can be implemented directly with unsigned long data types in C++.
This setting allows to substitute modular addition (multiplication) with
regular addition (multiplication), which greatly improves the compu-
tation efficiency [38]. We use the method proposed in [38] to handle
real numbers in secret sharing domain. Specifically, for a private real
number 𝑥, we encode it by fixed-point representation with 𝑡 bits of
precision: ⌊𝑥 ⋅ 2𝑡⌉. We use 𝑡 = 8 in our experiments. The security
parameter 𝜆 of DCF is set to 128.
Dataset. We conduct experiments on a real-world dataset (named as
Yelp) from Kaggle1, which is also used in prior work [5]. Yelp contains
150346 samples across 8 metropolitan areas in the USA and Canada.
Each sample in Yelp contains a location in GIS coordinates (latitude
and longitude) and a user ID. We randomly choose some locations
as task locations and worker locations respectively. Additionally, we
convert these sampled locations to Cartesian coordinates through a

1 https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset

https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset

Computer Networks 224 (2023) 109600M. Zhou et al.

c
t
P
f
t
p
a
I
a
o
f
M
t
e
p
i
w
t
i
o
2
b
d
e
b
s
n
o
a
s
r
r

8

8

A
t
o
a
a
a
P
a
b
s

8

w
a
P

I
t
a
d
o
d
w
t
a

8

p
s
n
i
o
a
i
t
n
e

8

8

b
M
a
F
m
o
m
o
a
p
m
p

Fig. 3. Utility in the online setting for varying (a): | | (||); (b): 𝑘.

ommonly used technique: Miller cylindrical projection [28] and shift
he lower-left boundary point to (0, 0).
laintext baselines. We compare the effectiveness of PPTA with dif-
erent plaintext baselines. Specifically, in the online setting, we use
he plaintext task assignment method as the baseline method, which
erforms the task assignment without considering privacy protection
nd can directly access the plaintext locations of tasks and workers.
n the batch-based setting, we use the plaintext Max-Flow algorithm
s the baseline method, which first constructs the flow network based
n the plaintext locations of tasks and workers, and then performs
old-fulkerson algorithm [39] to obtain the optimal matches.
etrics. For the online setting, we compare the utility, average dis-

ance of task assignment in our PPTA with the plaintext baseline and
valuate the running time of PPTA. The utility is measured by the
ercentage of tasks successfully assigned to 𝑘 workers. Average distance
s measured by the average travel distance between all assigned task-
orker pairs. Running time is measured by the average assignment

ime for a single task through the secure task assignment protocol,
.e., Algorithm 1. In all experiments for the online setting, the numbers
f workers and tasks are both set to 100, the search range 𝑟 is fixed to
000 m and 𝑘 is set to 2 by default unless otherwise specified. For the
atch-based setting, we compare the number of matched pairs, average
istance of task assignment in our PPTA with the plaintext baseline and
valuate the running time of PPTA. In all experiments for the batch-
ased setting, the numbers of workers and tasks are both set to 50, the
earch range 𝑟 is fixed to 2000 m, 𝑘 is set to 2, 𝑏 (i.e., the maximum
umber of tasks a worker can handle) is set to 2 by default unless
therwise specified. It is worth nothing that different from [7], there
re no wrong assignments in PPTA due to the correctness of the adopted
ecure computation techniques. Therefore, we do not evaluate the error
ate in our experiments. The reported results are the average over 10
uns.

.2. Evaluation on ppta in the online setting

.2.1. Utility evaluation
We first evaluate the utility of secure task assignment protocol in

lgorithm 1 by comparing the percentage of tasks successfully assigned
o 𝑘 workers in PPTA and the plaintext baseline, by varying the number
f tasks (workers), i.e., | | (||), and the required number of workers
ssigned to each task (i.e., 𝑘). The results are summarized in Figs. 3(a)
nd 3(b), where Fig. 3(a) shows the utility with the increase of data size
nd Fig. 3(b) shows the utility with the increase of 𝑘. It is observed that
PTA can achieve exactly the same utility as the plaintext baseline. In
ddition, the utility in both methods increases as the data size grows,
ecause more workers mean higher density of workers, and thus higher
uccess rate of task assignment.

.2.2. Average distance evaluation
We now evaluate the average travel distance between all task-

orker pairs generated by PPTA. Figs. 4(a) and 4(b) compare the
verage travel distance between all task-worker pairs generated by
PTA and plaintext baseline, for varying | | (||) and 𝑘, respectively.
9

Fig. 4. Average distance in the online setting for varying (a): | | (||); (b): 𝑘.

Fig. 5. Running time in the online setting for varying (a): | | (||); (b): 𝑘.

t is observed that the average travel distance in PPTA is similar to
hat in the plaintext baseline and they exhibit consistent behavior. In
ddition, in both methods, the average travel distance decreases as the
ata size increases since the more workers, the higher the probability
f finding workers closer to each task. However, the average travel
istance will increase as 𝑘 increases. The reason is that the more
orkers are required for each task, the higher the probability that the

ask will be assigned to workers farther away, which will lead to longer
verage travel distance.

.2.3. Running time evaluation
We then evaluate the running time of the secure task assignment

rotocol in Algorithm 1 under the online setting. Figs. 5(a) and 5(b)
ummarize the running time of PPTA, for varying the task (worker)
umber | | (||) and 𝑘, respectively. The reported running time
ncludes both the computation time and communication time. It is
bserved that the running time is linear to | | (||) and 𝑘. Specifically,
s | | (||) increases from 10 to 100, the running time of PPTA
ncreases from 0.39 s to 3.68 s. As 𝑘 increases from 1 to 10, the running
ime of PPTA increases from 2.14 s to 15.86 s. It is noted that the
umber of DCF keys at each SC service provider consumed in the
valuation for the online setting is 300–110000.

.3. Evaluation on ppta in the batch-based setting

.3.1. Evaluation on number of matched pairs
We first compare the secure task assignment protocol in the batch-

ased setting (i.e., Algorithm 5) with the plaintext baseline (i.e., the
ax-Flow method) on the number of matched pairs. Fig. 6(a), Figs. 6(b)

nd 6(c) summarize the number of matched pairs in PPTA and the Max-
low method, for varying | | (||), 𝑘, and 𝑏. The results show that no
atter how | | (||), 𝑘 and 𝑏 change, the difference in the number

f matched pairs between the two methods does not exceed 0.5, which
eans that the task assignment generated by PPTA is similar to the

ptimal task assignment generated by the maximum flow method. In
ddition, it is observed that as 𝑘 and 𝑏 increase, the number of matched
airs of both methods increases. The reason is that the increase of 𝑘
eans that each task requires more workers, and thus more matched
airs can be found. On the other hand, the increase in 𝑏 is equivalent

Computer Networks 224 (2023) 109600M. Zhou et al.

t
t

8

u
a
M
a
P
i
m
g
a

t
a
2
8
|

Fig. 6. The number of matched pairs in the batch-based setting for varying (a): | | (||); (b): 𝑘; (c): 𝑏.
Fig. 7. Average distance in the batch-based setting for varying (a): | | (||); (b): 𝑘; (c): 𝑏.
Fig. 8. Running time in the batch-based setting for varying (a): | | (||); (b): 𝑘; (c): 𝑏.
i
f
𝑘
n
b
a
F
w
a
a
a
v
i
o
m
t
c

8

t
a
r
|

m

o the increase in the number of candidate workers for each task, and
hus the number of matched pairs also increases.

.3.2. Average distance evaluation
The average distance is also an important metric in task assignment

nder the batch-based setting. Fig. 7(a), Figs. 7(b) and 7(c) show the
verage travel distance of task assignment generated by PPTA and the
ax-Flow method, for varying | | (||), 𝑘 and 𝑏. It is shown that

lthough two methods can achieve almost the same # of matched pairs,
PTA outperforms Max-Flow in the average travel distance. The reason
s that the strategy of PPTA ensures that the closer workers are given
uch priority during task assignment, while the Max-Flow method

ives the equal considerations to all workers in the search range. We
nalyze the result in each figure in more detail as follows.

Fig. 7(a) shows the average distance for varying | | (||). As
he data size increases from 10 to 100, the average distance between
ll task-worker pairs generated by PPTA decreases from 632.4 m to
54.3 m, while that of the Max-Flow method only decreases from
24.9 m to 641.8 m. The average distance in both methods decreases as
 | (||) increases, due to the worker density increases. However, the

average distance between all task-worker pairs generated by Max-Flow
is more stable than PPTA as the increase of data size. The reason is that
PPTA will always choose the possible nearest worker. Therefore, when
the worker density increases, the average distance decreases sharply.
Since the Max-Flow method considers all workers with equal probabil-
ity, the average distance between all task-worker pairs generated by
10

w

t decreases gently. Similarly, Fig. 7(b) illustrates the average distance
or varying 𝑘, where the average distance in both methods increases as
increases. The reason is that the increase of 𝑘 will also increase the

umber of matched pairs, and thus more far apart worker-task pairs will
e produced. In addition, as 𝑘 increases, the average distance between
ll task-worker pairs generated by PPTA will approach that of Max-
low. The reason is that under a small 𝑘, PPTA can choose workers
ho are close to tasks. However, as 𝑘 increases, the number of tasks
ssigned to workers closer to tasks will reach the maximum (i.e., 𝑏),
nd thus PPTA has to choose workers from the ones who are farther
way from tasks. Finally, Fig. 7(c) illustrates the average distance for
arying 𝑏. It is observed that the average distance in Max-Flow remains
n the range 600 m–670 m as 𝑏 increases, while the average distance
f PPTA decreases as 𝑏 increases. The reason is that although there are
ore candidate workers to choose, the Max-Flow method has to choose

he workers with an equal probability. In contrast, PPTA can choose the
loser worker, and thus achieves the smaller average distance.

.3.3. Running time evaluation
We now evaluate the running time of secure task assignment pro-

ocol under the batch-based setting. Specifically, Fig. 8(a), Fig. 8(b),
nd Fig. 8(c) show the running time, for varying | | (||), 𝑘, and 𝑏,
espectively. It is observed that the running time is correlated with the
 | (||) and 𝑘, but independent with 𝑏. The reason is that 𝑏 is the
aximum number of tasks a worker can handle, which is independent

ith the time complexity of secure task assignment protocol under the

Computer Networks 224 (2023) 109600M. Zhou et al.
batch-based setting, i.e., Algorithm 5. It is noted that the number of
DCF keys at each SC service provider consumed in the evaluation for
the batch-based setting is 300–30000.

8.4. Comparison with the state-of-the-art prior works

A fair comparison between PPTA and the state-of-the-art prior
works [5,7] does not exist due to their limitations analyzed in Section 2.
Specifically, both prior works [5,7] do not offer strong protection for
the distances between tasks and workers. In addition, while providing
strong security guarantees, PPTA provides more accurate task assign-
ment than [7], and does not require the task requester to get involved
in the online phase in contrast with [5]. Specifically, PPTA assigns
tasks based on the accurate distances between tasks and workers, while
the scheme in [7] assigns tasks based on the approximate distances.
Besides, since the scheme in [5] produces a candidate worker set
containing dummy workers (due to the use of anonymization), the
requester needs to further locally filter the set to obtain the final
assignment result. In contrast, PPTA does not require the requester to
be involved in the whole process of secure task assignment.

9. Conclusion

In this paper, we design, implement, and evaluate PPTA, a new
system framework supporting location privacy-preserving and flexible
task assignment in SC, with stronger security and richer functionali-
ties over prior art. PPTA flexibly supports the online task assignment
setting as well as the batch-based task assignment setting, and only
makes use of lightweight cryptographic techniques (like FSS, ASS, and
secure shuffle). We provide formal security analysis for PPTA following
the standard simulation-based paradigm. Extensive experiments over
a real-world dataset demonstrate that while providing strong security
guarantees for SC services, PPTA can achieve nearly the same effec-
tiveness of task assignment as the plaintext baselines with promising
performance.

CRediT authorship contribution statement

Menglun Zhou: Conceptualization, Methodology, Software, Formal
analysis, Writing – original draft. Yifeng Zheng: Conceptualization,
Methodology, Supervision, Funding acquisition, Writing – review and
editing. Songlei Wang: Conceptualization, Methodology, Writing –
review and editing. Zhongyun Hua: Conceptualization, Validation,
Writing – review and editing. Hejiao Huang: Validation, Writing –
review and editing. Yansong Gao: Validation, Writing – review and
editing. Xiaohua Jia: Validation, Writing – review and editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the Guangdong Basic and Ap-
plied Basic Research Foundation under Grants No. 2021A1515110027
and No. 2021A1515011406, and in part by the Shenzhen Science
and Technology Program under Grants No. RCBS20210609103056041,
No JCYJ20220531095416037, No. GXWD20220817124827001, and
No. JCYJ20210324132406016, in part by the National Natural Sci-
ence Foundation of China under Grant No. 62002167, and in part by
the Natural Science Foundation of JiangSu, China under Grant No.
11

BK20200461.
References

[1] Y. Tong, L. Chen, C. Shahabi, Spatial crowdsourcing: Challenges, techniques, and
applications, Proc. VLDB Endow. 10 (12) (2017) 1988–1991.

[2] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, C. Shahabi, Spatial crowdsourcing: a survey,
VLDB J. 29 (1) (2020) 217–250.

[3] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski,
C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek, A. Gal, S. Mannor, D.
Gunopulos, D. Kinane, Heterogeneous stream processing and crowdsourcing for
urban traffic management, in: Proc. of EDBT, 2014.

[4] L. Pournajaf, L. Xiong, V.S. Sunderam, X. Xu, STAC: spatial task assignment for
crowd sensing with cloaked participant locations, in: Proc. of ACM SIGSPATIAL,
2015.

[5] H. Li, Q. Song, G. Li, Q. Li, R. Wang, GPSC: A grid-based privacy-reserving
framework for online spatial crowdsourcing, IEEE Trans. Knowl. Data Eng.
(2021) 1.

[6] Q. Tao, Y. Tong, Z. Zhou, Y. Shi, L. Chen, K. Xu, Differentially private online
task assignment in spatial crowdsourcing: A tree-based approach, in: Proc. of
IEEE ICDE, 2020.

[7] D. Yuan, Q. Li, G. Li, Q. Wang, K. Ren, PriRadar: A privacy-preserving framework
for spatial crowdsourcing, IEEE Trans. Inf. For. Secur. 15 (2020) 299–314.

[8] M. Li, J. Wang, L. Zheng, H. Wu, P. Cheng, L. Chen, X. Lin, Privacy-preserving
batch-based task assignment in spatial crowdsourcing with untrusted server, in:
Proc. of ACM CIKM, 2021.

[9] D. Shi, Y. Tong, Z. Zhou, B. Song, W. Lv, Q. Yang, Learning to assign: Towards
fair task assignment in large-scale ride hailing, in: Proc. of ACM SIGKDD, 2021.

[10] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye, W. Lv, The simpler
the better: a unified approach to predicting original taxi demands based on
large-scale online platforms, in: Proc. of ACM SIGKDD, 2017.

[11] X. Li, D.W. Goldberg, Toward a mobile crowdsensing system for road surface
assessment, Comput. Environ. Urban Syst. 69 (2018) 51–62.

[12] S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, B. Nath, Real-time air quality
monitoring through mobile sensing in metropolitan areas, in: Proc. of the ACM
SIGKDD International Workshop on Urban Computing, 2013.

[13] D. Demmler, T. Schneider, M. Zohner, ABY - A framework for efficient
mixed-protocol secure two-party computation, in: Proc. of NDSS, 2015.

[14] N. Agrawal, A.S. Shamsabadi, M.J. Kusner, A. Gascón, QUOTIENT: two-party
secure neural network training and prediction, in: Proc. of ACM CCS, 2019.

[15] W. Chen, R.A. Popa, Metal: A metadata-hiding file-sharing system, in: Proc. of
NDSS, 2020.

[16] X. Ding, Z. Wang, P. Zhou, K.-K.R. Choo, H. Jin, Efficient and privacy-preserving
multi-party skyline queries over encrypted data, IEEE Trans. Inf. For. Secur. 16
(2021) 4589–4604.

[17] M.S. Blog, Next steps in privacy-preserving Telemetry with Prio, 2022,
online at https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-
preserving-telemetry-with-prio/. (Accessed 1 Jun 2022).

[18] H. To, C. Shahabi, L. Xiong, Privacy-preserving online task assignment in spatial
crowdsourcing with untrusted server, in: Proc. of IEEE ICDE, 2018.

[19] L. Pournajaf, L. Xiong, V.S. Sunderam, S. Goryczka, Spatial task assignment for
crowd sensing with cloaked locations, in: Proc. of IEEE MDM, 2014.

[20] M.E. Andrés, N.E. Bordenabe, K. Chatzikokolakis, C. Palamidessi, Geo-
indistinguishability: Differential privacy for location-based systems, in: Proc. of
ACM CCS, 2013.

[21] C. Dwork, Differential privacy, in: M. Bugliesi, B. Preneel, V. Sassone, I. Wegener
(Eds.), Proc. of ICALP, 2006.

[22] E.M. Kornaropoulos, C. Papamanthou, R. Tamassia, Data recovery on encrypted
databases with k-nearest neighbor query leakage, in: Proc. of IEEE S&P, 2019.

[23] E.A. Markatou, F. Falzon, R. Tamassia, W. Schor, Reconstructing with less:
Leakage abuse attacks in two dimensions, in: Proc. of ACM CCS, 2021.

[24] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, M. Rathee,
Function secret sharing for mixed-mode and fixed-point secure computation, in:
Proc. of EUROCRYPT, 2021.

[25] E. Boyle, N. Gilboa, Y. Ishai, Function secret sharing, in: Proc. of EUROCRYPT,
2015.

[26] S. Wang, Y. Zheng, X. Jia, X. Yi, PeGraph: A system for privacy-preserving and
efficient search over encrypted social graphs, IEEE Trans. Inf. For. Secur. 17
(2022) 3179–3194.

[27] Y. Zheng, H. Duan, C. Wang, Learning the truth privately and confidently:
Encrypted confidence-aware truth discovery in mobile crowdsensing, IEEE Trans.
Inf. For. Secur. 13 (10) (2018) 2475–2489.

[28] J.P. Snyder, Flattening the Earth: Two Thousand Years of Map Projections,
University of Chicago Press, 1997.

[29] O. Astrachan, Bubble sort: an archaeological algorithmic analysis, ACM Sigcse
Bull. 35 (1) (2003) 1–5.

[30] P. Mohassel, P. Rindal, Aby3: A mixed protocol framework for machine learning,
in: Proc. of ACM CCS, 2018.

[31] S. Eskandarian, D. Boneh, Clarion: Anonymous communication from multiparty
shuffling protocols, in: Proc. of NDSS, 2022.

[32] D.B. West, et al., Introduction to Graph Theory, Vol. 2, Prentice hall Upper
Saddle River, 2001.

[33] Y. Lindell, How to simulate it - a tutorial on the simulation proof technique, in:

Electronic Colloquium on Computational Complexity, 2017, p. 112.

http://refhub.elsevier.com/S1389-1286(23)00045-2/sb1
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb1
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb1
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb2
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb2
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb2
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb3
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb4
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb4
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb4
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb4
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb4
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb5
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb5
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb5
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb5
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb5
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb6
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb6
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb6
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb6
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb6
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb7
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb7
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb7
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb8
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb8
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb8
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb8
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb8
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb9
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb9
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb9
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb10
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb10
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb10
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb10
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb10
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb11
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb11
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb11
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb12
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb12
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb12
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb12
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb12
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb13
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb13
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb13
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb14
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb14
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb14
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb15
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb15
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb15
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb16
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb16
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb16
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb16
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb16
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb18
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb18
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb18
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb19
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb19
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb19
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb20
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb20
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb20
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb20
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb20
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb21
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb21
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb21
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb22
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb22
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb22
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb23
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb23
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb23
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb24
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb24
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb24
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb24
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb24
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb25
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb25
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb25
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb26
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb26
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb26
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb26
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb26
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb27
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb27
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb27
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb27
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb27
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb28
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb28
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb28
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb29
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb29
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb29
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb30
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb30
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb30
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb31
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb31
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb31
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb32
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb32
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb32
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb33
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb33
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb33

Computer Networks 224 (2023) 109600M. Zhou et al.
[34] R. Canetti, Security and composition of multiparty cryptographic protocols, J.
Cryptol. 13 (1) (2000) 143–202.

[35] J. Katz, Y. Lindell, Handling expected polynomial-time strategies in simulation-
based security proofs, J. Cryptol. 21 (3) (2008) 303–349.

[36] M. Curran, X. Liang, H. Gupta, O. Pandey, S.R. Das, Procsa: Protecting privacy
in crowdsourced spectrum allocation, in: Proc. of ESORICS, 2019.

[37] T. Araki, J. Furukawa, Y. Lindell, A. Nof, K. Ohara, High-throughput semi-honest
secure three-party computation with an honest majority, in: Proc. of ACM CCS,
2016.

[38] P. Mohassel, Y. Zhang, SecureML: A system for scalable privacy-preserving
machine learning, in: Proc. of IEEE S&P, 2017.

[39] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
MIT Press, 2022.

Menglun Zhou received the BE degree in computer science
and technology from Harbin Institute of Technology, China,
in 2021. He is currently working toward the ME degree
in the School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China. His research inter-
ests include cloud computing security and secure multi-party
computation.

Yifeng Zheng is an Assistant Professor with the School
of Computer Science and Technology, Harbin Institute of
Technology, Shenzhen, China. He received the PhD degree
in computer science from the City University of Hong Kong,
Hong Kong, in 2019. He worked as a postdoc with the
Commonwealth Scientific and Industrial Research Organi-
zation, Australia, and with the City University of Hong
Kong. His work has appeared in prestigious conferences
such as ESORICS, DSN, ACM AsiaCCS, IEEE PERCOM, IEEE
INFOCOM, IEEE ICDCS, as well as journals such as IEEE
TDSC and IEEE TIFS. His current research interests are
focused on security and privacy related to cloud computing,
IoT, machine learning, and multimedia.

Songlei Wang received the BE degree in internet of things
from China University of Petroleum (East China), Qingdao,
China, in 2018, the ME degree in computer technology
from Harbin Institute of Technology, Shenzhen, China, in
2021. He is currently working toward the PhD degree in
the School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China. His research inter-
ests include cloud computing security and secure machine
learning.
12
Zhongyun Hua received the B.S. degree in software engi-
neering from Chongqing University, Chongqing, China, in
2011, and the M.S. and Ph.D. degrees in software engineer-
ing from the University of Macau, Macau, China, in 2013
and 2016, respectively. He is currently an Associate Profes-
sor with the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, Shenzhen, China.
He has published more than 50 papers on the subject and
receiving more than 2700 citations. His research interests
include chaotic systems, image processing, and information
security. He serves as an Associate Editor for International
Journal of Bifurcation and Chaos.

Hejiao Huang received the PhD degree in computer science
from City University of Hong Kong in 2004. She is currently
a professor with Harbin Institute of Technology, Shenzhen,
China, and previously was an invited professor with INRIA,
France. Her research interests include cloud computing,
trustworthy computing, formal methods for system design
and wireless networks.

Yansong Gao received his Ph.D. degree from the University
of Adelaide, Australia, in 2017. He was then with Data61,
CSIRO, Sydney, Australia as a Postdoc Research Fellow.
He is currently with Nanjing University of Science and
Technology, China, as an associate professor.

His current research interests are AI security and
privacy, hardware security, and system security.

Xiaohua Jia received his BSc (1984) and MEng (1987) from
University of Science and Technology of China, and DSc
(1991) in Information Science from University of Tokyo. He
is currently Chair Professor with Dept of Computer Science
at City University of Hong Kong. His research interests
include cloud computing and distributed systems, computer
networks and mobile computing. Prof. Jia is an editor
of IEEE Internet of Things, IEEE Transactions on Parallel
and Distributed Systems (2006–2009), Wireless Networks,
Journal of World Wide Web, Journal of Combinatorial
Optimization, etc. He is the General Chair of ACM MobiHoc
2008, TPC Co Chair of IEEE GlobeCom 2010 Ad Hoc
and Sensor Networking Symposium, Area-Chair of IEEE
INFOCOM 2010 and 2015. He is an IEEE Fellow.

http://refhub.elsevier.com/S1389-1286(23)00045-2/sb34
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb34
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb34
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb35
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb35
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb35
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb36
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb36
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb36
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb37
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb37
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb37
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb37
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb37
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb38
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb38
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb38
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb39
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb39
http://refhub.elsevier.com/S1389-1286(23)00045-2/sb39

	PPTA: A location privacy-preserving and flexible task assignment service for spatial crowdsourcing
	Introduction
	Related Work
	Preliminaries
	Additive Secret Sharing
	Function Secret Sharing

	Problem Statement
	System Model
	Threat Model

	Location Privacy-Preserving Task Assignment in the Online Setting
	Overview
	Secure Available Workers Labeling
	Secure k-Nearest Available Workers Search
	Secure k-Nearest Available Workers Revealing

	Location Privacy-Preserving Task Assignment in the Batch-Based Setting
	Security Analysis
	Experiments
	Setup
	Evaluation on PPTA in the Online Setting
	Utility Evaluation
	Average Distance Evaluation
	Running Time Evaluation

	Evaluation on PPTA in the Batch-Based Setting
	Evaluation on Number of Matched Pairs
	Average Distance Evaluation
	Running Time Evaluation

	Comparison with the State-of-the-Art Prior Works

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

