
3604 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Privet: A Privacy-Preserving Vertical Federated
Learning Service for Gradient Boosted

Decision Tables
Yifeng Zheng , Shuangqing Xu , Songlei Wang , Yansong Gao , Senior Member, IEEE,

and Zhongyun Hua , Senior Member, IEEE

Abstract—Vertical federated learning (VFL) has recently
emerged as an appealing distributed paradigm empowering multi-
party collaboration for training high-quality models over verti-
cally partitioned datasets. Gradient boosting has been popularly
adopted in VFL, which builds an ensemble of weak learners (typi-
cally decision trees) to achieve promising prediction performance.
Recently there have been growing interests in using decision table
as an intriguing alternative weak learner in gradient boosting,
due to its simpler structure, good interpretability, and promis-
ing performance. In the literature, there have been works on
privacy-preserving VFL for gradient boosted decision trees, but
no prior work has been devoted to the emerging case of decision
tables. Training and inference on decision tables are different
from that in the case of generic decision trees, not to mention
gradient boosting with decision tables in VFL. In light of this, we
design, implement, and evaluate Privet, the first system framework
enabling privacy-preserving VFL service for gradient boosted de-
cision tables. Privet delicately builds on lightweight cryptography
and allows an arbitrary number of participants holding vertically
partitioned datasets to securely train gradient boosted decision
tables. Extensive experiments over several real-world datasets and
synthetic datasets demonstrate that Privet achieves promising per-
formance, with utility comparable to plaintext centralized learning.

Index Terms—Vertical federated learning service, multi-
party collaboration, gradient boosting, decision table, privacy
preservation.

I. INTRODUCTION

F EDERATED learning (FL) has recently emerged as a
fascinating distributed machine learning paradigm that

greatly empowers multi-party collaboration for mining value

Manuscript received 6 January 2023; revised 21 April 2023; accepted 22
May 2023. Date of publication 25 May 2023; date of current version 8
October 2023. This work was supported in part by the Guangdong Basic
and Applied Basic Research Foundation under Grants 2021A1515110027,
2023A1515010714, and 2021A1515011406, in part by the Shenzhen Sci-
ence and Technology Program under Grants RCBS20210609103056041
and JCYJ20220531095416037, in part by by the National Natural Sci-
ence Foundation of China under Grants 62002167 and 62071142, and
in part by the Natural Science Foundation of JiangSu Province un-
der Grant BK20200461. Recommended for acceptance by H. Karatza.
(Corresponding author: Zhongyun Hua.)

Yifeng Zheng, Shuangqing Xu, Songlei Wang, and Zhongyun Hua are
with the School of Computer Science and Technology, Harbin Institute of
Technology, Shenzhen, Guangdong 518055, China (e-mail: yifeng.zheng@hit.
edu.cn; shuangqing.xu@outlook.com; songlei.wang@outlook.com; huazhon
gyun@hit.edu.cn).

Yansong Gao is with the Data61, CSIRO, Sydney, NSW 2720, Australia
(e-mail: gao.yansong@hotmail.com).

Digital Object Identifier 10.1109/TSC.2023.3279839

Fig. 1. Illustration of data partitioning in the VFL setting.

over data federation [1], [2], [3], [4]. It allows distributed
individual training datasets to be kept locally, and only
intermediate outputs from the training algorithm are shared out
for aggregation. According to how data is distributed among the
participants in FL, there are two types of FL: horizontal federated
learning (HFL) [5], [6] and vertical federated learning (VFL) [7],
[8]. HFL addresses the scenario where the participants share the
same feature space but hold disjoint sets of samples/instances,
which generally suits the case that participants are individual
customers. In contrast, VFL targets the scenario where each
participant has the same set of samples/instances yet owns
data for different features, which is more common when the
participants are business organizations/enterprises. For example,
as illustrated in Fig. 1, the participants hold datasets that have the
same row indexes (corresponding to the same set of instances)
but different non-overlapping column indexes (corresponding to
different features). In this article, we focus on the VFL setting,
which has received increasing attentions in the collaboration
of different business organizations/enterprises in recent years
[8], [9].

For model training in the VFL setting, the gradient boosting
technique has received wide attentions [7], [8], [9], [10], [11] and
has seen popular adoption for empowering a wide range of fields,
such as web search ranking, online advertisement, and fraud
detection [12], [13], [14]. Gradient boosting builds an ensemble
of weak learners, which are typically (generic) decision trees,
to achieve promising prediction performance. While decision
tree is usually used as the weak learner in gradient boosting, in
recent years there has been a fast-growing trend to use decision

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7852-6051
https://orcid.org/0009-0002-5342-7414
https://orcid.org/0000-0003-4063-1694
https://orcid.org/0000-0001-5783-2172
https://orcid.org/0000-0002-3529-0541
mailto:yifeng.zheng@hit.edu.cn
mailto:yifeng.zheng@hit.edu.cn
mailto:shuangqing.xu@outlook.com
mailto:songlei.wang@outlook.com
mailto:huazhongyun@hit.edu.cn
mailto:huazhongyun@hit.edu.cn
mailto:gao.yansong@hotmail.com

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3605

Fig. 2. Comparison of a generic decision tree and an oblivious tree in inference.

table [15] as an intriguing alternative [16], [17], [18], [19]. Many
works [16], [17], [20], [21] have shown that gradient boosted
decision tables yields promising performance on various tasks
and achieves great inference efficiency over generic decision
trees. In addition, some famous open-source gradient boosting
libraries [17], [22] have also recently provided the support for
using decision table as the weak learner in gradient boosting.

As demonstrated in Fig. 2, a D-dimensional decision table at
a high level consists of D Boolean tests and 2D output values. It
can also be treated as a special full binary decision tree, called
oblivious tree. In contrast with generic decision tree which has
different Boolean tests at different internal nodes at the same
level, the internal nodes at the same level of an oblivious tree
share the same Boolean test defined with the same feature and
threshold. Despite the similarly equivalent tree structure, it is
worth noting that the algorithm for training oblivious tree is
different from that for generic decision tree [23], [24]. Specif-
ically, decision trees are typically trained through recursive
algorithms [23], [24], while decision tables are trained through
iterative algorithms following the top-down construction [15],
[16]. Given tree depth D, the shape of a generic decision tree
is uncertain because it needs to process samples associated with
the current node to determine whether to split this node. In
contrast, we cannot recursively build a decision table because
all the samples in the dataset need to be processed to select the
optimal split for each level of the decision table. Besides, given
depth D, the shape of an oblivious tree is fixed and the number
of operations like node splitting and output value calculation is
also fixed. In addition, the inference process on an oblivious tree
is also different from that on a generic decision tree [16], [18]
(see Section III-A for more detailed discussion).

In the literature, while there have been several studies on
privacy-preserving VFL with gradient boosted decision trees
(GBDT) [7], [8], [10], no prior work has explored privacy-
preserving VFL with gradient boosted decision tables. As men-
tioned above, even training and inference on decision table are
different from the case of generic decision tree, not to mention
gradient boosting with decision table as the weak learner in the
VFL setting. Therefore, these prior works cannot be directly
applied to support privacy-preserving training and inference
of gradient boosted decision tables in VFL. In addition, it is

noted that these prior works are also confronted with limitations
such as exposing sensitive intermediate results (e.g., sum of
gradients) [7], [10], supporting training only among two par-
ticipants [8] (see Section II for more detailed discussion).

In light of the above, we propose Privet, which, to our best
knowledge, is the first system framework enabling privacy-
preserving VFL service for training gradient boosted decision
tables over distributed datasets. Privet ambitiously supports an
arbitrary number of participants to collaboratively train gradient
boosted decision tables, while allowing them to keep their data
locally and offering strong protection on the sensitive inter-
mediate outputs throughout the training process. Privet builds
on lightweight secret sharing techniques to develop customized
protocols securely realizing the key components required by
training gradient boosted decision tables in the VFL setting.

Specifically, through an in-depth examination on the train-
ing process of gradient boosted decision tables, we manage to
decompose the holistic secure design in the VFL setting into
the design of a series of secure components run in a distributed
manner among the participants, including secure node splitting,
secure Sigmoid evaluation, secure discretization, and secure
distributed decision table inference. The delicate synergy of
these secure components leads to the holistic protocol of Privet
for privately training gradient boosted decision tables in the
VFL setting. Through the customized secure protocol, Privet
outputs gradient boosted decision tables that are distributed
among the involved participants, where each participant only
holds a part of the model. Subsequently, secure inference on the
ensemble of learned decision tables can also be well supported in
a distributed manner among the participants. We implement and
evaluate Privet’s protocols extensively over several real-world
datasets as well as synthetic datasets. The results demonstrate
that Privet presents promising performance in computation and
communication. Meanwhile, the utility of the trained models in
Privet is comparable to that in the plaintext centralized learning
setting.

We highlight our contributions as follows.
� We present Privet, which, to our best knowledge, is the

first system framework enabling privacy-preserving VFL
service for gradient boosted decision tables. Privet al-
lows an arbitrary number of participants holding vertically
partitioned distributed datasets to securely train gradient
boosted decision tables in a distributed manner, offering
strong protection for sensitive individual data as well as
for intermediate outputs.

� We devise a series of tailored secure components based
on lightweight secret sharing techniques that run in a dis-
tributed manner among multiple participants with promis-
ing efficiency and utility, catering for the computation
required by securely training gradient boosted decision
tables in the VFL setting.

� We make an implementation of the proposed protocols and
conduct an extensive evaluation over three real-world pub-
lic datasets and three synthetic datasets. The experiment
results demonstrate that Privet has promising performance,
achieving model utility comparable to plaintext centralized
learning.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3606 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

The rest of this article is organized as follows. Section II
discusses the related work. Section III introduces some pre-
liminaries. Section IV gives a system overview. Section V
presents the design of Privet. The security analysis is presented in
Section VI, followed by the experiments in Section VII. Sec-
tion VIII concludes the whole article.

II. RELATED WORK

Securely Learning Gradient Boosted Decision Trees Under
HFL: Due to the problems of data isolation and data privacy,
FL has emerged as a new privacy-preserving machine learning
paradigm. Several existing works [5], [6], [25] have been focused
on privacy-preserving gradient boosted decision trees (GBDT)
under the HFL setting, which assume that data are horizontally
partitioned between participants. Among them, the work [6] rely
on use of secure aggregation and differential privacy to provide a
privacy guarantee. The work [25] leverages secure hardware [26]
to build private GBDT under HFL. Different from these works,
our work targets privacy-preserving gradient boosting systems
under the VFL setting.

Securely Learning Gradient Boosted Decision Trees Under
VFL: To cater for the need to collaboratively build models
between different organizations that hold data on the same set of
samples but for different features, VFL has received increasing
attention in recent years. The works [7], [8], [10] consider
vertical federated gradient boosted decision trees, which are
most related to ours. In particular, SecureBoost [10] is the first
work on privacy-preserving GBDT over vertically partitioned
data, which uses homomorphic encryption to preserve data
privacy. However, it has limited security guarantee because
intermediate information (e.g., the sum of gradients in a bucket)
is revealed during the training process. Moreover, homomorphic
encryption involves heavy cryptographic operations and requires
large memory, which results in low training efficiency. The
works [7], [8] improve SecureBoost [10] in terms of efficiency
via multi-party computation (MPC) techniques. Specifically, the
work [8] proposes a secure GBDT system leveraging the additive
secret sharing technique [27]. However, their proposed system
is only designed for the two-party setting. Xie et al. [7] deal with
the issue to support secure multi-party training. However, since
they adopt large-scale matrix multiplication in the secret sharing
domain to discretize secret-shared gradients into buckets, their
scheme requires more communication and computation over-
head compared to [8]. Moreover, the design in [7] has notable
privacy leakages, e.g., the intermediate inference results of all
training samples are leaked to the participant who holds the label
set because it relies on this participant to conduct inference.

We also note that all these works [7], [8], [10] are aimed at sup-
porting secure training and inference for gradient boosting with
generic decision trees under VFL. In recent years, the gradient
boosted decision table technique has seen rapidly growing adop-
tion in various applications, such as learning to rank (LTR) [18],
[21], [28], recommendation systems [16], [29], and medical
diagnosis [30], [31]. Although the training of decision tree and
decision table has some similarities, e.g., both of them need
permutation protocols, their learning algorithms are different

inherently. Thus the works [7], [8], [10] cannot directly support
secure gradient boosting over decision tables under VFL. In
comparison with them, Privet focuses on securely supporting
privacy-preserving VFL for gradient boosted decision tables. In
addition, Privet departs from them by achieving comparable util-
ity to plaintext, concealing intermediate information for strong
privacy, and supporting an arbitrary number of participants.

Secure Decision Tree Learning Supporting Both Horizontally
and Vertically Partitioned Data: There are some works [32],
[33], [34] which can support secure decision tree learning on
both horizontally and vertically partitioned data in an outsourc-
ing setting. Specifically, the work [32] considers a setting where
data owners secret-share all their data among three servers and
designs a protocol to enable the three servers to securely perform
an adapted C4.5 decision tree learning algorithm. The work [34]
proposes protocols to train decision trees for the Random Forest
model, which similarly considers a setting where the data owners
secret-share all their data among two extra non-colluding com-
puting parties. In [33], Deforth et al. focus on building private
gradient boosted decision trees and consider a scenario where
data owners secret-share their data among a set of computing
parties which may also be an extra set of servers. In contrast with
these works that outsource the data and computation, Privet does
not require such an extra set of non-colluding servers which may
not be an easy assumption to meet in practice. Meanwhile, Privet
allows the raw data of each participant to stay local throughout
the whole training process, fitting the salient feature of FL.

III. PRELIMINARIES

A. Decision Table

Consider a datasetD consisting ofN samples {xi, yi} for i =
0, . . . , N − 1, where xi = (xi1, . . . , xiJ) is a J-dimensional
tuple and yi is the label of the i-th sample. The j-th element
of xi is the value of an input attribute Xj . A D-dimensional
decision table consists of D Boolean tests and 2D output values.
A Boolean test is of the form Xj < t, which outputs 1 if the j-th
element in a given input tuple is less than a threshold t and 0
otherwise.

As illustrated in Fig. 2, a D-dimensional decision table is
equivalent to a full binary tree with D + 1 levels, where each
internal node from the 0-th level (for the root node) to the
(D − 1)-th level has a Boolean test; each edge is assigned the
outcome of its source node’s test and each leaf node at the
D-th level is associated with an output value. Such equivalent
tree is called oblivious tree, because all internal nodes at the
same level share the same test, as opposed to generic decision
trees that have different tests at the same level. More specif-
ically, the test at the d-th level of an oblivious tree could be
represented as Fd < td, where d ∈ [0, D − 1], the split feature
Fd ∈ {X1, . . . , XJ}, and td is the split threshold. The special
structure of oblivious tree results in its different training and
inference methods from non-oblivious trees like CART [23].
In [15], Kohavi et al. first introduce a top-down construction of
oblivious trees and use information gain as the evaluation metric
to find the optimal test at each level. Different evaluation metrics

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3607

Algorithm 1: Training an Oblivious Tree.
Input: A training dataset D.
Output: An oblivious decision tree having D tests and 2D

output values.
1: S0 = {D}.
2: for d ∈ [0, D − 1] do
3: Sd+1 = {}.
4: Optimal test Fd < td ← find_split.
5: for V in Sd do
6: Split V into VFd<td , VFd≥td according to the

optimal test and add these two sets to Sd+1.
7: Create a node for each set in Sd+1 and connect it

to its parent node.
8: end for
9: end for

10: Calculate output values for the 2D leaf nodes at the
D-th level, respectively.

are used in later studies, like mean squared error (MSE) [16] and
Newton’s method [17].

We follow the top-down construction in [15], [16] to train
oblivious trees. Algorithm 1 shows the process of training an
oblivious tree, which producesD tests and 2D output values. The
learning algorithm starts from the 0-th level and builds an obliv-
ious tree level by level iteratively. Given a testXj < t, we define
DXj<t = {(x, y) ∈ D | x(Xj) < t}, DXj≥t = D\DXj<t. We
also apply this notation to subsets V ⊆ D. Let Sl denote the
set of D’s subsets at the l-th level, where l ∈ [0, D]. At level
0, the training dataset D is associated with the root node and
S0 = {D} (line 1). Once an optimal test F0 < t0 at this level is
found through the routine find_split (line 4), D is partitioned
into two subsets DF0<t0 ,DF0≥t0 according to it. After that,
DF0<t0 ,DF0≥t0 are added to S1 (S1 = {DF0<t0 ,DF0≥t0}) and
a new level is created (lines 6-7).

At level 1, an optimal test F1 < t1 is found and
DF0<t0 ,DF0≥t0 are each partitioned into two subsets according
to F1 < t1. The same procedure is repeated until all the D
tests are learned. In this way, the tree structure is kept full and
symmetric, and we have |Sl| = 2l at level l, where each set in Sl
is associated with a node at this level. When reaching the D-th
level, the output values will be calculated for the leaf nodes.
Finally, an oblivious tree composed of D tests and 2D output
values is learned.

The optimal test at each level is found via the routinefind_split
by evaluating the candidate tests. Evaluation of the candidate
tests can be made through different metrics. In Privet, we follow
the popular second-order approximation method [17], [35] to
evaluate tests because the decision tables in our work are trained
sequentially for a gradient boosting system. Besides, the output
values of decision tables can also be calculated following the
gradient boosting theory, which will be introduced shortly in
Section III-B.

As presented in Algorithm 1, training a decision table (oblivi-
ous tree) is an iterative process, while decision trees are typically
trained through recursive algorithms [23], [24]. Given tree depth

D, the shape of a generic decision tree is uncertain because
it needs to process samples associated with the current node
to judge whether to split this node. However, the shape of an
oblivious tree is predetermined at a given dimensionD. To select
the optimal split at each level, all the samples in the dataset
are required to be processed. Besides, the number of operations
involved in training an oblivious tree, such as find_split and
output value calculation, is fixed.

Decision table outperforms generic decision tree in inference
efficiency significantly. As illustrated in Fig. 2, each leaf node
of an oblivious tree (the right sub-figure in Fig. 2) corresponds
to a Boolean sequence and the comparisons required by D
tests could be parallelized. In contrast, inference in a regular
decision tree is made by traversing the tree from the root node
to a leaf node, which means the direction of the inference path
after the current node depends on the test result of this node.
Note that while the evaluation of each decision node in generic
decision tree inference can be parallelized, it is still necessary
to traverse the tree from the root node sequentially so as to
identify the correct leaf node that produces the inference result.
For example, as shown in the left sub-figure in Fig. 2, even
if we parallelize the evaluation of each decision node, i.e., we
obtain the sequence of test results [0,0,1,1,0] by evaluating the
0-th split to the 4-th split simultaneously, we cannot directly
identify which leaf node is finally chosen using [0,0,1,1,0]. On
the contrary, decision table inference is free of such sequential
traversal [16], [17], [18]. As illustrated in the right sub-figure
in Fig. 2, once the sequence comprised of Boolean test result at
each level is obtained, the inference result can be immediately
obtained because this Boolean sequence is also the identifier of
a leaf node.

Additionally, it is noted that in gradient boosting systems,
the number, size, and depth of generic decision trees are not
necessarily smaller than decision tables when achieving the
same accuracy because they are both weak learners and only
require weak predictability. As reported in prior work [16],
compared with gradient boosted decision trees with the number
of trees T = 50 and tree depthD = 7, gradient boosted decision
tables only requires depth D = 6 given the same number of
oblivious treesT = 50 to achieve similar accuracy performance.
Furthermore, it is noted that with the same depth D, a decision
table only needs storage ofD decision nodes (one for each level),
while a generic decision tree may require storage of up to 2D − 1
decision nodes [16], [18].

B. Gradient Boosted Decision Tables

A gradient boosting system is built by training a set of weak
learners sequentially based on the boosting algorithm [35], [36].
For the given dataset D = {xi, yi}N−1i=0 , a gradient boosting
system sums the inference results of T weak learners to produce
the ultimate inference result for the i-th sample [36]: ŷ(T)

i =∑T
t=1 ft(xi), where ft corresponds to the model of the t-th

weak learner. In gradient boosted decision tables [16], [17], ft
corresponds to a decision table. A given sample will be classified
into the leaf nodes in the decision tables according to the tests in

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3608 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

them. Its ultimate inference result is calculated by summing up
the output values associated with the corresponding leaf nodes.

The essence of gradient boosting algorithm comes from how it
boosts the weak learners sequentially. After training t− 1 weak
learners, the t-th model ft is needed to be trained and added to
minimize the following objective function [35]:

L(t) =
N−1∑
i=0

l(yi, ŷ
(t)
i) + Ω(ft)

=

N−1∑
i=0

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft),

where l is a twice differentiable convex loss function that takes
yi, ŷ

(t)
i as input, and outputs the loss. The regularization term

Ω(ft) is set following [35]. Friedman et al. [36] use second-order
approximation to quickly approximate the objective function:

L̃(t) �
N−1∑
i=0

[
(l(yi, ŷ

(t−1)) + gift(xi) +
1

2
hif

2
t (xi)

]
+Ω(ft),

(1)

where gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i), hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i) are the

first and second-order gradients of the i-th sample. Typically,
for regression problems, MSE is used as the loss function and
the gradients are calculated as follows: gi = ŷi − yi and hi = 1
[7], [16]. When the problem is classification, a common choice
is logistic loss and the gradients are calculated as follows:
gi = pi − yi and hi = pi × (1− pi), where pi = Sigmoid(ŷi)
[37]. For a value x ∈ R, the Sigmoid function is: Sigmoid(x) =
1/(1 + e−x). For the leaf node k, which is associated with a
subset Vk ⊂ D, we define Ik = {i|(xi, yi) ∈ Vk} as its index
set. This notation is also used to denote the index set associated
with the internal node, e.g., we write Iq for node q. Then, after
removing the constant terms, (1) can be rewritten as [35]:

L̃(t) =
L−1∑
k=0

[(∑
i∈Ik

gi

)
wk +

1

2

(∑
i∈Ik

hi + λ

)
w2

k

]
+ γL

(2)
where wk is the output value associated with the leaf node
k, L is the number of leaf nodes in the tree, and λ, γ are
hyper-parameters to control the regularization. When the tree
stops growing, wk and the minimum loss of the current tree are
calculated by [35]:

wk = −
∑

i∈Ik gi∑
i∈Ik hi + λ

, (3)

L̃(t) = −1

2

L−1∑
k=0

(
∑

i∈Ik gi)
2∑

i∈Ik hi + λ
+ γL, (4)

Eq. (4) can be used as the impurity function for evaluating the
tests. In Privet, we follow the above theory to find optimal tests
in decision table. Suppose we have learned b tests from the level
0 to the level (b− 1) of a D-dimensional decision table and we
need to find an optimal test at level b. The nodes at the b-th level
are numbered from 0 to 2b − 1 and the q-th node is associated
with an index set Iq. A candidate test Xj < t will split the 2b

nodes at this level into 2b+1 nodes. Among all the candidate
tests, the optimal test is the test that has the minimum score. The
definition of score is defined as [38]:

Score =

2b−1∑
q=0

(
PIqL + PIqR

)
, (5)

where

PI = −
1

2

(∑
i∈I gi

)2∑
i∈I hi + λ

(6)

is the impurity of a node and IqL, I
q
R are the index sets associated

with the q-th node’s left and right child nodes after the split
respectively.

C. Additive Secret Sharing

In Privet, we use n-out-of-n additive secret sharing over Z2Q ,
where Q denotes the number of bits for value representation. In
such secret sharing, a secret value x ∈ Z2Q is additively split
into n secret shares 〈x〉1, 〈x〉2, . . . , 〈x〉n ∈ Z2Q such that [[x]] =
〈x〉1 + 〈x〉2 + · · ·+ 〈x〉n mod 2Q. The n shares are held by
n parties respectively to be engaged in a secure computation.
For simplicity, we denote such additive secret sharing of x by
[[x]]. Below we introduce the basic operations related to additive
secret sharing in the n-party setting.

• Sharing: To additively share a private value x of party Pl, Pl

needs to generate n− 1 random numbers {xm
=l},m ∈ [1, n]
over Z2Q and sends xm
=l to Pm
=l, respectively. Then Pl holds
〈x〉l = (x−

∑n
p=1,p
=l xp) mod 2Q and Pm
=l holds 〈x〉m
=l =

xm
=l, respectively, as a share of x. For conciseness, the modulo
operation will be henceforth omitted in the following protocols.

• Reconstruction: To reconstruct (Rec(·)) a shared value [[x]]
on Pl, Pm
=l sends its share 〈x〉m
=l to Pl and Pl computes∑n

p=1〈x〉p.
• Addition: For the two secret-shared values [[x]] and [[y]], to

securely compute addition ([[z]] = [[x]] + [[y]]), each participant
Pm locally computes 〈z〉m = 〈x〉m + 〈y〉m. Similarly, to com-
pute subtraction ([[z]] = [[x]]− [[y]]), each participant subtracts
its local share of y from that of x.

• Multiplication: To multiply a secret-shared value [[x]] with a
constant c ([[z]] = c× [[x]]), each participant multiplies its local
share of x by c. To multiply two secret-shared values [[x]], [[y]]
(denoted by [[z]] = [[x]]× [[y]] where z = xy), the multiplication
triple technique can be used [39]. In an offline phase, all parties
obtain a secret-shared multiplication triple ([[a]], [[b]], [[c]]), where
a, b are uniformly random numbers in Z2Q and c = ab. The
secret-shared triples are data-independent and can be prepared
and distributed offline by an independent third-party [40], so
hereafter we assume the triples are available for use in online
secure computation among the parties. The secret-shared multi-
plication proceeds as follows. Each party Pm locally computes
〈e〉m = 〈x〉m − 〈a〉m and 〈f〉m = 〈y〉m − 〈b〉m. After that, the
parties runRec([[e]]),Rec([[f]]). Next,Pm computes 〈z〉m = j ×
e× f + f × 〈a〉m + e× 〈b〉m + 〈c〉m, where j = 1 if m = 1
and j = 0 if m
= 1. Table I summarizes the key notations in
this article.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3609

TABLE I
SUMMARY OF NOTATIONS

IV. SYSTEM OVERVIEW

A. System Architecture

Fig. 3 illustrates the system architecture of Privet, which
targets the vertical federated learning scenario. In Privet, mul-
tiple participants (e.g., business organizations and institutions)
want to collaboratively train gradient boosted decision tables
over vertically partitioned data. Under such setting, a dataset
consisting of N samples (each is associated with a feature
vector and a label) is vertically partitioned among n partici-
pants P1, P2, . . . , Pn. Each participant Pm holds its respective
dataset DN×Jm

m = {xJm
i }N−1i=0 , where Jm denotes the number

of features owned by Pm and is subject to
∑n

m=1 Jm = J , xJm
i

represents the i-th sample of DN×Jm
m . Let y = {yi}N−1i=0 be the

set of sample labels. Following prior works on VFL [7], [8], [10],
we consider two roles for the participants: active participant
(AP) and passive participant (PP). In particular, there is one
AP that holds a local dataset as well as the label set y; and the
remaining participants are PPs, each only holding a local dataset.
For simplicity, in Privet, we assume the participant Pn is the AP.

Throughout the secure training process in Privet, each partic-
ipant keeps its feature data locally. The Boolean tests and output
values of the decision tables are securely learned in Privet, in
such a manner that no participant knows the complete models.
In particular, Privet follows a setting similar to the works [7],
[8], [10], [11] under VFL, where each participant learns partial
information of the learned models. Specifically, in Privet, all
the participants know the split feature of each test in a decision
table of the ensemble and who owns this feature, but only the
participant owning this feature knows the split threshold of the
test. Formally, for the learned test Fd < td at the d-th level
(d ∈ [0, D − 1]) of the t-th decision table (t ∈ [1, T]) in the
ensemble, the split feature Fd is revealed to all participants
but the threshold td is only known by the participant owning
the feature data corresponding to Fd. In addition, all the output
values of leaf nodes are produced in secret-shared form among
all participants.

B. Threat Model

Privet is designed under the semi-honest adversary model, as
is common in state-of-the-art security designs on vertical feder-
ated learning [8], [41]. Specifically, in Privet, each participant

Fig. 3. Privet’s system architecture.

is assumed to faithfully follow the protocol specification but
may try to deduce other participants’ private information from
the messages they receive. It is noted that though we consider
two roles AP and PP for the participants, no additional trust is
assumed regarding the AP. The semi-honest adversary model
should be reasonable in practice because VFL aims at breaking
down the data silos between business organizations, where the
behavior of each organization is strictly enforced by privacy
regulations [42]. We also consider that a static adversary may
corrupt a subset of τ participants (τ ≤ n− 1). That is, a static
adversary may choose a subset of the participants to corrupt
before the VFL procedure and the chosen participants remain
corrupted during the VFL procedure.

Under the above threat model, Privet aims to guarantee that
a semi-honest participant individually cannot learn any other
participant’s local data and learned partial model (tests and
output values of each decision table in the ensemble) throughout
the VFL procedure. In case of collusion among a subset of the
participants, Privet strives to still ensure that the honest par-
ticipants’ private information is protected against the corrupted
participants. Like prior works [8], [10], [32], Privet does not hide
the data-independent generic parameters, such as the dimension
D and the number of decision tables T .

V. THE DESIGN OF PRIVET

A. Overview

We provide in Algorithm 2 an overview of the secure training
framework in Privet, which inputs the vertically partitioned
datasets {DN×Jm

m }nm=1 and the label sety from the participants,
and outputs an ensemble E of distributed decision tables among
the participants. At the beginning, the secret-shared inference
result [[ŷ(0)]] is initialized as the secret sharing [[0N]] (N denotes
the length of the secret-shared vector), and the AP distributes
the secret shares of its label set to other participants. After that,
T distributed decision tables are securely built sequentially in T
rounds (lines 4–8).

We develop a secure decision table learning algorithm
SecTable to support the secure training of a single (distributed)
decision table in each round. SecTable consists of several se-
cure components, including (i) secure node splitting SecSplit,
(ii) secure Sigmoid evaluation SecSigmoid, and (iii) secure
discretization SecDisc. The secure node splitting component
SecSplit (Section V-B1) is to securely split the nodes at a certain

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3610 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Algorithm 2: Overview of Our Secure Training Framework.

Input: P1, P2, . . . , Pn hold local datasets {DN×Jm
m }nm=1

and one AP holds the label set y.
Output: P1, P2, . . . , Pn obtain an ensemble E of T
distributed decision tables {Tt}Tt=1, each containing D
tests and 2D secret-shared output values.

1: Initialize ensemble E = {}.
2: [[ŷ(0)]]← [[0N]] .
3: AP secret-shares y to other participants to produce

[[y]].
4: for t ∈ [1, T] do
5: Tt ←SecTable({{DN×Jm

m }nm=1, [[y]], [[ŷ
(t−1)]]).

6: [[ŷ(t)]]←SecInfer(Tt, {{DN×Jm
m }nm=1).

7: [[ŷ(t)]]← [[ŷ(t−1)]] + [[ŷ(t)]].
8: end for
9: E .append(Tt).

10: Output the ensemble E held by P1, P2, . . . , Pn.

level and partition the index sets associated with these nodes
without revealing the partitioned index sets. The secure Sig-
moid evaluation component SecSigmoid (Section V-B2) inputs
a secret-shared value and calculates the Sigmoid function in
the secret sharing domain. The secure discretization component
SecDisc (Section V-B3) is to securely rearrange the secret-shared
gradients according to the local permutations owned by each
participant and then group them into buckets. Through the
synergy of these components, SecTable allows the participants
to securely train a distributed decision table in each round, for
which we will give the details in Section V-B4.

After securely training a distributed decision table in a certain
round, secure inference needs to be conducted, of which the
result will be added to previous inference results (line 7) for
use in SecTable in the next round. To this end, we develop
a secure distributed decision table inference protocol SecInfer
(Section V-C), which inputs each participant’s local data and
partial model to produce secret-shared inference results without
leaking their data and partial model. It is worth noting that
SecInfer can also be used to support secure inference for new
data after the completion of the whole training process.

B. Secure Distributed Decision Table Training

1) Secure Node Splitting: An oblivious tree grows to a
new level by splitting each node at the current level into two
child nodes. In plaintext centralized decision table training
(Algorithm 1), node splitting is performed by partitioning the
samples associated with the node to be split. However, in VFL,
the partitioning of samples must be revealed to all partici-
pants because the training dataset is vertically partitioned and
all participants hold the same samples. For instance, given a
test “Height < 180”, the participant owning feature data of
“Height” needs to tell other participants which samples are
less than 180 and which samples are greater than 180, which
will leak each sample’s range of “Height” and raise critical
privacy concerns.

Algorithm 3: Secure Node Splitting (SecSplit).

Input: P1, P2, . . . , Pn hold local datasets {DN×Jm
m }nm=1,

the secret-shared first and second-order gradient vectors
{[[gk,d]]}2d−1k=0 , {[[hk,d]]}2d−1k=0 associated with 2d nodes at
the d-th level; Pl holds the optimal test Fd < td at the d-th
level.

Output: P1, P2, . . . , Pn obtain the secret-shared gradient
vectors {[[gk,d+1]]}2d+1−1

k=0 and {[[hk,d+1]]}2d+1−1
k=0

associated with the 2d+1 split nodes.
// Pl performs:
1: vl ← 0N .
2: for i ∈ [0, N − 1] do
3: if xJl

i (Fd) < td then
4: vli ← 1 // Set the i-th element of vl as 1.
5: end if
6: end for
7: vr ← 1N − vl.
8: Pl secret-shares vl and vr to other participants.
// P1, P2, . . . , Pn perform:
9: for k ∈ [0, 2d − 1] do

10: [[g2k,d+1]]← [[vl]]× [[gk,d]].
11: [[h2k,d+1]]← [[vl]]× [[hk,d]].
12: [[g2k+1,d+1]]← [[vr]]× [[gk,d]].
13: [[h2k+1,d+1]]← [[vr]]× [[hk,d]].
14: end for
15: Output the secret-shared gradient vectors

{[[gk,d+1]]}2d+1−1
k=0 and {[[hk,d+1]]}2d+1−1

k=0 associated
with nodes at the (d+ 1)-th level.

To avoid this leakage, we design a secure node splitting
component SecSplit. Inspired by existing works [7], [8], [41],
we utilize indicator vectors to conduct secure node splitting for
each level of the decision table. At a high level, Privet associates
the k-th node (k ∈ [0, 2d − 1]) at the d-th level (d ∈ [0, D − 1])
of the oblivious decision tree with a first-order gradient vector
[[gk,d]] and a second-order gradient vector [[hk,d]], each contain-
ing N elements that are secret-shared among all participants
P1, P2, . . . , Pn. If the i-th sample is partitioned into this node,
the i-th element in [[gk,d]] and [[hk,d]] will be set as the i-th sam-
ple’s first and second-order gradients, respectively, otherwise
the i-th element will be set as [[0]].

Algorithm 3 gives the procedure of secure node splitting. First,
participantPl who owns the optimal testFd < td at the d-th level
locally generates left indicator vector vl and right indicator vec-
tor vr and then distributes their secret sharings (denoted by [[vl]]
and [[vr]]) to other participants (i.e., lines 1-8 in Algorithm 3).
Upon receiving [[vl]] and [[vr]], for the k-th node at this level,
P1, P2, . . . , Pn update the first-order and second-order gradient
vector of the k-th node’s left and right child nodes. The update
is achieved with secure element-wise multiplication between
secret-shared indicator vectors and gradient vectors (i.e., lines
9–14 in Algorithm 3). In this way, the index set processed by
each node is hidden and the number of the samples processed
by each node remains constant as N , which means an adversary
cannot deduce any information from node splitting.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3611

2) Secure Sigmoid Evaluation: There are mainly two chal-
lenges in securely calculating the Sigmoid function in the secret
sharing domain. First, how to compute the division [[xy]]given two
secret-shared values [[x]] and [[y]]? Second, how to compute the
exponentiation function [[ex]] given a secret-shared value [[x]]?
Next, we introduce how Privet tackles the two challenges so
as to allow the participants to securely calculate the Sigmoid
function in the secret sharing domain. For the first challenge,
we introduce a secure division component SDiv by transforming
the division calculation into a numerical optimization problem.
Specifically, we note that the core obstacle of calculating [[xy]]

given [[x]] and [[y]] is to calculate the secret-shared reciprocal
[[1y]]. Therefore, we first approximate 1

y by the iterative Newton-
Raphson algorithm [43], following previous works [44], [45]:
zi ← 2zi−1 − yz2i−1, which will converge to zn ≈ 1

y . In Privet,
we fix the initialization z0 = 1/Y , whereY is a sufficiently large
value. Note that the approximation consists of basic subtraction
and multiplication operations which are naturally supported in
the secret sharing domain, given [[y]], the secret-shared reciprocal
[[1y]] can be securely calculated. After securely calculating the

reciprocal [[1y]], Privet multiplies [[x]] by [[1y]] to obtain [[xy]], i.e.,

[[xy]] = [[x]] · [[1y]].
For the second challenge, i.e., computing the exponentiation

function [[ex]] given a secret-shared value [[x]], we approximate
ex by limit characterization, inspired by [44]: ex ≈ (1 + x

2n)
2n ,

which provides a good approximation of ex. Note that since
the approximation consists of basic addition and multiplication
operations which are naturally supported in the secret sharing
domain, given [[x]], the secret-shared exponentiation [[ex]] can be
securely calculated. However, we note that the approximation
method requires 2n chain multiplications, and thus requires 2n

rounds of online communication. The approximation method
is inefficient in practice since the communication complexity
grows exponentially. Therefore, Privet further reduces the ex-
ponential communication complexity to linear communication
complexity. More specifically, we note that the computation in
the approximation can be regarded as a2

n
where a = 1 + x

2n .
Therefore, given [[a]], Privet first securely calculates [[a2]], which
only requires one round of communication. After that, Privet
regards the output as [[y]] = [[a2]] followed by securely calcu-
lating [[y2]], which also only requires one round of communi-
cation. Therefore, in this way, we can securely calculate [[a2

n
]]

in log 2n = n rounds instead of 2n rounds. Clearly, there is a
trade-off between accuracy and efficiency in approximating ex

with (1 + x
2n)

2n for computation in the secret sharing domain.
In principle increasing the value of n would lead to a more
accurate approximation of the Sigmoid function. However, this
also leads to increased computation and communication costs.
Yet, as will be shown by our experiments, a small value of n (in
our case, we set n = 2) suffices to enable Privet to achieve the
accuracy comparable to plaintext centralized learning.

Remark: In the literature, there exist some methods for ap-
proximating the Sigmoid function so as to support secure Sig-
moid evaluation, including Taylor expansion [46], piece-wise
approximation [27], and function approximation like f(x) =
0.5x
1+|x| + 0.5 [8]. For the Taylor expansion method, it requires a

small input parameter (very close to 0), which is hard to satisfy in
machine learning. The piece-wise approximation method has no
such requirement but suffers from notable accuracy loss [8]. The
work that is most closely related to ours is due to Fang et al. [8],
who apply another function approximation method to approxi-
mate the Sigmoid function, i.e., f(x) = 0.5x

1+|x| + 0.5. However,
their method still experienced non-trivial loss in accuracy in
their securely trained XGBoost model. As reported in their
experiments, the Area Under the ROC Curve (AUC) value would
go up to 0.84463 from 0.82945 if they replace the secure Sigmoid
approximation with plaintext Sigmoid computation. In contrast,
as will be shown by the experiments in Section VII-B, our
proposed SecSigmoid can achieve AUC values that are highly
close to those obtained using plaintext centralized learning (e.g.,
the gap can be as small as 0.0005).

3) Secure Discretization: Discretization, also called bucket-
ing, is a commonly used grouping method in large-scale machine
learning [22], [35]. Specifically, discretization groups the sam-
ples into a small number of buckets so as to allow the model
training to scale on larger datasets. Let B denote the number of
buckets in discretization, where B
 N and N is the number
of samples. In gradient boosting, gradients are grouped into
buckets and the sum of gradients in each bucket is calculated
in the training stage [22], [35]. Typically, for each feature,
the gradients are first permuted by a permutation π, which is
obtained by sorting the values of this feature. Then the permuted
gradients are partitioned into B buckets. Obviously, the cost
of training on B buckets instead of N samples can be greatly
reduced.

However, discretization is non-trivial in privacy-preserving
machine learning. In existing MPC-based works [32], [33],
[34], the training data is secret-shared among a fixed set of
computing servers, and sorting the secret-shared training data
for discretization requires a large number of secure comparison
operations, which is expensive in the secret sharing domain. In
Privet, the training data is vertically partitioned, and thus the
sorting process can be achieved locally to reduce the overhead.
However, it is still difficult to permute the secret-shared gradient
vector by a permutation π held by a participant Pl without
revealing π to other participants.

To tackle the challenge, we propose a secure permutation
algorithm SecPerm (shown in Algorithm 4), which stems from
the correlated randomness (CR) scheme in [8]. Our tailored
design SecPerm enables our secure discretization component
SecDisc to outperform that in [8] in supporting an arbitrary
number of participants. Fang et al. [8] design two MPC-based
secure discretization methods. Specifically, they first propose a
basic discretization method based on multiplications between
secret-shared lagre-scale matrices. Then they obtain significant
speedup over the basic method by utilizing CR to efficiently
permute secret-shared gradients, and then group them. However,
both the basic and improved methods in [8] only work under the
two-party setting in VFL. The work [7] is the first MPC-based
work supporting more than two participants in VFL with GBDT,
but it simply follows the basic discretization method in [8].
In contrast, Privet tailors the improved discretization method
from [8] to support an arbitrary number of participants, which is

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3612 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Algorithm 4: Secure Permutation (SecPerm).

Input: P1, P2, . . . , Pn hold the secret-shared vector [[x]];
Pl inputs the permutation π.

Output: P1, P2, . . . , Pn obtain the permuted secret-shared
vector [[u]] subject to u = π(x).

// Initialization:
1: P1, P2, . . . , Pn hold in advance the secret shares of

πp(r) and r, and Pl additionally holds πp.
// Online computation:
Round 1:
2: Pl generates πs subject to π(·) = πs[πp(·)], and then

sends πs to other participants.
3: Each participant Pm locally calculates 〈x〉m − 〈r〉m.
Round 2:
4: P1, P2, . . . , Pn run Rec([[x− r]]) to reveal x− r to Pl.
5: Pl: 〈u〉l ← π(x− r) + πs(〈πp(r)〉l).
6: Pm
=l: 〈u〉m
=l ← πs(〈πp(r)〉m
=l).
7: Output the secret-shared vector [[u]] held by

P1, P2, . . . , Pn.

more efficient than the straightforward secret-shared lagre-scale
matrix multiplication-based method from [7].

As shown in Algorithm 4, at the beginning of SecPerm,
participants P1, P2, . . . , Pn hold a secret-shared vector [[x]] and
Pl holds a permutation π. At the end of SecPerm, participants
P1, P2, . . . , Pn hold a secret-shared vector [[u]]whereu = π(x).
SecPerm guarantees that except forPl, other participants cannot
know the permutation π. In the initialization of Algorithm 4,
all participants hold in advance the secret shares of πp(r) and
r, and Pl additionally holds πp. After the initialization, all
participants collaboratively permute [[x]] in 2 rounds. In the
first round, Pl generates the permutation πs, which subjects to
π(·) = πs[πp(·)], and then Pl sends πs to all other participants.
After that, each participant Pm locally calculates 〈x〉m − 〈r〉m.
In the second round, x− r is revealed to Pl. Finally, the partic-
ipants output [[u]] = [[π(x)]] (i.e., lines 5–6 in Algorithm 4).

The correctness analysis of SecPerm is as follows:

u = 〈u〉1 + 〈u〉2 + · · ·+ 〈u〉l + · · ·+ 〈u〉n
= πs(〈πp(r)〉1) + πs(〈πp(r)〉2) + · · ·
+ π(x− r) + πs(〈πp(r)〉l) + · · ·+ πs(〈πp(r)〉n)

= π(x− r) + πs(πp(r))

= π(x− r) + π(r)

= π(x).

Then, we introduce how Privet securely realizes discretization
protocol SecDisc based on SecPerm. At a high level, SecDisc
first usesSecPerm to securely permute the secret-shared first and
second-order gradients of P1, P2, . . . , Pn with a permutation π
held by Pl, and then partitions the gradients into B buckets.
Algorithm 5 describes the details of our secure discretization
protocol.

At the beginning, the secret-shared first and second-order
gradient vectors [[g]] and [[h]] are securely permuted by SecPerm,

Algorithm 5: Secure Discretization (SecDisc).
Input: P1, P2, . . . , Pn hold the secret-shared first and
second-order gradient vectors [[g]] and [[h]]; Pl holds the
permutation π.

Output: P1, P2, . . . , Pn obtain two secret-shared vectors
[[α]] and [[β]] containing B grouped first and second-order
gradients, respectively.

1: [[g′]]← SecPerm(π, [[g]]).
2: [[h′]]← SecPerm(π, [[h]]).
3: [[α]]← [[0B]], [[β]]← [[0B]].
4: M ← N/B
5: for b ∈ [0, B − 1] do
6: [[αb]]←

∑(b+1)×M−1
i=b×M [[g′i]].

7: [[βb]]←
∑(b+1)×M−1

i=b×M [[h′i]].
8: end for
9: Output the secret-shared vectors [[α]] and [[β]] held by

P1, P2, . . . , Pn.

which outputs [[g′]] and [[h′]]. After that, P1, P2, . . . , Pn first
initialize two secret-shared vectors [[α]] and [[β]] of length B to
store the grouped first and second-order gradients, respectively.
[[α]] and [[β]] can be locally initialized as 0B . After that, for
b ∈ [0, B − 1], the b-th bucket’s secret-shared grouped first and
second-order gradients [[αb]] and [[βb]] are calculated as follows:

[[αb]] =

(b+1)×M−1∑
i=b×M

[[g′i]]; [[βb]] =

(b+1)×M−1∑
i=b×M

[[h′i]],

where M = N/B is the number of gradients in a bucket. For
conciseness, we assume that N can divide B evenly. As intro-
duced in Section V-B1, since the invalid gradients are set as [[0]],
the sum of the secret-shared gradients in a bucket is equal to that
in the plaintext.

4) Secure Decision Table Training Algorithm: In this sec-
tion, we introduce how Privet combines the components in-
troduced above to securely train a distributed decision table.
Algorithm 6 (named as SecTable) describes this process.
SecTable is the secure instantiation of Algorithm 1 and relies
on the coordination of the secure components introduced above.

Algorithm 6 inputs the vertically partitioned datasets
{DN×Jm

m }nm=1, secret-shared label [[y]], and aggregated infer-
ence results [[ŷ]] from the previous round of training, and then
outputs a distributed decision table. The Boolean tests at differ-
ent levels of the decision table are held by different participants
and the output values associated with each leaf node are stored
in an secret-shared vector [[w]].

At the beginning of Algorithm 6, P1, P2, . . . , Pn calculate
the secret-shared first and second-order gradient vectors (for the
root node) (i.e., [[g]] and [[h]] at lines 1–6). After calculating the
secret-shared gradients, Privet initializes a secret-shared vector
[[w]] = [[02D]] to store the 2D secret-shared output values. After
that, a decision table will be built level by level. Similar to
the functionality of find_split in Algorithm 1, Privet securely
selects the optimal testFd < td at thed-th level (d ∈ [0, D − 1]).

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3613

Algorithm 6: Secure Training of a Distributed Decision
Table (SecTable).

Input: P1, P2, . . . , Pn hold local datasets {DN×Jm
m }nm=1,

secret-shared label set [[y]] and aggregated inference results of
the current models [[ŷ]].

Output: P1, P2, . . . , Pn obtain a distributed decision table T
with D tests and a secret-shared vector [[w]] of 2D output values.

// Initialization:
1: if the problem is regression then
2: [[g]]← [[ŷ]]− [[y]], [[h]]← [[1]].
3: else
4: [[p]]← SecSigmoid([[ŷ]]).
5: [[g]]← [[p]]− [[y]], [[h]]← [[p]]× ([[1]]− [[p]]).
6: end if
7: [[w]]← [[02D]].
// Training:
8: for d ∈ [0,D − 1] do
9: [[σ]]← [[0J]], γ ← 0J .

10: for j ∈ [0, J − 1] in parallel do
11: Participant who holds D(j) sorts D(j) to produce the

permutation πj .
12: [[δ]]← [[0B−1]].
13: for k ∈ [0, 2d − 1] do
14: [[αk,d]], [[βk,d]]← SecDisc(πj , [[g

k,d]], [[hk,d]]).
15: [[G]], [[H]]←

∑B−1
i=0 [[αk,d

i]],
∑B−1

i=0 [[βk,d
i]].

16: for c ∈ [0, B − 2] do
17: [[Gl]], [[Hl]]←

∑c
i=0[[α

k,d
i]],

∑c
i=0[[β

k,d
i]].

18: [[Gr]], [[Hr]]← [[G]]− [[Gl]], [[H]]− [[Hl]].

19: [[δc]]← [[δc]]− 1
2

[[Gl]]
2

[[Hl]]+[[λ]]
− 1

2
[[Gr]]

2

[[Hr]]+[[λ]]
.

20: end for
21: end for
22: q ← SecArgmin([[δ]]).
23: [[σj]]← [[δq]].
24: γj ← q.
25: end for
26: Fd ← SecArgmin([[σ]]) // Optimal split feature.
27: qd ← γFd

// Optimal bucket ID.
28: td ← {πFd

[D(Fd)]}(qd+1)×(N/B).

29: SecSplit({DN×Jm
m }nm=1, {[[gk,d]]}2d−1k=0 , {[[hk,d]]}2d−1k=0 , Fd <

td).
30: end for
31: for k ∈ [0, 2D − 1] do
32: [[G]], [[H]]←

∑N−1
i=0 [[gk,D

i]],
∑N−1

i=0 [[hk,D
i]].

33: [[wk]]← − [[G]]
[[H]]+[[λ]]

.
34: end for
35: Output a decision table T with D tests, each held by a

participant, and a secret-shared vector [[w]] held by
P1, P2, . . . , Pn.

Specifically, the selection is made greedily: the learning algo-
rithm first selects the best test for each feature (i.e., lines 10–25)
and then selects the optimal test among the J selected candidate
tests (i.e., lines 26–28). It is noted that the selection here is made
following that in the plaintext domain, which is introduced in
Section III-B, and the operations in the selection are substituted
with secure operations and proposed components. For the J
candidate tests, we initialize a secret-shared vector [[σ]] = [[0J]]
to store the score of each feature’s best test. Besides, Privet uses

a public vector γ = 0J to record the bucket ID of each feature’s
best test.

For simplicity, the total J features are numbered from 0 to
J − 1. At the beginning of the loop for the j-th feature in
Algorithm 6, the participant who holds the j-th feature first
generates a permutation πj locally by sorting the values of the
j-th feature (denoted by D(j)) in the ascending order, which
will be used to securely permute the secret-shared gradient
vectors associated with each node at this level. After that, a
naive method is to permute the gradient vectors and then adapt
the Exact Greedy Algorithm [35] to enumerate each training
sample to find the best test. However, enumerating all training
samples incurs heavy computation overhead. Moreover, it will
incur prohibitively expensive communication overhead in the
distributed setting, degrading the efficiency of the system.

We propose a component SecDisc (shown in Algorithm 5)
to tackle this challenge and enable Privet to scale on larger
datasets. Specifically,SecDisc inputs secret-shared gradient vec-
tors [[gk,d]] and [[hk,d]] associated with the k-th node at the
d-th level. The secret-shared gradients in [[gk,d]] and [[hk,d]] are
securely discretized into B buckets and stored in secret-shared
vectors [[αk,d]] and [[βk,d]], respectively. There are B − 1 inter-
vals among the B buckets and each corresponds to a candidate
test. In this way, Privet only needs to select the best test from
B − 1 candidate tests for each feature, instead of enumerating
N samples, so as to save considerable computation and com-
munication cost. In Privet, we initialize a secret-shared vector
[[δ]] = [[0B−1]] for each feature to store the scores of the B − 1
candidate tests.

After securely discretizing gradients into B buckets, the
B − 1 candidate tests are evaluated to select the best test of the
j-th feature. For the c-th candidate test (c ∈ [0, B − 2]), the first
c+ 1 buckets are aggregated to get [[Gl]] and [[Hl]], which are the
sum of gradients associated with the left child node, and the re-
mainingB − c− 1 buckets are aggregated to get [[Gr]] and [[Hr]],
which are the sum of gradients associated with the right child
node. The impurity of each node’s two child nodes is securely
computed following (6) and then aggregated together to produce
the secret-shared score of the c-th candidate test following (5).
The division needed in (6) can be securely calculated with our
proposed secure component SDiv in Section V-B2. Then for the
j-th feature, we will have B − 1 secret-shared scores stored in
[[δ]].

After getting the B − 1 scores, we need to select the best
test that achieves the minimum score, which requires a method
to securely calculate the index of the minimum value in a
secret-shared vector. To tackle this challenge, Privet introduces a
component SecArgmin, which inputs a secret-shared vector and
outputs the index of the minimum value of the vector. It is noted
that the key operation in the function Argmin is comparison,
which is not naturally supported in the secret sharing domain.
The secure comparison operation in our Privet is introduced
as follows. Given two secret-shared values [[A]] and [[B]], Privet
first locally decomposes [[A−B]] into bits, and then inputs these
bits into a parallel prefix adder (PPA) to securely compute the
secret-shared most significant bit (MSB) of [[A−B]], inspired
by [47], [48]. After that, we convert the secret-shared MSB into

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3614 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

the arithmetic sharing domain by the method in [45], so as to
get the secret-shared result of the secure comparison. Based on
the secure comparison method introduced above, SecArgmin
inputs the secret-shared vector [[δ]] and then outputs bucket ID
q ∈ [0, B − 2] of the j-th feature’s best test in the plaintext.
In Privet, all participants can learn the produced bucket ID in
the training stage, but only the participant who owns the j-th
feature can get the threshold of the j-th feature’s best test.
Since the values of the j-th feature (denoted by D(j)) is sorted
in ascending order, the participant who owns the j-th feature
can get the split threshold via looking up the sorted values
(i.e., πj [D(j)]) with index (q + 1)× (N/B). Other participants
cannot deduce the split threshold because the j-th feature is kept
locally by its owner and unavailable to them.

To select the optimal test of all features, Privet lets the partici-
pants record the j-th feature’s best bucket ID q and secret-shared
minimum split score [[δq]] at the j-th position of γ and [[σ]],
respectively (i.e., lines 23–24 in Algorithm 6). Recall that for
the J features, we use γ and [[σ]] to store the bucket ID and
split score of each feature’s best test. The J indices of γ and
[[σ]] correspond to J features, respectively. After enumerating J
features, J scores are stored in [[σ]] and SecArgmin is needed
to be called again on [[σ]]. The output is the split feature Fd of
the optimal test, which is known by all participants. The optimal
bucket ID qd of the split feature can then be retrieved with Fd

from γ (line 27). After that, the participant who owns the split
feature Fd looks up the its sorted values πFd

[D(Fd)] with index
(qd + 1)× (N/B) to get the split threshold td.

After learning the d-th test Fd < td, the participant who owns
Fd < td cooperates with other participants to securely split all
the nodes at the d-th level with SecSplit to create a new level
(line 29). A decision table in Privet is learned level by level in
this way. At the D-th level, Privet securely calculates output
values for the 2D leaf nodes following (3) (i.e., lines 31–34
in Algorithm 6), where the division is securely calculated with
SDiv in Section V-B2. Finally, SecTable outputs a distributed
decision table consisting of D tests and 2D secret-shared output
values. Specifically, all participants know the split feature Fd at
the d-th level where d ∈ [0, D − 1], but each split threshold td
is only available to the participant who owns the feature Fd.

C. Secure Distributed Decision Table Inference

In Privet, each decision table in the ensemble learned in the
secure training phase is held by the participants in a distributed
manner, where each participant holds a part of it. Recall that
in our secure VFL framework (Algorithm 2), once a distributed
decision table T is securely learned in a certain round, we need
to perform secure inference over the training data using T . The
the produced inference results at this round will be securely
aggreagted with previous inference results for use in securely
training a new distributed decision table in the next round. To
prevent the partial model and local data on each participant from
leaking during the secure inference process, we propose a secure
distributed decision table inference protocol SecInfer, which
relies on secure multiplication of indicator vectors to conduct
privacy-preserving inference, as shown in Algorithm 7. SecInfer
allows the participants to cooperatively perform secure inference

Fig. 4. A simple example of secure distributed decision table inference.

Algorithm 7: Secure Decision Table Inference (SecInfer).
Input: P1, P2, . . . , Pn hold a vertically partitioned sample
{xJ1 ,xJ2 , . . . ,xJn}, a distributed decision table T of D tests
and a secret-shared vector [[w]] containing 2D output values;

Output: P1, P2, . . . , Pn obtain the secret-shared inference result
[[w]].

1: for d ∈ [0,D − 1] in parallel do
2: Pl who holds the d-th test Fd < td locally compares

xJl(Fd) with td.
3: Pl locally generates leaf indicator ud at this level

according to the outcome of the Boolean test.
4: Pl secret-shares ud to other participants.
5: end for
//P1, P2, . . . , Pn perform:
6: [[s]]← [[u0]]× [[u1]]× · · · × [[uD−1]]× [[w]].

7: [[w]]←
∑2D−1

i=0 [[si]].
8: Output the secret-shared inference result [[w]] held by

P1, P2, . . . , Pn.

on their local data utilizing the distributed ensemble and produce
secret-shared inference results while keeping the local data and
partial model not unavailable to other participants throughout
the inference process. We introduce the design of SecInfer as
follows.

To securely produce the inference result of a vertically par-
titioned sample {xJ1 ,xJ2 , . . . ,xJn}, the participant Pl who
owns the test Fd < td at the d-th level (d ∈ [0, D − 1]) locally
generates a leaf indicator (denoted by ud) by comparing the
sample’s feature value of Fd (represented as xJl(Fd)) with the
split threshold td. After that, the leaf indicatorud is secret-shared
to other participants. The inference result could then be oblivi-
ously calculated by secure element-wise multiplication between
the D secret-shared leaf indicators {[[ui]]}D−1i=0 and the secret-
shared vector [[w]] of decision table’s output values. We take
a 3-dimensional decision table to present the details of model
distribution and SecInfer in Fig. 4. Without loss of generality,
we assume that the tests are “Height < 170”, “Weight < 60”,
and “Salary < 10000”, held by participantsP1, P2, P3, respec-
tively, and the eight leaves’ output values are secret-shared
among n participants. In Fig. 4, it is noted that the exact test is
only visible to the participant owning the corresponding feature,
e.g., only P1 knows the test “Height < 170” at the 0-th level.

We take the inference of sample (“Height = 175”,
“Weight = 55”, “Salary = 11000”) as an example. The three

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3615

features are vertically partitioned and held by P1, P2, P3, re-
spectively. For the first test “Height < 170”, P1 locally com-
pares “Height = 175” with the threshold 170 and generate
leaf indicator vector u0 = (0, 0, 0, 0, 1, 1, 1, 1) to guide the in-
ference path because 175 > 170. Similarly, we can get u1 =
(1, 1, 0, 0, 1, 1, 0, 0) and u2 = (0, 1, 0, 1, 0, 1, 0, 1). Each leaf
indicator vector is then secret-shared among all participants.
Recall that in the basic decision table inference introduced
in Section III, the comparisons required by different Boolean
tests are parallelized to accelerate inference due to the obliv-
ious tree structure. Although the learned decision tables in
the ensemble in Privet are distributed and secret-shared, their
oblivious structure remains unchanged, and thus operations at
different levels can still be parallelized. After the sharing of
leaf indicator vectors, the inference result of this sample can
be obliviously calculated by element-wise multiplication as
follows: [[u0]]× [[u1]]× [[u2]]× [[w]]. In this way, each partic-
ipant will not know which path in the distributed decision table
is used during the secure inference process.

Remark: We note that there are some existing secure dis-
tributed decision tree inference methods [7], [8] in the VFL
setting. However, they are not well suited for the required secure
distributed decision table inference in Privet. At a high level,
these two works and Privet share the common approach of
using indicator vectors to enable secure inference. However,
the inherent structural differences between decision tables and
decision trees result in different methods of generating and
utilizing indicator vectors for guiding the inference paths during
privacy-preserving inference. In secure distributed decision tree
inference of [7], [8], each internal node is associated with an
indicator vector, and the inference result is produced by secure
multiplication of these indicator vectors. In contrast, for secure
distributed decision table inference, each level in the decision
table is associated with an indicator vector. As a result, existing
secure distributed decision tree inference methods cannot be ef-
ficiently extended to secure distributed decision table inference.
For instance, with our proposed SecInfer protocol and a decision
table with a dimension of D = 6, only six indicator vectors
and six secure multiplications are needed. However, applying
the method from [7], [8] to our target problem would require
26 − 1 indicator vectors and 63 secure multiplications, resulting
in poor efficiency. Moreover, the secure distributed tree inference
method in [8] is not applicable in our setting because it targets
a two-party setting, while Privet aims to support an arbitrary
number of participants.

VI. SECURITY ANALYSIS

Privet utilizes standard secret sharing techniques [49] to prop-
erly encrypt the intermediate information during both train-
ing and inference phases and the secret shares are uniformly
distributed in a ring Z2Q . In addition, throughout the VFL
procedure, the feature data owned by each participant is kept
locally. We follow the standard simulation-based paradigm [50]
to analyze the security of Privet. We first define the ideal
functionality of our target privacy-preserving VFL with gradient
boosted decision tables as follows.

Definition 1: The ideal functionality FVDT of privacy-
preserving VFL with gradient boosted decision tables is for-
mulated as follows:

– Input: The input to the FVDT consists of datasets
{DN×Jm

m }nm=1 and the label set y from the participants
P1, P2, . . . , Pn.

– Computation: Upon receiving the above input, the ideal
functionality FVDT performs training of gradient boosted deci-
sion tables and produces the trained model VDT, which consists
of T decision tables.

– Output: The ideal functionality FVDT broadcasts the split
feature in the decision table to all participants, but only sends the
split threshold to the participant who holds the corresponding
split feature. Additionally, the FVDT splits the output values
into n secret shares and then distributes them to the participants
P1, P2, . . . , Pn.

Definition 2: A protocol Π securely realizes the ideal func-
tionality FVDT in the semi-honest adversary setting if a semi-
honest participant does not learn any information about other
participants’ private data and partial model. Formally, let
ViewΠ

Pm
represent participant Pm’s view during the execution

of Π. Formally, there should exist a PPT simulator, which can
generate a simulated view SimΠ

Pm
such that SimΠ

Pm
is indistin-

guishable from ViewΠ
Pm

.
Theorem 1: Our Privet securely realizes the ideal functional-

ity FVDT against a semi-honest adversary who can statically
corrupt a subset of τ participants (τ ≤ n− 1) according to
Definition 2.

Proof: If the simulator for each sub-protocol exists, then
our complete protocol is secure [51], [52], [53]. As presented
before, Privet consists of several secure sub-protocols: 1) secure
division SDiv; 2) secure Sigmoid SecSigmoid; 3) secure node
splitting SecSplit; 4) secure distributed decision table inference
SecInfer; 5) secure discretization SecDisc; 6) secure Argmin
SecArgmin. We use SimX

Pm
as the simulator which can generate

Pm’s view in sub-protocolX (X ∈ {SDiv,SecSigmoid,SecSplit,
SecInfer, SecDisc, SecArgmin}) on corresponding input and
output. Obviously, the simulators for X ∈ {SDiv, SecSigmoid,
SecArgmin} must exist, because they are comprised of basic
operations in the secret sharing domain [49]. In the execution
of these three protocols, even if a subset of τ participants is
corrupted, the honest participants’ private data will not be leaked
due to the security guarantee of additive secret sharing [45].
In addition, when revealing the index of the minimum value
in a secret-shared vector to all participants in SecArgmin, the
simulator can adjust the shares of the result such that the revealed
index is indeed the value received from the ideal functionality,
and thus the simulator of SecArgmin exists. Therefore, Privet is
secure if the simulators for the remaining sub-protocols exist,
i.e., SecSplit in Section V-B1, SecInfer in Section V-C, SecDisc
in Section V-B3. We next provide the existence of the simulators
for the remaining sub-protocols. �

Theorem 2: The simulators for sub-protocols SecSplit and
SecInfer exsit.

Proof: The sub-protocols SecSplit and SecInfer both require
that the participant who holds the split generates indicator vec-
tors locally and then secret-shares them to other participants. For

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3616 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

simplicity, we assume that Pl holds the split threshold and col-
laborates with Pm
=l to split the node and conduct inference. We
then prove the existence of the simulators SimSecSplit

Pl
, SimSecInfer

Pl

for Pl and the simulators SimSecSplit
Pm
=l

, SimSecInfer
Pm
=l

for Pm
=l due
to their different computation. We also note that there is no
difference in the simulation between AP and PP due to their
role equivalence in the execution of SecSplit and SecInfer.
� SimSecSplit

Pl
, SimSecInfer

Pl
forPl: The simulator is simple since

Pl only secret-shares its local indicator vectors and perform
secure multiplications on the secret-shared vectors. In the
execution of SecSplit and SecInfer, Pl receives nothing.
Moreover, since secure multiplication is the basic operation
in the secret sharing domain, the privacy of the honest
participants’ data is ensured even if Pl colludes with τ − 1
participants. Therefore, it is clear that the simulated view
is indistinguishable from the real view.

� SimSecSplit
Pm
=l

, SimSecInfer
Pm
=l

for Pm
=l: In the execution of
SecSplit and SecInfer, the only information Pm
=l receives
is the secret share (denoted by 〈r〉m
=l) of Pl’s indicator
vector r. The secret share 〈r〉m
=l is randomly generated at
Pl and thus is uniformly random inPm
=l’s view. Therefore,
the distribution over the real secret share 〈r〉m
=l received
by Pm
=l in the execution and over the simulated 〈r〉m
=l

generated by the simulator are identically distributed. Fur-
thermore, the secure multiplication involved is the basic
operation in the secret sharing domain, which means Pm
=l

learns no additional information from the execution, even
if Pm
=l colludes with τ − 1 participants. Therefore, the
simulated view is indistinguishable from the real view.

�
Theorem 3: The simulator for the sub-protocol SecDisc ex-

ists.
Proof: The security of SecDisc relies on the security of

its sub-protocol SecPerm because the operations in SecDisc
besides SecPerm are basic operations in the secret sharing
domain. Therefore, if the protocol SecPerm can be simulated,
the existence of a simulator for the protocol SecDisc follows. In
SecPerm, for simplicity, we assume that Pl sorts the values for
a feature locally to generate a permutation π. We then prove the
existence of the simulator SimSecDisc

Pl
for Pl and the simulator

SimSecDisc
Pm
=l

for Pm
=l due to their different computation. Simi-
larly, since the role equivalence of AP and PP in the execution
of SecDisc, there is no difference in the analysis for them.
� SimSecDisc

Pl
for Pl: In the execution of SecDisc, Pl only

receives secret share 〈x− r〉m
=l of [[x− r]] from Pm
=l

to reconstruct x− r. In the simulated view, Pl receives
n− 1 random vectors. Therefore, we need to prove that
〈x− r〉m
=l is uniformly random in the view of Pl. Ob-
viously, the above claim is valid, because 〈x− r〉m
=l

is a random vector generated at Pm
=l, which must be
uniformly random in the view of Pl. Therefore the dis-
tributions over the real 〈x− r〉m
=l received by Pl in the
protocol execution and over the simulated 〈x− r〉m
=l are
identically distributed. Moreover, even if Pl colludes with
τ − 1 participants, Pl still only learns a randomly masked
version of x, thus x would not be leaked to Pl. Thus, the

TABLE II
STATISTICS OF DATASETS

simulator for SimSecPerm
Pl

exists, which indicates that the
simulator for SimSecDisc

Pl
also exists.

� SimSecDisc
Pm
=l

for Pm
=l: In the execution of SecDisc, Pm
=l

only receives permutation πs from Pl. The permutation
πs is randomly generated at Pl and is uniformly random
in Pm
=l’s view. Therefore, the distribution over the real
permutation πs received by Pm
=l in the execution and
over the simulated πs generated by the simulator is iden-
tically distributed. In case of corruption, there are two
situations: 1) If participant Pl is corrupted, nothing is
revealed regarding the vector x. 2) If participant Pl is
not corrupted, the private permutation π on Pl and the
private vector x are protected, even if all other participants
collude. This security guarantee comes from the fact that
the corrupted participants could learn nothing about πp.
Without the knowledge ofπp,π cannot be deduced because
π(·) = πs[πp(·)]. Thus, the simulator forSimSecPerm

Pm
=l
exists,

which indicates that the simulator forSimSecDisc
Pm
=l

also exists.
�

VII. EXPERIMENTS

A. Setup

We implement our protocols in Python. All experiments are
performed on a workstation with 16 Intel I7- 10700 K cores,
64 GB RAM, and 1 TB SSD external storage, running Ubuntu
20.04.2 LTS. It is worth mentioning that the practice of evalu-
ating VFL algorithms on a single machine also exists in prior
works [7], [8], [10], [54]. We also note that in practice, it is not
common to have VFL scenarios with more than four participants
since it could be hard to bring together many enterprises [9],
[55]. Therefore, in our experiments, we follow prior works [7],
[9], [55], [56] to conduct experiments with four participants.
The communication between participants on the workstation is
emulated by the loopback filesystem, where the delay is set to
5 ms and bandwidth is set to 100 Mbps.

Datasets: We use three real-world datasets to evaluate the
accuracy and efficiency of Privet and three synthetic datasets to
further evaluate the scalability of Privet. The synthetic datasets
are generated with sklearn4 library. Table II summarizes the

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
fetch_california_housing.html

2https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-
dataset

3https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
4https://scikit-learn.org/stable/

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://scikit-learn.org/stable/

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3617

statistics of the six datasets. We divide each dataset into two
parts for training and testing respectively according to the ratio
of 8:2. In addition to the preprocessing in the above, each dataset
is split and distributed to all participants vertically and evenly.
Similar to previous works on VFL [8], [11], we assume that
the records in each participant’s database have been properly
aligned beforehand.

Protocol instantiation: Our protocols are instantiated using
the following parameter settings. We use the ring Z264 with the
number of precision bits l = 20. The number of iterations for
the reciprocal approximation is set to 20 (with 1/Y = 1/220

as the initialization). For approximating the exponential func-
tion, we set 2n = 4, thus the approximation requires log 2n = 2
rounds of multiplication. The hyper-parameters are public to all
participants. We fix λ = 1 of (6) and vary the public parameter
T (the number of decision tables), B (the number of buckets),
and D (the dimension of decision tables) in our experiments to
demonstrate the utility, efficiency, and scalability of Privet.

It is noted that to handle real numbers for secure computation,
we follow the common practice of fixed-point representation,
where real numbers are scaled by a factor of 2l (l represents the
number of precision bits) and then rounded. As a result, when
two scaled values are multiplied, the result is under a scaling
factor of 22 l. Therefore, truncation is required to scale down the
multiplication result, making its scaling factor 2l again. Privet
resorts to the method in [45] to support secure truncation on
a result [[z]] produced from secret-shared multiplication, which
works as follows. First, the secret sharing of the number of wraps
(denoted by [[θz]]) in z needs to be computed, which is subject to
θz = (

∑n
m=1〈z〉m − z)/2Q. It is noted that to count the number

of wrap rounds in this truncation protocol, computing the sum
of shares (represented in the form of

∑n
m=1〈z〉m) does not

involve modular arithmetic. The computation of [[θz]] proceeds
as follows. All parties hold in advance a secret-shared random
value [[r]] and its secret-shared wrap count [[θr]] subject to θr =
(
∑n

m=1〈r〉m − r)/2Q. For secure truncation, all parties first
compute [[p]] = [[z + r]]. After that, each party Pm computes the
differential wraps produced between its shares of [[z]], [[r]], and
[[p]]: 〈βzr〉m = (〈z〉m + 〈r〉m − 〈p〉m)/2Q, where no modulo
operation is required in calculating 〈z〉m + 〈r〉m − 〈p〉m. Next,
Pm
=1 sends 〈p〉m
=1 toP1 to reconstruct p andP1 also computes
θp = (

∑n
m=1〈p〉m − p)/2Q. Finally, each Pm produces the se-

cret share 〈θz〉m = j × θp + 〈βzr〉m − 〈θr〉m, where j = 1 if
m = 1 and j = 0 if m
= 1. Then [[θz]] is used to correct the

truncation: [[z]] = [[z]]−[[θz]]2Q
2l

. The above method only needs 1
online communication round to compute the number of wraps
[[θz]], making it efficient and practical for use in Privet.

B. Utility Evaluation

We first compare the accuracy of two approaches: our Privet
and plaintext centralized learning of gradient boosted decision
tables. For the Cal Housing dataset, we set T = 50 to build 50
decision tables in the ensemble model and D = 5 to limit the
dimension of each decision table. The number of buckets B is
set as 32. For the Credit dataset, we set T = 10, D = 4 and
B = 32. For the Breast Cancer dataset, we set T = 10, D = 3

TABLE III
ACCURACY COMPARISON

Fig. 5. RMSE/test error on the three real-world datasets, for different numbers
of decision tables.

TABLE IV
PRIVET’S COMPUTATION AND COMMUNICATION PERFORMANCE

and B = 32. Following other works on gradient boosting [8],
more decision tables are trained for regression tasks to guarantee
accuracy. We use the identical parameters in Privet and plain-
text. For the regression tasks, we use the Root Mean Square
Error (RMSE) as the evaluation metric. For the evaluation of
classification tasks, we report the results using two commonly
used metrics: Accuracy (ACC) and Area Under the ROC Curve
(AUC). The accuracy of Privet and plaintext on both regression
and classification tasks are reported in Table III.

Fig. 5 shows the RMSE/test error on the three real-world
datasets, for varying number of decision tables. Note that the
test error is defined as the complement of the Accuracy (i.e.,
1−ACC). It is observed that the difference in utility between
Privet and plaintext is obvious at the very beginning, but the dif-
ference rapidly diminishes as the increase of number of decision
tables in the ensemble. This indicates the similar convergence
behavior of Privet and plaintext. From the above results, we
can conclude that our Privet achieves compatible accuracy with
plaintext centralized learning of gradient boosted decision tables
on both classification and regression tasks.

C. Efficiency Evaluation

We now report the computation and communication perfor-
mance of Privet in secure training over the three public datasets,
and present the results in Table IV. We also note that to evaluate
the efficiency of Privet over larger datasets, we use three syn-
thetic datasets, of which the results are reported in Section VII-D.

From the results in the first two records of Table IV, we can
observe that the training time and communication cost of Privet

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

3618 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 6. Performance on SynA dataset with 80 features for different numbers
of training samples (with the dimension of decision tables D = 2, the number
of buckets B = 32 and the number of decision tables T = 10): (a) Runtime;
(b) Communication.

Fig. 7. Performance on SynA dataset with 10000 samples for different num-
bers of features (with the dimension of decision tables D = 2, the number
of buckets B = 32 and the number of decision tables T = 10): (a) Runtime;
(b) Communication.

on Cal Housing is significantly more than that on Credit, which
is because we train 50 decision tables on Cal Housing but only 10
decision tables on Credit. However, Privet consumes an average
of 127 seconds to train a 5-dimensional decision table on Cal
Housing and 172 seconds to train a 4-dimensional decision table
on Credit. There are mainly two reasons for this observation:
(1) the number of features and the number of samples of Cal
Housing are less than that of Credit. (2) dealing with clas-
sification tasks additionally needs secure Sigmoid evaluation
compared with regression tasks, which will result in more com-
putation and communication overhead.

From the results in the last two records of Table IV, we can
observe that although the scale of Credit is nearly 50 times larger
than that of Breast Cancer, the training time on Credit under
similar parameters is only roughly 4 times that on Breast Cancer.
This is because Privet securely discretizes training data into
buckets, and all the time-consuming computations are conducted
on the buckets. In this way, the training cost is highly correlated
with the number of buckets, instead of the number of training
samples. In fact, this also indicates the strong scalability of
Privet, which will be demonstrated in detail in the next section.

D. Scalability Evaluation

We now evaluate the scalability of Privet. To examine how
the number of training samples and features affect the cost
of secure online training, we conduct an experiment using the
SynA dataset with 20,000 samples and 80 features. We report
the results in Figs. 6 and 7, which show the runtime and com-
munication cost for varying numbers of samples and features,

Fig. 8. Runtime performance on SynB with 60 features for different num-
bers of training samples N and (a) varying dimension of decision tables D,
(b) varying number of buckets B, and (c) varying number of decision tables T ,
respectively.

Fig. 9. Runtime performance on SynC with 40 features for different num-
bers of training samples N and (a) varying dimension of decision tables D,
(b) varying number of buckets B, and (c) varying number of decision tables T ,
respectively.

respectively. For the experiment related to Fig. 6, we fix the
number of features as 80, the dimension D as 2, the number of
buckets B as 32, and the number of decision tables T as 10,
for varying number of training samples by randomly selecting
samples from SynA. It is observed that the runtime is not much
affected by the number of training samples from Fig. 6(a). At
the same time, the communication cost grows linearly with
the number of training samples as shown in Fig. 6(b). For the
experiment related to Fig. 7, we randomly select 10,000 samples
from SynA and fix the dimension D as 2, the number of buckets
B as 32, and the number of decision tables T as 10, for varying
number of features by randomly selecting features from SynA.
From Fig. 7(a) and (b), we can observe that both the runtime and
communication cost of Privet increase proportionally with the
number of features, in line with the complexity of Algorithm 6,
where the main loop in each level enumerates features.

Next, we examine the impact of dimension D, the number of
buckets B, and the number of decision tables T on the runtime
of secure training. We use the synthetic regression dataset SynB

with 20,000 samples and 60 features for the regression task, and
the synthetic classification dataset SynC with 20,000 samples
and 40 features for the classification task. We first examine
the relationship between dimension D and runtime. For both
regression and classification tasks, we set B = 32, T = 10, and
vary the dimension D, over varying number of training samples.
The results are shown in Figs. 8(a) and 9(a), from which we can
observe that the runtime grows exponentially with the increase
of dimension. The results are consistent with the complexity of
our secure training algorithm because the number of tree nodes
is exponentially related to the dimension. The computation in
each node accounts for the largest proportion of all calculations.
We then examine the relationship between the number of buckets

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: PRIVET: A PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING SERVICE FOR GRADIENT BOOSTED DECISION TABLES 3619

B and runtime. We set T = 10, D= 2, and vary B, over varying
number of training samples. The evaluation is also performed
over both SynB and SynC . Figs. 8(b) and 9(b) show the results,
which indicate the linear association between B and runtime.
Finally, we evaluate the relationship between the number of
decision tables T and runtime, and summarize the results in
Figs. 8(c) and 9(c). We set T from 5 to 25, while keeping B =
32 and D = 2, on both SynB and SynC with varying number of
training samples. Recall that in Privet an ensemble of decision
tables is securely built. The training time of each decision table
is roughly the same when we set the same parameters for them.
So the runtime must grow linearly with the number of decision
tables, which is consistent with the results in Figs. 8(c) and 9(c).
In summary, the above evaluation results demonstrate that Privet
is scalable and capable of handling large-scale datasets with a
large number of features and training samples.

VIII. CONCLUSION

In this article, we design, implement, and evaluate Privet, the
first system framework enabling privacy-preserving VFL service
for gradient boosted decision tables. Building on lightweight
secret sharing techniques, Privet supports an arbitrary number of
distributed participants to collaboratively train gradient boosted
decision tables over vertically partitioned distributed datasets,
offering strong protection for individual data as well as for in-
termediate outputs. Extensive experiments on several real-world
datasets and synthetic datasets demonstrate that Privet achieves
promising performance, with model utility comparable to the
case of plaintext centralized learning. For future work, it would
be an interesting direction to explore the possibility of leveraging
GPUs to achieve further performance boost.

REFERENCES

[1] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM Conf. Comput. Commun. Secur., 2017,
pp. 1175–1191.

[2] C. Qiao, K. N. Brown, F. Zhang, and Z. Tian, “Federated adaptive asyn-
chronous clustering algorithm for wireless mesh networks,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 3, pp. 2610–2627, Mar. 2023.

[3] P. Zhou, K. Wang, L. Guo, S. Gong, and B. Zheng, “A privacy-preserving
distributed contextual federated online learning framework with Big Data
support in social recommender systems,” IEEE Trans. Knowl. Data Eng.,
vol. 33, no. 3, pp. 824–838, Mar. 2021.

[4] J. Zhao et al., “CORK: A privacy-preserving and lossless federated learn-
ing scheme for deep neural network,” Inf. Sci., vol. 603, pp. 190–209,
2022.

[5] Q. Li, Z. Wen, and B. He, “Practical federated gradient boosting decision
trees,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2020, pp. 4642–4649.

[6] S. Maddock, G. Cormode, T. Wang, C. Maple, and S. Jha, “Federated
boosted decision trees with differential privacy,” in Proc. ACM Conf.
Comput. Commun. Secur., 2022, pp. 2249–2263.

[7] L. Xie, J. Liu, S. Lu, T.-H. Chang, and Q. Shi, “An efficient learning
framework for federated XGBoost using secret sharing and distributed
optimization,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 5, pp. 1–28,
2022.

[8] W. Fang et al., “Large-scale secure XGB for vertical federated learning,”
in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2021, pp. 443–452.

[9] F. Fu et al., “VF2 boost: Very fast vertical federated gradient boosting for
cross-enterprise learning,” in Proc. ACM Int. Conf. Manage. Data, 2021,
pp. 563–576.

[10] K. Cheng et al., “SecureBoost: A lossless federated learning framework,”
IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, Nov./Dec. 2021.

[11] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “FederBoost: Private
federated learning for GBDT,” 2020, arXiv: 2011.02796.

[12] S. Tyree, K. Q. Weinberger, K. Agrawal, and J. Paykin, “Parallel boosted
regression trees for web search ranking,” in Proc. ACM Int. Conf. World
Wide Web, 2011, pp. 387–396.

[13] X. He et al., “Practical lessons from predicting clicks on ads at Facebook,”
in Proc. ACM Int. Workshop Data Mining Online Advertising, 2014,
pp. 1–9.

[14] N. Dhieb, H. Ghazzai, H. Besbes, and Y. Massoud, “Extreme gradient
boosting machine learning algorithm for safe auto insurance operations,”
in Proc. IEEE Int. Conf. Veh. Electron. Saf., 2019, pp. 1–5.

[15] R. Kohavi and C. Li, “Oblivious decision trees, graphs, and top-down
pruning,” in Proc. Int. Joint Conf. Artif. Intell., 1995, pp. 1071–1079.

[16] Y. Lou and M. Obukhov, “BDT: Gradient boosted decision tables for high
accuracy and scoring efficiency,” in Proc. ACM Int. Conf. Knowl. Discov.
Data Mining, 2017, pp. 1893–1901.

[17] L. O. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A.
Gulin, “CatBoost: Unbiased boosting with categorical features,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2018, pp. 6639–6649.

[18] D. Dato et al., “Fast ranking with additive ensembles of oblivious and
non-oblivious regression trees,” ACM Trans. Inf. Syst., vol. 35, no. 2,
pp. 15:1–15:31, 2016.

[19] J. T. Hancock and T. M. Khoshgoftaar, “Catboost for Big Data: An
interdisciplinary review,” J. Big Data, vol. 7, no. 1, 2020, Art. no. 94.

[20] I. Kuralenok, V. Ershov, and I. Labutin, “MonoForest framework for tree
ensemble analysis,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 13777–13786.

[21] G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and N.
Tonellotto, “Quality versus efficiency in document scoring with learning-
to-rank models,” Inf. Process. Manag., vol. 52, no. 6, pp. 1161–1177, 2016.

[22] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 3149–3157.

[23] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Belmont, CA, USA: Wadsworth, 1984.

[24] J. R. Quinlan, C4. 5: Programs for Machine Learning. Amsterdam, The
Netherlands: Elsevier, 2014.

[25] C. Leung, A. Law, and O. Sima, “Towards privacy-preserving collaborative
gradient boosted decision trees,” UC Berkeley, Tech. Rep., 2019.

[26] F. McKeen et al., “Innovative instructions and software model for isolated
execution,” in Proc. Workshop Hardware Archit. Support Secur. Privacy,
2013, pp. 1–1.

[27] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy, 2017,
pp. 19–38.

[28] A. Gulin, I. Kuralenok, and D. Pavlov, “Winning the transfer learning track
of Yahoo!’s learning to rank challenge with YetiRank,” Yahoo! Learn. Rank
Challenge, ser. JMLR Proceedings, vol. 14, 2011, pp. 63–76.

[29] J. Dhar and A. K. Jodder, “An effective recommendation system to
forecast the best educational program using machine learning classification
algorithms,” Ingénierie Des Systèmes D Inf., vol. 25, no. 5, pp. 559–568,
2020.

[30] D. C. Yadav and S. Pal, “An experimental study of diversity of diabetes
disease features by bagging and boosting ensemble method with rule based
machine learning classifier algorithms,” SN Comput. Sci., vol. 2, no. 1,
2021, Art. no. 50.

[31] P.-C. Liao et al., “Integrating health data-driven machine learning algo-
rithms to evaluate risk factors of early stage hypertension at different
levels of HDL and LDL cholesterol,” Diagnostics, vol. 12, no. 8, 2022,
Art. no. 1965.

[32] M. Abspoel, D. Escudero, and N. Volgushev, “Secure training of deci-
sion trees with continuous attributes,” Proc. Priv. Enhancing Technol.,
vol. 2021, no. 1, pp. 167–187, 2021.

[33] K. Deforth, M. Desgroseilliers, N. Gama, M. Georgieva, D. Jetchev, and M.
Vuille, “XORBoost: Tree boosting in the multiparty computation setting,”
Proc. Priv. Enhancing Technol., vol. 2022, no. 4, pp. 66–85, 2022.

[34] S. Adams et al., “Privacy-preserving training of tree ensembles over contin-
uous data,” Proc. Priv. Enhancing Technol., vol. 2022, no. 2, pp. 205–226,
2022.

[35] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proc. ACM Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 66–85.

[36] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337–407,
2000.

[37] XGBoost Parameters, 2022. Accessed: Oct. 26, 2022. [Online]. Available:
https://xgboost.readthedocs.io/en/stable/parameter.html

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

https://xgboost.readthedocs.io/en/stable/parameter.html

3620 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

[38] Catboost Score Functions, 2023. Accessed: Oct. 26, 2022. [Online]. Avail-
able: https://catboost.ai/en/docs/concepts/algorithm-score-functions

[39] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proc. Annu. Int. Cryptol. Conf., 1991, pp. 420–432.

[40] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation framework
for machine learning applications,” in Proc. ACM Asia Conf. Comput.
Commun. Secur., 2018, pp. 707–721.

[41] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proc. VLDB Endow.,
vol. 13, no. 11, pp. 2090–2103, 2020.

[42] “European Parliament and the Council: The General Data Protection
Regulation (GDPR),” 2016. [Online]. Available: https://eur-lex.europa.
eu/eli/reg/2016/679/oj

[43] J. Verbeke and R. Cools, “The Newton-Raphson method,” Int. J. Math.
Educ. Sci. Technol., vol. 26, no. 2, pp. 177–193, 1995.

[44] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CryptGPU: Fast privacy-
preserving machine learning on the GPU,” in Proc. IEEE Symp. Secur.
Privacy, 2021, pp. 1021–1038.

[45] B. Knott, S. Venkataraman, A. Y. Hannun, S. Sengupta, M. Ibrahim,
and L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2021,
pp. 4961–4973.

[46] M. Kim et al., “Secure logistic regression based on homomorphic en-
cryption: Design and evaluation,” JMIR Med. Inform., vol. 6, no. 2, 2018,
Art. no. e8805.

[47] P. Mohassel and P. Rindal, “ABY: A mixed protocol framework for
machine learning,” in Proc. ACM Conf. Comput. Commun. Secur., 2018,
pp. 35–52.

[48] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “MediSC: Towards secure and
lightweight deep learning as a medical diagnostic service,” in Proc. Eur.
Symp. Res. Comput. Secur., 2021, pp. 519–541.

[49] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2015, pp. 1–15.

[50] Y. Lindell, “How to simulate it - A tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Berlin,
Germany: Springer, 2017, pp. 277–346.

[51] R. Canetti, “Security and composition of multiparty cryptographic proto-
cols,” J. Cryptol., vol. 13, no. 1, pp. 143–202, 2000.

[52] J. Katz and Y. Lindell, “Handling expected polynomial-time strategies in
simulation-based security proofs,” in Proc. Theory Cryptography Conf.,
2005, pp. 128–149.

[53] M. Curran, X. Liang, H. Gupta, O. Pandey, and S. R. Das, “Procsa:
Protecting privacy in crowdsourced spectrum allocation,” in Proc. Eur.
Symp. Res. Comput. Secur., 2019, pp. 556–576.

[54] X. Li et al., “OpBoost: A vertical federated tree boosting framework based
on order-preserving desensitization,” Proc. VLDB Endow., vol. 16, no. 2,
pp. 202–215, 2022.

[55] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catastrophic
data leakage in vertical federated learning,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2021, pp. 994–1006.

[56] R. Wang, O. Ersoy, H. Zhu, Y. Jin, and K. Liang, “FEVERLESS: Fast
and secure vertical federated learning based on XGBoost for decentral-
ized labels,” IEEE Trans. Big Data, to be published, doi: 10.1109/TB-
DATA.2022.3227326.

Yifeng Zheng received the PhD degree in computer
science from the City University of Hong Kong, Hong
Kong, in 2019. He is an assistant professor with the
School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China. He worked
as a postdoc with the Commonwealth Scientific and
Industrial Research Organization (CSIRO), Australia,
and City University of Hong Kong, respectively. His
work has appeared in prestigious conferences (such
as ESORICS, DSN, AsiaCCS, and PERCOM) and
journals (such as IEEE Transactions on Dependable

and Secure Computing, IEEE Transactions on Information Forensics and Se-
curity, IEEE Transactions on Services Computing, and IEEE Transactions on
Knowledge and Data Engineering). His current research interests are focused
on security and privacy related to cloud computing, IoT, machine learning, and
multimedia.

Shuangqing Xu received the BE degree in com-
puter science from Nanjing Tech University, Nan-
jing, China, in 2021. He is currently working toward
the graduation degree with the Harbin Institute of
Technology, Shenzhen, China. His current research
interests include machine learning, data security, and
federated learning.

Songlei Wang received the BE degree in Internet
of Things from the China University of Petroleum
(East China), Qingdao, China, in 2018 and the ME
degree in computer technology from the Harbin In-
stitute of Technology, Shenzhen, China, in 2021. He
is currently working toward the PhD degree with
the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China. His
research interests include cloud computing security
and secure machine learning.

Yansong Gao (Senior Member, IEEE) received the
MSc degree from the University of Electronic Sci-
ence and Technology of China in 2013 and the PhD
degree from the University of Adelaide, Australia, in
2017. He is a tenured research scientist with Data61,
CSIRO. Prior to that, he was an associate professor
with the Nanjing University of Science and Technol-
ogy. His current research interests are AI security and
privacy, hardware security, and system security.

Zhongyun Hua (Senior Member, IEEE) received the
BS degree from Chongqing University, Chongqing,
China, in 2011, and the MS and PhD degrees in
software engineering from the University of Macau,
Macau, China, in 2013 and 2016, respectively. He is
currently an associate professor with the School of
Computer Science and Technology, Harbin Institute
of Technology, Shenzhen, Shenzhen, China. His re-
search interests include chaotic system and informa-
tion security.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 02:44:00 UTC from IEEE Xplore. Restrictions apply.

https://catboost.ai/en/docs/concepts/algorithm-score-functions
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://dx.doi.org/10.1109/TBDATA.2022.3227326
https://dx.doi.org/10.1109/TBDATA.2022.3227326

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

