
Signal Processing: Image Communication 64 (2018) 78–88

Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

Reversible data hiding in encrypted images using adaptive block-level
prediction-error expansion
Shuang Yi a, Yicong Zhou a,*, Zhongyun Hua b

a Department of Computer and Information Science, University of Macau, Macau 999078, China
b School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China

A R T I C L E I N F O

Keywords:
Reversible data hiding
Encrypted images
Adaptive embedding
Block-level prediction-error expansion

A B S T R A C T

As directly reserving room from the encrypted image for data embedding is difficult and inefficient, many
encryption domain based reversible data hiding schemes have disadvantages such as small embedding rate
and low visual quality of the directly decrypted image. In order to solve these problems, this paper first
introduces a reversible data hiding method for natural images using the block-level prediction-error expansion.
The method can embed secret data into 2 × 2 image blocks by exploiting the pixel redundancy within each
block. Extending this concept to the encrypted domain, we then propose a reversible data hiding method in
encrypted images using adaptive block-level prediction-error expansion (ABPEE-RDHEI). ABPEE-RDHEI encrypts
the original image by block permutation to preserve spatial redundancy for data embedding, and applies a stream
cipher to the block permutated image to further enhance the security level. Due to the adaptive pixel selection
and iterative embedding processes, the proposed ABPEE-RDHEI can achieve a high embedding rate and pleasing
visual quality of the marked decrypted images. Experimental results and analysis show that ABPEE-RDHEI has
a better performance than several state-of-the-art methods.

1. Introduction

Reversible data hiding (RDH) in images aims to embed the secret
data into an original image in an imperceptible way. Unlike watermark-
ing that should be robust to against malicious attacks, RDH emphasizes
perfect data extraction and image recovery at the receiver side. Many
efficient RDH methods have been proposed in recent years. The early
RDH is based on image compression, where a number of possible
features of the original image are extracted and losslessly compressed.
The reserved spare space is utilized for embedding the secret data.
Later, more RDH methods have been proposed by exploiting the pixel
spatial correlations of the image (e.g., difference expansion (DE) [1] and
histogram shifting (HS) [2–4]) and exploiting modification direction
(EMD) [5,6]. The DE methods embed secret data by enlarging the
difference of two adjacent pixel values, and HS based methods embed
secret data into the shifted histograms. Another commonly used RDH
method is called prediction-error expansion (PEE) [7,8]. It exploits the
prediction-error to embed the secret data using the HS technique.

Nowadays, many researchers show their interest in developing
reversible data hiding methods in encrypted images (RDHEI), where
the original image is first encrypted by the content provider, and then
the data hider embeds secret data into the encrypted image without

* Corresponding author.
E-mail address: yicongzhou@umac.mo (Y. Zhou).

knowing the original image content. At the receiver side, RDHEI aims
to completely recover both the secret data and original image. With
the reversibility property, RDHEI has wide applications in many critical
scenarios such as medical image sharing, law forensics, Cloud storage
and military applications. If users want to store their images into the
Cloud but do not want any unauthorized access, they can encrypt the
images before sending them to the Cloud. Although the Cloud does not
know the image contents, it is able to add some additional information
to the encrypted images for the management of the resources (e.g., add
notations or location information to the encrypted images). In this
scenario, no transmission is involved, and thus no errors or attacks
either [9].

Existing RDHEI methods can be divided into two categories: one is
called vacating room after encryption (VRAE), the other is reserving
room before encryption (RRBE) [10]. In the VRAE methods, the content
provider needs do nothing but encrypt the original image. Many VRAE
methods have been proposed in recent years [11–19]. They use the
stream cipher [12–15,20–22], permutation [23–26] or Paillier cryp-
tosystem [27] to encrypt the original image, and embed secret data
by bits flipping [20–22], compression [28,29], HS [23–26,30] et al.
However, vacating room for data embedding after image encryption

https://doi.org/10.1016/j.image.2018.03.001
Received 3 November 2017; Received in revised form 26 January 2018; Accepted 2 March 2018
Available online 8 March 2018
0923-5965/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.image.2018.03.001
http://www.elsevier.com/locate/image
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2018.03.001&domain=pdf
mailto:yicongzhou@umac.mo
https://doi.org/10.1016/j.image.2018.03.001

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

may be difficult and inefficient. In order to increase the embedding
rate, Ma et al. [10] proposed a RRBE method to reserve room from
the original image before image encryption. Secret data then can be
embedded into the reserved spare space directly. Later, some RRBE
methods have been proposed by reserving the spare space using different
techniques such as traditional RDH methods [10,31–33] and sparse
representation technique [34].

Although RRBE can achieve a relatively high embedding rate, the
content owner is required to perform an extra operation of reserving
a spare space before encrypting the original image. The content owner
may have difficulty to accomplish this extra operation to vacate rooms
and/or may have no idea about the forthcoming secret data to be
embedded. Therefore, many researchers show interest in developing
VRAE methods. Existing VRAE methods for RDHEI can be divided
into two categories, namely separable VRAE (S-VRAE) and joint (J-
VRAE) methods. The former one can perform data extraction and image
recovery separately, while the latter one cannot. Due to the difficulty of
vacating room from the encrypted image, the VRAE methods are limited
in the embedding rate. In addition, most VRAE methods extract the
secret data and recover the original image by utilizing the fluctuation
measure function to evaluate the smoothness of the decrypted image.
They may fail to obtain the precise measure results when the images
contain many textures. This leads to incorrect data extraction and/or
partial image recovery. To address these problems, this paper proposes
an adaptive block-level prediction-error expansion (ABPEE) to perform
RDHEI. The main contributions of this work are summarized as follows:

(1) We propose a new block-level predictor (BLP) to predict the pixel
values within a 2 × 2 image block. It can obtain more precise
prediction results than the commonly used predictor like median
edge detector (MED) [35].

(2) Using BLP, we introduce a block-level prediction-error expansion
(BPEE) method to embed secret data into an image. It embeds se-
cret data into image block by block rather than the conventional
PEE that embeds data pixel by pixel in the raster-scan order.

(3) We further propose an Adaptive BPEE based RDHEI (ABPEE-
RDHEI) scheme.
(a) It inherits the merits of VRAE that reserving room process
is not required at the content-owner side. In addition, data
extraction and image recovery can be performed separately and
independently.
(b) It is fully reversible. This means that the secret data and
original image can be recovered without any error.
(c) It can achieve a high embedding rate, as iterative embedding
is used.
(d) It can obtain a larger embedding rate and generate marked
decrypted images with higher visual quality than several state-
of-the-art methods.

The rest of this paper is organized as follows: Section 2 briefly re-
views some related works. Section 3 introduces BPEE. Section 4 presents
the proposed ABPEE-RDHEI. Section 5 discusses several characteristics
of ABPEE-RDHEI. Section 6 provides simulation results and comparisons
with the state-of-the-art methods. Finally, Section 7 concludes this
paper.

2. Related works

In this section, we review some commonly used predictors in image
processing and some existing VRAE methods for RDHEI.

2.1. Existing predictors

Recently, many predictors have been proposed to estimate pixel
values in spatial domain, such as MED [35], gradient adjusted predictor
(GAP) [36], simplified gradient adjusted predictor (SGAP) [37], partial
differential equations (PDE) predictor [38] and checkerboard based

prediction (CBP) [39]. GAP and SGAP use the pixels in a half-surrounded
structure with an irregular shape to predict the target pixel. They are
suitable for predicting pixels in a raster-scan order. PDE completes the
prediction process using the predefined reference pixels. CBP uses 25%
pixels in a host image to predict the remaining 75% pixels, and each
target pixel is predicted by pixels with a 3 × 3 region. MED uses pixels
within a 2 × 2 image block to predict the target pixel, and it is described
as follows:

�̂� =

⎧

⎪

⎨

⎪

⎩

min(𝑥𝑟, 𝑥𝑐), if 𝑥𝑑 ⩾ max(𝑥𝑟, 𝑥𝑐)
max(𝑥𝑟, 𝑥𝑐), if 𝑥𝑑 ⩽ min(𝑥𝑟, 𝑥𝑐)
𝑥𝑟 + 𝑥𝑐 − 𝑥𝑑 , otherwise

(1)

where (𝑥, 𝑥𝑟, 𝑥𝑐 , 𝑥𝑑) denotes the pixels within a 2 × 2 image block, 𝑥 is
the target pixel, 𝑥𝑟, 𝑥𝑐 and 𝑥𝑑 are the three remaining pixels located in
the same row, column, and diagonal directions with 𝑥, respectively.

2.2. VRAE methods

Here, we review two types of VRAE methods, J-VRAE and S-VRAE,
separately.

2.2.1. J-VRAE methods
The J-VRAE methods usually first encrypt the original image using a

stream cipher, and then embed the secret data using different techniques
such as least significant bits (LSBs) flipping [12–15,20–22] and public
key modulation [16]. Zhang’s method [20] divides the encrypted image
into a number of non-overlapped blocks, separates pixels in each block
into two groups, namely 𝑆0 and 𝑆1, and embeds one bit of secret
data into one image block by flipping the 3 LSBs of 𝑆0 (if secret
data bit is 0) or 𝑆1 (if secret data bit is 1). Data extraction and
image recovery are accomplished by comparing the smoothness of the
decrypted image blocks. Yu et al. [12] proposed an improved version of
Zhang’s method [20] by randomly selecting 𝑝% (𝑝 ∈ (0, 100]) of pixels in
the encrypted image as the active pixels, and flipping the 3 LSBs of all
active pixels in 𝑆0 or 𝑆1 of an image block to embed different values of
secret data bits. Thus, Zhang’s method [20] is a special case of Yu et al.’s
method [12] with 𝑝 = 100. Hong et al. [21] and Liao et al.’s [22]
methods use a more precise fluctuation measure function to calculate
the complexity of the image block, and apply the side match technique
to reduce the rate of incorrect data extraction. Wu et al. [13] embed one
bit of the secret data into a group of pixels by flipping their 𝑖th(1 ⩽ 𝑖 ⩽ 6)
least significant bits (LSBs). In Li et al.’s method [14], one bit of the
secret data is embedded into a pre-selected pixel by flipping its 3 LSBs.
In addition, it duplicates the secret data before embedding to reduce
the rate of incorrect data extraction. Method in [15] flips only the LSBs
of fewer pixels by the elaborate selection, so that visual quality of the
marked decrypted image can be improved. Meanwhile, the adaptive
judging function based on the distribution characteristics of image local
contents effectively decreases the error rate of extracted secret data bits.
Zhou et al. [16] use a public key modulation method to embed 𝑛 (𝑛 ⩾ 1)
bits of secret data into an image block. The support vector machine
technique is utilized for data extraction and image recovery.

2.2.2. S-VRAE methods
In order to perform data extraction and image recovery separately,

a number of S-VRAE methods have been proposed. Wu et al. [13]
embed the secret data by replacing the 𝑖th(𝑖 ⩾ 7) bit of a stream-cipher-
encrypted pixel. Methods in [28,29] and [18] encrypt the original
image using the stream cipher. In [29] and [28], a number of LSB
planes and the 4th bit plane of a stream-cipher-encrypted image are
compressed to accommodate secret data, respectively. Zhang et al. [18]
use the pseudo random sequence modulation technique to embed
secret data into 3 LSB planes of the encrypted image. Previous S-
VRAE methods [11,13,18,28,29] can perfectly extract the secret data
without any error but the recovered image may have data loss. This is
because image recovery is accomplished by analyzing the local standard

79

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

deviation or the smoothness of the decrypted image. This may result in
incorrect results of image recovery when the original image contains
many textures. Different from these S-VRAE methods that encrypt the
original image mainly using the stream cipher with the pixel locations
unchanged, S-VRAE methods in [23–26] encrypt the original image by
permutation. In [24], the original image is first decomposed by integer
discrete wavelet transform (DWT) to obtain four frequency subbands
(LL, HL, HL, HH) of coefficients, the secret data is then hidden into the
Arnold map permutated HL, LH and HH subbands using HS method.
Yi et al. [25] improved [24] by using 1/4 of the pixels in an original
image to predict the rest 3/4 pixels, and the secret data is embedded
into the permutated prediction-error values by HS. In [26], the original
image is first divided into a number of blocks, and a coarse-grained
permutation is utilized to permutate blocks in the whole image and
a fine-grained permutation is applied to permutate each pixel within
the block. Two pixels in each block are then randomly selected to
be the peak points to embed secret data by HS. It is lossless in both
secret data extraction and image recovery. Methods in [40] and [30]
divide the original image into blocks and uses stream encryption and
permutation to encrypt each block. Then, [40] uses two traditional
RDH methods, difference histogram shifting (DHS) and prediction-error
histogram shifting (PEHS), to embed secret data into the encrypted
image, and [30] embeds secret data into the 𝑙 LSBs of each block by
HS with two randomly selected peak points. Niu et al. [41] encrypt
the AMBTC compressed image and use HS to embed secret data into
the encrypted lower mean value of each block. Method in [19] obtains
the encrypted image by encrypting the integer wavelet transformed
coefficients. Secret data is then embedded into the encrypted coefficients
via the HS method. However, the embedding rate is still limited.

3. Block-level prediction-error expansion

3.1. Block-level predictor (BLP)

Here, we propose a BLP to predict the target pixel 𝑥 within a 2 × 2
image block by considering its 3 remaining pixels with different weights.
It is described as

�̂� = ⌊𝑤𝑟𝑥𝑟 +𝑤𝑐𝑥𝑐 +𝑤𝑑𝑥𝑑⌋ (2)

where (𝑥, 𝑥𝑟, 𝑥𝑐 , 𝑥𝑑) denotes the pixels within a 2 × 2 image block, 𝑥 is
the target pixel, 𝑥𝑟, 𝑥𝑐 and 𝑥𝑑 are the three remaining pixels located
in the same row, column, and diagonal directions with 𝑥, respectively.
⌊𝛾⌋ is a floor function to obtain the largest integer not greater than 𝛾,
weight coefficients 𝑤𝑟, 𝑤𝑐 and 𝑤𝑑 are satisfied with 0 ⩽ 𝑤𝑟, 𝑤𝑐 , 𝑤𝑑 ⩽ 1,
𝑤𝑟 +𝑤𝑐 +𝑤𝑑 = 1. For simplicity, in this work, we set 𝑤𝑟 = 𝑤𝑐 = 0.4 and
𝑤𝑑 = 0.2.

3.2. Block-level prediction-error expansion (BPEE)

The original image with size of 𝑛1 ×𝑛2 is first divided into 2 × 2 non-
overlapped blocks. Thus, totally 𝑁 = 𝑛1𝑛2∕4 blocks will be obtained.
The locations of four pixels within a block are shown in Fig. 1(a).

In data embedding process, for each block, we first use the remaining
three pixels 𝑥2, 𝑥3 and 𝑥4 to predict 𝑥1 using BLP, the obtained
prediction-error values are utilized for secret data embedding. After the
first round of embedding, pixel 𝑥1 in each block is changed into �̃�1. The
modified pixel �̃�1 together with the remaining pixels 𝑥3 and 𝑥4 will be
utilized to predict pixel 𝑥2 in the second round of embedding and it will
change 𝑥2 into �̃�2. Similarly, we can obtain �̃�3 and �̃�4.

After four rounds of data embedding, all four pixels in each image
block are modified, as shown in Fig. 1(e). This whole process is called
an embedding layer. After the first embedding layer, image pixels in all
blocks are changed and thus a new image can be obtained to do the
next embedding layer. These iterative embedding processes stop once
all payload bits are completely embedded.

Fig. 1. Pixel changes in each embedding round. (a) The original pixels; pixel
changes after the (b) first; (c) second; (d) third and (e) fourth embedding rounds,
respectively.

Fig. 2. Example of data embedding in each round of a single embedding layer
when 𝑇 𝑘

𝑙 = −1 and 𝑇 𝑘
𝑟 = 0.

Without loss of generality, we use a single round of embedding to
describe the data embedding procedure of BPEE. Suppose that we embed
additional data into the 𝑘th (1 ⩽ 𝑘 ⩽ 4) pixel of each block. Denote
the 𝑘th pixel in the 𝑖th block as 𝑥𝑘𝑖 , where 1 ⩽ 𝑖 ⩽ 𝑁 , and 𝑁 is the
total number of blocks in the image. Firstly, we concatenate 𝑥𝑘𝑖 and
form a pixel sequence (𝑥𝑘1 , 𝑥

𝑘
2 ,… , 𝑥𝑘𝑁). Then the prediction value �̂�𝑘𝑖 of

𝑥𝑘𝑖 is calculated by BLP using Eq. (2), and the obtained prediction-error
sequence is denoted as 𝐄𝑘 = (𝑒𝑘1 , 𝑒

𝑘
2 ,… , 𝑒𝑘𝑁), where

𝑒𝑘𝑖 = 𝑥𝑘𝑖 − �̂�𝑘𝑖 (3)

Based on 𝐄𝑘, two capacity parameters 𝑇 𝑘
𝑙 and 𝑇 𝑘

𝑟 are obtained by

⎧

⎪

⎨

⎪

⎩

𝑇 𝑘
𝑙 = min{argmax

𝑒<0
{ℎ𝐄𝑘 (𝑒)}}

𝑇 𝑘
𝑟 = max{argmax

𝑒⩾0
{ℎ𝐄𝑘 (𝑒)}}

(4)

where ℎ𝐀(𝑡) is the number of occurrence when prediction-error values
in the sequence 𝐀 are equal to 𝑡. These two capacity parameters are then
expanded to embed additional data bits by

𝑒𝑘𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑒𝑘𝑖 − 1, if 𝑒𝑘𝑖 < 𝑇 𝑘
𝑙

𝑒𝑘𝑖 − 𝑚, if 𝑒𝑘𝑖 = 𝑇 𝑘
𝑙

𝑒𝑘𝑖 + 𝑚, if 𝑒𝑘𝑖 = 𝑇 𝑘
𝑟

𝑒𝑘𝑖 + 1, if 𝑒𝑘𝑖 > 𝑇 𝑘
𝑟

𝑒𝑘𝑖 , otherwise

(5)

where 𝑚 ∈ {0, 1} is one bit of the additional data. Therefore, one
embedding round can embed (ℎ𝐄𝑘 (𝑇 𝑘

𝑙) + ℎ𝐄𝑘 (𝑇 𝑘
𝑟)) bits of the additional

data. Finally, we generate new values of these pixels by

�̃�𝑘𝑖 = 𝑒𝑘𝑖 + �̂�𝑘𝑖 (6)

Fig. 2 shows an example of data embedding in each round of a single
embedding layer. We assume that 𝑇 𝑘

𝑙 = −1, 𝑇 𝑘
𝑟 = 0, and secret data

= [1, 0]. In the first round, 𝑒1 = 𝑇 𝑘
𝑟 = 0, the secret data bit ‘1’ is

embedded into the first pixel. In the third round, 𝑒3 = 𝑇 𝑘
𝑙 = −1, the

secret data bit ‘0’ is embedded into the third pixel. After four rounds of
embedding, the original image block 𝐵 = [100, 101; 99, 100] becomes to
�̃� = [101, 102; 99, 102]. Then, we can regard �̃� as a new original block
to do the second layer of embedding following the same procedures in
Fig. 2.

80

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

Fig. 3. Comparison of embedding capacity of BPEE using BLP and MED for
different images and embedding layers.

3.3. Data extraction

The data extraction procedures follow the inverse order of embed-
ding steps starting from pixel �̃�4 to �̃�1, as shown in Fig. 1 from (e) to (a).
Thus, in each data extraction round, we can obtain the same prediction-
error values as in the data embedding phase.

For each block, we first use the remaining three pixels �̃�1, �̃�2 and
�̃�3 to predict �̃�4 using BLP, and the obtained prediction-error values are
utilized for data extraction. After the first round of data extraction, pixel
�̃�4 is changed as 𝑥4, as shown in Fig. 1(d). Then, 𝑥4 together with �̃�1 and
�̃�2 are utilized to predict �̃�3, and after data extraction, �̃�3 is changed as
𝑥3. Similarly, we can obtain 𝑥1 and 𝑥2.

After four rounds of data extraction, all four pixels in each image
block are recovered. We use these recovered pixels to perform the next
layer of extraction until all data bits are successfully extracted.

Here, we use a single round of extraction as an example to de-
scribe the detailed data extraction procedures of BPEE. We first de-
note the pixel sequence containing of the 𝑘th pixel in each block as
(�̃�𝑘1 , �̃�

𝑘
2 ,… , �̃�𝑘𝑁), and then calculate its prediction values (�̂�𝑘1 , �̂�

𝑘
2 ,… , �̂�𝑘𝑁)

using BLP. The obtained prediction-error values are calculated by

𝑒𝑘𝑖 = �̃�𝑘𝑖 − �̂�𝑘𝑖 (7)

According to the capacity parameters 𝑇 𝑘
𝑙 and 𝑇 𝑘

𝑟 , secret data can be
extracted by

𝑚 =

{

0, if 𝑒𝑘𝑖 ∈ {𝑇 𝑘
𝑙 , 𝑇

𝑘
𝑟 }

1, if 𝑒𝑘𝑖 ∈ {𝑇 𝑘
𝑙 − 1, 𝑇 𝑘

𝑟 + 1}
(8)

and the prediction-error values are recovered by

𝑒𝑘𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑘𝑖 + 1, if 𝑒𝑘𝑖 < 𝑇 𝑘
𝑙

𝑒𝑘𝑖 − 1, if 𝑒𝑘𝑖 > 𝑇 𝑘
𝑟

𝑒𝑘𝑖 , otherwise
(9)

Finally, the pixel values are reconstructed by

𝑥𝑘𝑖 = �̂�𝑘𝑖 + 𝑒𝑘𝑖 (10)

3.4. Comparison

Here, we compare the pixel prediction performance of our proposed
BLP with existing MED using 3 test images from the database.1 Fig. 3
plots the embedding capacities of BPEE using BLP and MED for different

1 http://decsai.ugr.es/cvg/dbimagenes/g512.php.

embedding layers. We can observe that, the embedding capacity of BPEE
using both predictors increases with the increasing of the embedding
layer. However, BPEE using BLP can embed more payload bits than that
using MED under various embedding layers. This means that BLP can
obtain more precise prediction results than MED.

4. ABPEE-RDHEI

Using the proposed BLP and BPEE, this section introduces an adap-
tive block-level based prediction-error expansion for RDHEI (ABPEE-
RDHEI). The ABPEE-RDHEI framework is shown in Fig. 4. The image
provider first encrypts the original image using a block-level permuta-
tion with the permutation key 𝑝. Then, using the sharing key 𝑠, a
stream encipher is utilized to change the pixel values of the image. At
the data hider side, the stream decipher is applied using 𝑠. According
to the data embedding key 𝑑 , the data hider then embeds secret data
into the encrypted image using the ABPEE method. After that, the stream
encipher is used to further protect the secret data and image content.
Note that the stream encipher and decipher can be replaced by any
secure encryption algorithm, and in this paper we use stream cipher
for demonstration. The encrypted image containing secret data is called
the marked encrypted image. At the receiver side, we propose two
schemes to extract the secret data and recover the original image to
fulfil different applications. One scheme is data extraction before image
decryption while the other is data extraction after image decryption.
Using the image encryption key (or data embedding key), the receiver
can directly obtain the marked decrypted image (or secret data). With
both two security keys, the receiver can completely recover the original
image and the secret data simultaneously.

4.1. Image encryption

The image encryption consists of two steps: block permutation and
stream encipher. The block permutation contains a coarse-grained and a
fine-grained permutation. Assume that the size of a gray-scale image I is
𝑁1×𝑁2 and its pixel values are in the range of [0, 255], where 𝑁1 and 𝑁2
are multiples of 2. We first divide I into a series of 2 × 2 non-overlapped
blocks. Thus, 𝑁 = 𝑁1𝑁2∕4 blocks are obtained. According to 𝑝, two
permutations are applied to I to obtain the image Î: a coarse-grained
permutation to permutate blocks within the image and a fine-grained
permutation to permutate pixels within each block. Note that, the fine-
grained permutation is to rotate a 2 × 2 block in one of the four degrees
clockwise: 0, 90, 180 and 270. Thus, there are totally 𝑁!4𝑁 possible
permutations. Then, a stream encipher is applied to Î using key 𝑠 to
obtain the encrypted image E. We can simply use 𝑠 to generate a bit
sequence and do the bit-XOR with Î to obtain E.

4.2. Data embedding

After obtaining the encrypted image E, the data hider first performs
the stream decipher using 𝑠. Here the same bit sequence is generated
by 𝑠 and then the bit-XOR is performed on E to obtain the image Î.
Because the block permutation in image encryption does not change the
values and relative locations of pixels within a 2 × 2 image block, these
pixels have strong spatial correlations similar to the original image, and
their values are close to each other. Thus, we can embed secret data bits
into these image blocks using the pixel spatial correlations and 𝑑 . After
data embedding, the stream encipher is applied to the image to obtain
the final marked encrypted image M.

In order to achieve a higher level of security, we encrypt the secret
data using 𝑑 before embedding them into the encrypted image. Any
existing data encryption algorithm can be used to encrypt the secret
data. Thus, the content of secret data is protected. In addition, we shuffle
the image blocks in the encrypted image using 𝑑 before performing the
data embedding process. This changes the data embedding orders in the
image blocks.

81

http://decsai.ugr.es/cvg/dbimagenes/g512.php

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

Fig. 4. Framework of the proposed ABPEE-RDHEI.

Fig. 5. Image partition and self-contained embedding.

Because overflow may happen after secret data embedding, and some
parameters will also be generated, we use a self-contained embedding
strategy to store these information as shown in Fig. 5. The shuffled image
is first separated into two sub-images namely A and B, where A and B
contain the first two rows and the remaining (𝑁1−2) rows of the shuffled
image, respectively. The encrypted secret data and LSBs of sub-image A
are concatenated to form payload  to be embedded into sub-image B
using an adaptive BPEE (ABPEE). After embedding payload , the side
information, containing parameters and overflow information generated
from sub-image B, will be stored into LSBs of sub-image A using bit
replacement. Finally, all image blocks are unshuffled using key 𝑑 to
generate the marked encrypted image. Next, we will present payload
embedding in detail.

The flowchart of payload embedding is shown in Fig. 6. The sub-
image B is first divided into a series 2 × 2 non-overlapped image blocks.
Then, payload bits are embedded into the image blocks using ABPEE.
Four rounds of embedding form a layer of embedding. The iterative
embedding processes will stop when all payload bits are completely
embedded.

ABPEE is an adaptive strategy of BPEE. In each embedding round,
ABPEE only selects the pixels in smooth regions in the image to embed
payload bits while keeping the pixels in fine-grained regions unchanged.
Thus, it can achieve a relatively high image quality in the directly
recovered image. In addition, ABPEE can effectively reduce the overflow
map size. More discussions can be found in Section 5.

4.2.1. Adaptive pixel selection
For an image block, we calculate two invariant features, 𝐶𝑏 and

�̂� to determine whether the selected pixel 𝑥 can be embedded with

Fig. 6. Flowchart of payload embedding.

payload bits, where 𝐶𝑏 denotes the complexity of the image block and
is calculated by

𝐶𝑏 = max{𝑥𝑟, 𝑥𝑐 , 𝑥𝑑} − min{𝑥𝑟, 𝑥𝑐 , 𝑥𝑑} (11)

and �̂� is the prediction value of 𝑥 that is calculated by BLP using Eq. (2).
Then, given two thresholds 𝑃 and 𝑇 , if 𝐶𝑏 < 𝑇 and �̂� ∈ [𝑃 , 255 − 𝑃],

pixel 𝑥 in the current image block will be selected to embed payload bits;
otherwise, keep it unchanged. The threshold 𝑃 is calculated by Eq. (12)
and the values of 𝑇 are given in Table 1.

𝑃 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3 if 𝐺 ⩽ 4 × 10−4

5 if 4 × 10−4 < 𝐺 ⩽ 4 × 10−3

8 if 4 × 10−3 < 𝐺 ⩽ 1 × 10−2

10 otherwise

(12)

82

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

Table 1
Threshold 𝑇 under different values of embedding rate 𝑟 and complexity 𝐶B of sub-image B.

𝑇 𝐶B

(0, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 1]

𝑟 (bpp)

⩽0.02 10 8 4 3 3 1 1 1
(0.02, 0.05] 20 18 5 5 7 3 2 1
(0.05, 0.15] 40 29 25 11 9 7 3 2
(0.15, 0.25] 45 36 36 17 17 16 4 2
(0.25, 0.35] 50 50 40 19 19 18 9 4
(0.35, 0.45] 50 50 40 22 20 18 11 7
>0.45 50 50 40 33 27 23 14 10

where

𝐺 =

∑𝑁1−2
𝑖=1

∑𝑁2
𝑗=1 𝑄

𝑖,𝑗

(𝑁1 − 2)𝑁2
(13)

𝑄𝑖,𝑗 =
{

0 if B𝑖,𝑗 ∈ [10, 245]
1 otherwise (14)

and (𝑖, 𝑗) is the pixel location index.
Two factors will affect the value of 𝑇 : the embedding rate 𝑟 (.bpp)

and the complexity 𝐶B of sub-image B, where the embedding rate 𝑟 is
given by the data hider. To calculate 𝐶B, we let 𝑏𝑘𝑗 be the 𝑘th pixel
in the 𝑗th block in sub-image B, where 1 ⩽ 𝑘 ⩽ 4, 1 ⩽ 𝑗 ⩽ 𝑆 and
𝑆 = (𝑁1−2)𝑁2∕4. The average value of each block in B is then calculated
by

𝑣𝑗 =
4
∑

𝑘=1
𝑏𝑘𝑗 ∕4 (15)

Then we calculate the prediction-error values of B by

𝑒𝑘𝑗 = 𝑏𝑘𝑗 − 𝑣𝑗 , for 𝑏𝑘𝑗 ∈ [𝑃 , 255 − 𝑃] (16)

We concatenate all values of 𝑒𝑘𝑗 to form a prediction-error sequence �̈�,
and finally calculate the complexity 𝐶B by

𝐶B =
2
∑

𝑒=−3
ℎ�̈�(𝑒)∕(4𝑆) (17)

where ℎ𝐀(𝑡) is the same function that is used in Eq. (4).

4.2.2. ABPEE
In a single round of embedding, ABPEE divides the sequence with

𝑆 pixels into two groups: Group-I and Group-II. Group-I contains the
pixels that are selected by the previous proposed adaptive pixel selection
method, and Group-II contains the remaining pixels. Then pixels in
Group-I are utilized for payload embedding using BPEE, and pixels in
Group-II are kept unchanged.

For the last round of embedding, the remaining 𝑍 bits of the payload
may be less than (ℎ�̈�(𝑇 𝑘

𝑙)+ℎ�̈�(𝑇
𝑘
𝑟)), where �̈� denotes the set of prediction-

error values in Group-I. Thus, the embedding procedure will stop when
all payload bits are successfully embedded, and the value of 𝑍 will be
stored as a part of the side information for payload extraction at the
receiver side.

4.2.3. Side information
After embedding the payload bits, the side information is then stored

into the LSBs of sub-image A using bit replacement. The side information
contains the following:

∙ the adaptive information;
∙ the number of rounds and layers of embedding;
∙ the prediction-error values that containing embedded bits;
∙ the size of payload bits embedded in the last embedding round;
∙ the information to solve the overflow problem.

In our proposed method, two thresholds, 𝑇 and 𝑃 , are utilized to
indicate the adaptive information. The parameters 𝑘 and 𝐿 denote
the number of rounds and layers for embedding, respectively. In each
embedding round, 𝑇 𝑘

𝑙 s and 𝑇 𝑘
𝑟 s are the prediction-error values that

contain embedded bits. Each embedding round and layer may obtain
different values of 𝑇 𝑘

𝑙 and 𝑇 𝑘
𝑟 . Thus, we use {𝑇 𝑘,𝑗

𝑙 }𝐿𝑗=1 and {𝑇 𝑘,𝑗
𝑟 }𝐿𝑗=1 to

denote the prediction-error values that contained embedded bits in the
𝑘th round and 𝑗th embedding layer. Finally, the value 𝑍 is utilized to
denote the number of bits that embedded in the last round of embedding.
These thresholds and parameters are stored to form side information.

After payload embedding, pixel values in sub-image B may exceed
the range of [0,255]. We use a binary map to record information to solve
the overflow problem. E.g., when the minimum pixel value of B becomes
𝑉 , where 𝑉 < 0. We convert the pixel values from [𝑉 ,−1] to [0,−𝑉 − 1]
using one-to-one mapping (e.g., 𝑉 → 0, (𝑉 + 1) → 1, . . .). Thus, when a
pixel value falls into [0, 𝑉 −1], it is either an original pixel or a converted
one. A binary map 𝑂𝑚𝑎𝑝 is then generated to distinguish between original
and converted (e.g., 0 for the original and 1 for the converted). The
similar procedure can be applied to record the overflow information
when pixel values larger than 255. The minimum (maximum) pixel
value is also stored as a part of the side information for data extraction
and image recovery at the receiver side.

4.3. Data extraction and image recovery

At the receiver side, we propose two schemes for data extraction
and image recovery as shown in Fig. 4: Scheme I: data extraction before
image recovering and Scheme II: data extraction after image recovering.
Firstly, the stream decipher is applied to the marked encrypted image
using 𝑠. We denote the obtained image as M̂. Next, we introduce these
two schemes of data extraction and image recovery detail.

4.3.1. Scheme I
(1) Data extraction
When holding security key 𝑑 , the receiver can extract the secret

data from M̂ directly. Firstly, M̂ is divided into a number of 2 × 2 image
blocks and these image blocks are scrambled by 𝑑 . The scrambled
image is then separated into two sub-images, namely A′ and B′, by the
same way in the data embedding process. Then, we extract parameters
𝑍, 𝑘, 𝐿, 𝑃 , 𝑇 , {𝑇 𝑘,𝑗

𝑙 }𝐿𝑗=1, {𝑇
𝑘,𝑗
𝑟 }𝐿𝑗=1 and overflow map 𝑂𝑚𝑎𝑝 from the LSBs

of sub-image A′. After modifying the pixel values in sub-image B′ based
on 𝑂𝑚𝑎𝑝, we can extract the payload from sub-image B′ without any
error. Note that data extraction follows the inverse order of embedding
procedures from the last layer to the first layer, and from �̃�4 to �̃�1.

Here we take a single round of extraction as an example to describe
the detailed payload extraction procedures. For each pixel �̃�, we can
obtain the same invariant features from its remaining three neighboring
pixels to identify which group it belongs to using the obtained threshold
values 𝑃 and 𝑇 . Firstly, a sequence with 𝑆 pixels in a single extraction
round is divided into two groups using the same pixel selection method
in data embedding procedure. Then we extract payload bits from pixels
in Group-I using Eqs. (7) and (8), and recover these pixels using Eqs. (9)
and (10). Pixels in Group-II will be kept unchanged.

After extracting payload bits from the 𝑘th pixel of each block, go to
the (𝑘 − 1)th pixels for the next round of extraction, and the recovered

83

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

pixels will be considered as a part of the reference pixels to predict
the (𝑘 − 1)th pixels. Note that, in the first round of extraction, the data
extraction and pixel recovering procedures will stop when 𝑍 bits of the
payload are successfully obtained.

Then, the encrypted secret data are extracted from the payload and
decrypted by 𝑑 . The original secret data are obtained. After obtaining
the secret data from the payload, we recover the LSBs of sub-image A by
replacing with the remaining payload bits. Then, all image blocks are
shuffled by 𝑑 and obtain the image Î.

(2) Image recovery
After extracted the data, the receiver further unscrambles the whole

image blocks using key 𝑝 to obtain the final decrypted image. As each
data extraction and image recovery step is reversible, the final decrypted
image is exactly the same with the original one.

4.3.2. Scheme II
In some scenarios, the Cloud provider may want to embed some

source information to the encrypted image. After the image being
decrypted, the receiver also hope to trace the source of the image.
Thus, Scheme II is introduced to perform data extraction after image
decryption. The detailed procedures of Scheme II are described as
follows.

The receiver first divides M̂ into 2 × 2 non-overlapped blocks. These
blocks are unscrambled using 𝑝 to generate the marked decrypted
image. As the pixels in image blocks will have tiny changes after
data embedding, the generated marked decrypted image is similar to
the original one. The results will be experimentally demonstrated in
Section 6.

Using both keys 𝑑 and 𝑝, one can further extract the secret
data from the marked decrypted image. Because the permutation only
changes the locations of image blocks and pixel within block, using 𝑝
and 𝑑 , we first unshuffle image blocks to obtain the correct image block
order for data extraction, and denote the first 𝑁2∕2 blocks as sub-image
A′ and the remaining image blocks as sub-image B′. Then, we extract
the side information from the LSBs of A′ and reset the overflow pixel
values in B′ according to the overflow information, which is obtained
from the side information. The payload extraction follows the same way
as proposed in Scheme I. After obtaining the secret data and recovering
the LSBs of sub-image A′, all image blocks are unscrambled using 𝑝
and 𝑑 . The original image is successfully recovered.

Due to the reversibility of ABPEE and the self-contained embedding
protocol, the original image and secret data can be completely recovered
without any error.

5. Discussions and analysis

In this section, we analyze the proposed ABPEE-RDHEI in terms of
embedding rate, performance and security.

5.1. Embedding rate

Because the content owner does not reserve spare space before image
encryption, the data hider has the flexibility to determine the size of
secret data to be embedded. The maximum embedding rate of ABPEE-
RDHEI depends on the smoothness of the original image. The more
smooth the original image is, the larger maximum embedding rate it
can achieve. In addition, the side information should be completely
embedded into the LSBs of sub-image A. For example, the side infor-
mation has a length no more than 2𝑁2 bits. One may enlarge the size
of sub-image A or use more LSB planes to embed the side information.
However, enlarging the size of A will reduce the size of sub-image B
and thus result in a lower embedding rate. Using more LSB planes in A
to embed side information may yield the marked decrypted image with
low quality.

For simplicity, in this paper, the sub-image A contains only two
rows of the image and only the LSBs in A are adopted to embed side

information. However, when a larger number of pixels in the original
image are close to 0 and/or 255, after embedding the payload bits, the
size of the generated overflow map may exceed 2𝑁2. For example, the
image Pepperes1 in Fig. 7(a) contains 5381 pixels whose values are less
than 5 (within the red rectangle box in Fig. 7(b)). After being embedded
with 0.3 bpp of secret data, an overflow map with 1486 bits is generated.
Its size exceeds 1024 (the number of LSBs of sub-image A). Due to
the adaptive strategy in the proposed ABPEE-RDHEI, the maximum
embedding rate of image Pepperes can reach 0.4 bpp. It is twice larger
than those without the adaptive strategy.

5.2. Performance analysis

From Eqs. (5) and (6), the pixel values are either unchanged or
modified by 1 when their prediction-error 𝑒𝑘𝑖 equals to 𝑇 𝑘

𝑙 (or 𝑇 𝑘
𝑟); when

𝑒𝑘𝑖 is within the range of (𝑇 𝑘
𝑙 , 𝑇

𝑘
𝑟), the corresponding pixels will be kept

unmodified; when 𝑒𝑘𝑖 is without the range of [𝑇 𝑘
𝑙 , 𝑇

𝑘
𝑟], the corresponding

pixels will be shifted by 1. Thus, we can obtain the expected value of
the mean square error (MSE) for a single embedding layer of ABPEE by
∑E(|�̃�𝑖 − 𝑥𝑖|

2)
4𝑆

≈
0.5 ×𝑁𝑐 +𝑁𝑠

4𝑆
, 𝑖 = 1, 2,… , 4𝑆 (18)

where 𝑁𝑐 and 𝑁𝑠 are the capacity and amount of shifted pixels in
a single embedding layer, respectively. Here the capacity 𝑁𝑐 equals
to the number of pixels when their prediction-error values belong to
{𝑇 𝑘

𝑙 , 𝑇
𝑘
𝑟 }. From Eq. (18), we can observe that, for a fixed capacity, the

MSE will be small if𝑁𝑠 is small. In each embedding layer of our proposed
ABPEE, only the pixels in smooth regions and have high probability to
be the non-boundary pixels are selected to embed the payload bits. Thus,
smaller MSE values will be obtained and this can result in the marked
decrypted images with higher visual quality.

Here, we use the normalized prediction-error histograms derived
from ABPEE and BPEE to demonstrate their performance, and the
results are shown in Fig. 8. As an example, we only calculate the
prediction-error histogram of the first embedding round in the first
embedding layer. For ABPEE, the normalized prediction-error histogram
is calculated by
ℎ�̌�(𝑒)
𝑔

, ∀𝑒 ∈ Z (19)

and for BPEE it is calculated by
4ℎ�̇�(𝑒)

𝑆
, ∀𝑒 ∈ Z (20)

where �̌� and �̇� are the sets of prediction-error values derived from
ABPEE and BPEE, respectively, and 𝑔 is length of �̌�. One can see from
the results that ABPEE generates a sharper normalized prediction-error
histogram than BPEE without the pixel selection procedure. This means
that, to embed a fixed length of secret data, ABPEE shifts less pixels
than BPEE. Thus, ABPEE can generate the marked decrypted image with
better quality.

5.3. Security analysis

In RDHEI, the content owner/data hider does not allow the unau-
thorized user to access the original image/secret data. Thus both the
original image and secret data need to be protected. In our proposed
ABPEE-RDHEI, we use the block-level permutation and stream cipher to
encrypt the original image. For an 𝑁1×𝑁2 image divided into 𝑁 blocks,
there will be totally 𝑁!4𝑁 possible permutations. For the stream cipher,
there are 256𝑁1𝑁2 possible bit sequences to change the pixel values of the
image. Thus, the possibility of breaking the encrypted results without
𝑝 and 𝑠 is as small as 1

256𝑁1𝑁2𝑁!4𝑁
. Although the permutation process

may reveal the original image histogram information to the data hider,
the possibility of obtaining the original image is as small as 1

𝑁!4𝑁 . To
protect the secret data, using 𝑑 , we first encrypt it and shuffle the data
embedding order. Then, the stream cipher is applied to change the bits
in the whole image. If the possibility of successfully recovering the secret
data without 𝑑 is 1

𝑊 , the possibility of breaking the embedded secret
data bits without the embedding key 𝑑 is as low as 1

256𝑁1𝑁2𝑊𝑁!4𝑁
.

84

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

Fig. 7. An example of the original image. (a) Pepperes with size of 512 × 512 and its (b) histogram.

Fig. 8. Normalized prediction-error histograms derived after the first embedding round and first embedding layer of images (a) Lena and (b) Baboon using ABPEE
with pixel selection (red and green lines) and BPEE without pixel selection (blue line), respectively.

6. Simulation results and comparisons

We take the Lena image to demonstrate the proposed ABPEE-RDHEI
algorithm, and the results are shown in Fig. 9. We can observe that, even
being embedded with 0.3 bpp secret data, the marked decrypted image
(Fig. 9(c)) has high visual quality with a PSNR value of 44.89 dB. And
we can also obtain a losslessly recovered image (Fig. 9(d)).

6.1. Comparison of embedding strategies

To test the embedding performance of ABPEE, we select 6 test images
from the database1 to compare the proposed algorithm under three
different embedding strategies: ABPEE, BPEE, and MED based PEE. They
are denoted as ABPEE-RDHEI, BPEE-RDHEI and MED-RDHEI. BPEE-
RDHEI follows the same procedure with ABPEE-RDHEI without pixel
selection. For MED-RDHEI, we use MED to replace BLP for the target
pixel prediction, and other procedures follow the same way as ABPEE-
RDHEI. Table 2 compares the PSNR values of their marked decrypted
images under various embedding rates. We can observe that ABPEE-
RDHEI outperforms other two methods under all embedding rates.
Table 3 lists the lengths of overflow maps generated by these three
algorithms under different embedding rates. Compared with the other
two methods, ABPEE-RDHEI can significantly reduce the size of the
overflow map especially when the image contains a large number of
pixels approach to 0 and/or 255 (e.g., Peppers).

In order to quantitatively measure the performance of ABPEE-
RDHEI, we randomly select 6 groups of images from BOWSBase.2 Each

2 http://bows2.ec-lille.fr/.

group contains 200 images. Then, we apply ABPEE-RDHEI, BPEE-RDHEI
and MED-RDHEI on each group of images with different embedding
rates. Fig. 10 plots the PSNR results of their marked decrypted images.
The results show that ABPEE-RDHEI outperforms other two methods
in most cases. Fig. 11 plots the average PSNR values of 200 marked
decrypted images with different embedding rates. One can observe that
the difference of the average PSNRs between ABPEE-RDHEI and BPEE-
RDHEI decreases with the increasing of the embedding rate. This is
because when more secret data are embedded, a larger value of 𝑇
is utilized. Thus, in each embedding round, more pixels are selected
to Group-I while less pixels will be in Group-II. When the number of
pixels in Group-II approaches to 0, the performance of ABPEE-RDHEI
is close to that of BPEE-RDHEI. Compared with ABPEE-RDHEI and
MED-RDHEI, the difference of the average PSNR increases with the
decreasing of embedding rates. This shows that BLP can obtain more
precise prediction results than MED, especially when more embedding
layers are used.

6.2. Performance comparison

We select 3 commonly used test images (Lena, Baboon, Airplane) from
the database1 to compare the performance of ABPEE-RDHEI with several
existing VRAE methods. Fig. 12 plots the PSNR results of different
marked decrypted images generated by these algorithms under given
embedding rates. For methods in [12,20,21], we set the block size as
8 × 8 for demonstration. Because the data extraction of these methods
is based on the smoothness of the original image, incorrect data bits
may be extracted when the original image contains many textures. Thus,
the pure capacity 𝐶 (bits) reduces to 𝐶(1 − 𝐻(𝜌)), where 𝐻(𝜌) is the

85

http://bows2.ec-lille.fr/

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

Table 2
PSNR comparisons of marked decrypted images generated by BPEE-RDHEI, MED-RDHEI and ABPEE-RDHEI under various embedding rates.

PSNR results (dB)

Embedding rate (bpp) 0.005 0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5

Lena
BPEE-RDHEI 62.18 57.87 54.32 51.49 49.75 48.13 45.81 44.32 43.12 41.74 39.65
MED-RDHEI 64.23 58.52 55.50 52.19 49.70 46.81 45.00 43.28 41.82 40.27 37.30
ABPEE-RDHEI 64.89 58.78 55.93 52.71 50.31 48.45 46.27 44.89 43.63 42.30 39.86

Airplane
BPEE-RDHEI 64.34 60.11 56.58 53.67 51.90 50.59 49.60 48.60 46.70 45.32 43.03
MED-RDHEI 67.25 63.00 58.55 54.54 52.79 50.03 48.43 47.14 45.32 43.50 41.13
ABPEE-RDHEI 67.81 63.58 59.27 55.87 53.78 52.43 51.15 49.29 47.61 46.38 43.72

Barbara
BPEE-RDHEI 60.76 56.39 52.84 49.99 47.71 44.84 43.07 41.19 39.79 38.33 35.93
MED-RDHEI 63.64 59.28 55.34 51.09 47.42 45.02 42.89 40.69 38.98 37.07 33.88
ABPEE-RDHEI 63.93 59.32 55.60 52.10 48.87 46.32 44.43 42.72 41.10 39.75 36.46

Boat
BPEE-RDHEI 62.39 58.06 54.57 51.58 49.84 48.32 45.85 44.27 42.98 41.53 39.27
MED-RDHEI 64.40 60.14 55.67 52.56 50.13 47.04 45.40 43.38 41.93 40.24 37.21
ABPEE-RDHEI 65.02 60.70 56.46 53.26 50.82 49.04 46.79 45.21 43.80 42.50 39.56

Baboon
BPEE-RDHEI 57.19 52.99 49.38 44.10 40.86 38.35 35.90 34.14 32.50 31.01 –
MED-RDHEI 60.03 54.85 49.77 44.11 40.18 37.03 34.30 32.32 30.42 – –
ABPEE-RDHEI 59.87 55.02 50.55 45.23 41.62 38.75 36.10 34.31 32.64 31.00 –

Peppers
BPEE-RDHEI 61.56 57.29 53.7 50.82 49.04 – – – – – –
MED-RDHEI 62.32 57.97 53.70 49.54 46.80 44.30 42.17 40.19 – – –
ABPEE-RDHEI 62.28 58.57 54.10 51.06 48.57 46.26 44.64 42.61 41.26 40.10 –

Table 3
Lengths of the overflow maps of different images with various embedding rates.

Overflow map size (bits)

Embedding rate (bpp) 0.005 0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5

Lena
BPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0
MED-RDHEI 0 0 0 0 0 0 0 0 0 0 0
ABPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0

Airplane
BPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0
MED-RDHEI 0 0 0 0 0 0 0 0 0 0 0
ABPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0

Barbara
BPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0
MED-RDHEI 0 0 0 0 0 0 0 0 0 0 0
ABPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0

Boat
BPEE-RDHEI 0 0 0 0 0 27 27 27 27 27 27
MED-RDHEI 0 0 0 0 0 0 0 0 0 0 0
ABPEE-RDHEI 0 0 0 0 0 0 0 0 0 0 0

Baboon
BPEE-RDHEI 0 0 76 121 157 233 275 311 368 522 956
MED-RDHEI 0 0 0 0 0 87 178 186 356 550 2098
ABPEE-RDHEI 0 0 0 0 0 0 89 126 190 317 844

Peppers
BPEE-RDHEI 61 76 106 160 233 1027 1255 1486 3058 3291 5641
MED-RDHEI 0 0 0 0 0 59 66 394 1443 3687 9234
ABPEE-RDHEI 0 0 0 0 0 0 0 74 93 463 1735

Fig. 9. Example of the proposed ABPEE-RDHEI algorithm. (a) The original image; (b) the marked encrypted image with a embedding rate of 𝑟 = 0.3 bpp; (c) the
marked decrypted image, PSNR = 44.89 dB; (d) the recovered image.

binary entropy function with the error rate 𝜌. For other methods, we
choose the results only when the original image can be successfully
recovered without any error. In [26] and [30], the block size is set as
4 × 4. For [30], the 6 LSBs of each pixel in blocks are utilized to embed
secret data. For methods in [40,41], we set the block size to 2 × 2 for
demonstration. From those results we can observe that our proposed

ABPEE-RDHEI obtains the best visual quality of the marked decrypted
image compared, with other methods in most cases. Compared with the
Yin et al.’s method [26], although ABPEE-RDHEI has slightly higher
PSNR values when the embedding rates are relatively small, ABPEE-
RDHEI is able to embed a larger size of secret data than Yin et al.’s
method. Method in [40] is also based on block operation. It uses the

86

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

Fig. 10. PSNR results of 200 marked decrypted images generated by ABPEE-RDHEI, MED-RDHEI and BPEE-RDHEI under different embedding rates. (a) 𝑟 = 0.05;
(b) 𝑟 = 0.1; (c) 𝑟 = 0.2; (d) 𝑟 = 0.3; (e) 𝑟 = 0.4; (f) 𝑟 = 0.5.

Fig. 11. Average PSNR values of 200 marked decrypted images generated by
ABPEE-RDHEI, MED-RDHEI and BPEE-RDHEI under different embedding rates.

permutation and stream cipher to encrypt image blocks, while the
proposed scheme uses the block permutation for block scrambling and
stream cipher for encrypting the whole image. In addition, their data
hiding processes are also different. Method in [40] treats the encrypted
image as the original cover image, and uses the traditional RDH methods
(e.g., DHE and PEHS) to embed data. Due to the significant changes
of pixel values between image blocks, the imprecise pixel prediction
values result in relatively low embedding rates. In our proposed scheme,
the prediction process considers only pixels within the block. Therefore,
more precise prediction results will be obtained. Moreover, due to the
iterative embedding, the embedding rate is significantly improved.

7. Conclusion

In this paper, we proposed a new predictor called BLP to predict pix-
els within a 2 × 2 image block. Using BLP, we proposed a reversible data
hiding method called BPEE to embed secret data into an image block by
block. Then, we further proposed an adaptive BPEE for reversible data
hiding in encrypted images called ABPEE-RDHEI. It inherits all merits
of the S-VRAE methods and achieves full reversibility. In addition,

Fig. 12. PSNR results of marked decrypted images generated by ABPEE-RDHEI and other existing methods under different embedding rates. (a) Lena; (b) Baboon
and (c) Airplane.

87

S. Yi et al. Signal Processing: Image Communication 64 (2018) 78–88

it is able to extract the secret data before or after image decryption
to adapt different applications. Experimental and comparison results
shown that the proposed ABPEE-RDHEI has excellent performance and
can out perform several state-of-the-art VRAE methods in terms of the
embedding rate and quality of the marked decrypted images.

Acknowledgments

This work was supported in part by the Macau Science and Tech-
nology Development Fund under Grant FDCT/016/2015/A1 and by the
Research Committee at University of Macau under Grant MYRG2016-
00123-FST.

References

[1] J. Tian, Reversible data embedding using a difference expansion, IEEE Trans. Circuits
Syst. Video Technol. 13 (8) (2003) 890–896.

[2] Z. Ni, Y.-Q. Shi, N. Ansari, W. Su, Reversible data hiding, IEEE Trans. Circuits Syst.
Video Technol. 16 (3) (2006) 354–362.

[3] X. Li, B. Li, B. Yang, T. Zeng, General framework to histogram-shifting-based
reversible data hiding, IEEE Trans. Image Process. 22 (6) (2013) 2181–2191.

[4] X. Li, W. Zhang, X. Gui, B. Yang, Efficient reversible data hiding based on multiple
histograms modification, IEEE Trans. Inf. Forensics Secur. 10 (9) (2015) 2016–2027.

[5] X. Zhang, S. Wang, Efficient steganographic embedding by exploiting modification
direction, IEEE Commun. Lett. 10 (11) (2006) 781–783.

[6] C. Qin, C.-C. Chang, T.-J. Hsu, Reversible data hiding scheme based on exploiting
modification direction with two steganographic images, Multimedia Tools Appl.
74 (15) (2015) 5861–5872.

[7] D.M. Thodi, J.J. Rodriguez, Expansion embedding techniques for reversible water-
marking, IEEE Trans. Image Process. 16 (3) (2007) 721–730.

[8] X. Li, B. Yang, T. Zeng, Efficient reversible watermarking based on adaptive
prediction-error expansion and pixel selection, IEEE Trans. Image Process. 20 (12)
(2011) 3524–3533.

[9] Z. Qian, X. Zhang, S. Wang, Reversible data hiding in encrypted JPEG bitstream,
IEEE Trans. Multimedia 16 (5) (2014) 1486–1491.

[10] K. Ma, W. Zhang, X. Zhao, N. Yu, F. Li, Reversible data hiding in encrypted images
by reserving room before encryption, IEEE Trans. Inf. Forensics Secur. 8 (3) (2013)
553–562.

[11] W. Puech, M. Chaumont, O. Strauss, A reversible data hiding method for encrypted
images, security, forensics, steganography, and watermarking of multimedia con-
tents X, Proc. SPIE 6819 (2008).

[12] J. Yu, G. Zhu, X. Li, J. Yang, An improved algorithm for reversible data hiding
in encrypted image, in: Digital Forensics and Watermaking, in: Lecture Notes in
Computer Science, vol. 7809, 2013, pp. 384–394.

[13] X. Wu, W. Sun, High-capacity reversible data hiding in encrypted images by
prediction error, Signal Process. 104 (2014) 387–400.

[14] M. Li, D. Xiao, Z. Peng, H. Nan, A modified reversible data hiding in encrypted images
using random diffusion and accurate prediction, ETRI J. 36 (2) (2014) 325–328.

[15] C. Qin, X. Zhang, Effective reversible data hiding in encrypted image with privacy
protection for image content, J. Vis. Commun. Image Represent. 31 (2015) 154–164.

[16] J. Zhou, W. Sun, L. Dong, X. Liu, O.C. Au, Y.Y. Tang, Secure reversible image data
hiding over encrypted domain via key modulation, IEEE Trans. Circuits Syst. Video
Technol. 26 (3) (2016) 441–452.

[17] R. Jose, G. Abraham, A separable reversible data hiding in encrypted image with
improved performance, in: International Conference on Microelectronics, Commu-
nications and Renewable Energy AICERA/ICMiCR, 2013, pp. 1–5.

[18] X. Zhang, C. Qin, Guangling, Reversible data hiding in encrypted images using
pseudorandom sequence modulation, Digital Forensics Watermaking 7809 (2013)
358–367.

[19] L. Xiong, Z. Xu, Y.-Q. Shi, An integer wavelet transform based scheme for reversible
data hiding in encrypted images, Multidimens. Syst. Signal Process. (2017). http:
//dx.doi.org/10.1007/S11045-017-0497-5.

[20] X. Zhang, Reversible data hiding in encrypted image, IEEE Signal Process. Lett. 18 (4)
(2011) 255–258.

[21] W. Hong, T.-S. Chen, H.-Y. Wu, An improved reversible data hiding in encrypted
images using side match, IEEE Signal Process. Lett. 19 (4) (2012) 199–202.

[22] X. Liao, C. Shu, Reversible data hiding in encrypted images based on absolute mean
difference of multiple neighboring pixels, J. Vis. Commun. Image Represent. 28
(2015) 21–27.

[23] Z. Qian, X. Han, X. Zhang, Separable reversible data hiding in encrypted images by n-
nary histogram modification, in: The Third International Conference on Multimedia
Technology, 2013, p. 8.

[24] S. Zhang, T. Gao, G. Sheng, A joint encryption and reversible data hiding scheme
based on integer-dwt and arnold map permutation, J. Appl. Math. 2014 (2014) 12.

[25] S. Yi, Y. Zhou, Improved reversible data hiding in encrypted images using histogram
modification, in: 2016 IEEE International Conference on Systems, Man and Cyber-
netics, 2016, pp. 1833–1837.

[26] Z. Yin, B. Luo, W. Hong, Separable and error-free reversible data hiding in encrypted
image with high payload, Sci. World J. 2014 (2014) 8.

[27] X. Zhang, J. Long, Z. Wang, H. Cheng, Lossless and reversible data hiding in
encrypted images with public-key cryptography, IEEE Trans. Circuits Syst. Video
Technol. 26 (9) (2016) 1622–1631.

[28] X. Zhang, Z. Qian, G. Feng, Y. Ren, Efficient reversible data hiding in encrypted
images, J. Vis. Commun. Image Represent. 25 (2) (2014) 322–328.

[29] X. Zhang, Separable reversible data hiding in encrypted image, IEEE Trans. Inf.
Forensics Secur. 7 (2) (2012) 826–832.

[30] Z. Yin, A. Abel, J. Tang, X. Zhang, B. Luo, Reversible data hiding in encrypted images
based on multi-level encryption and block histogram modification, Multimedia Tools
Appl. 76 (3) (2017) 3899–3920.

[31] T. Mathew, M. Wilscy, Reversible data hiding in encrypted images by active block
exchange and room reservation, in: 2014 International Conference on Contemporary
Computing and Informatics, IC3I, 2014, pp. 839–844.

[32] W. Zhang, K. Ma, N. Yu, Reversibility improved data hiding in encrypted images,
Signal Process. 94 (2014) 118–127.

[33] S. Yi, Y. Zhou, An improved reversible data hiding in encrypted images, in: 2015 IEEE
China Summit and International Conference on Signal and Information Processing,
ChinaSIP, 2015, pp. 225–229.

[34] X. Cao, L. Du, X. Wei, D. Meng, X. Guo, High capacity reversible data hiding in
encrypted images by patch-level sparse representation, IEEE Trans. Cybernet. 46 (5)
(2016) 1132–1143.

[35] M.J. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image compression
algorithm: principles and standardization into JPEG-LS, IEEE Trans. Image Process.
9 (8) (2000) 1309–1324.

[36] X. Wu, N. Memon, Context-based, adaptive, lossless image coding, IEEE Trans.
Commun. 45 (4) (1997) 437–444.

[37] M. Chen, Z. Chen, X. Zeng, X. Zhang, Reversible data hiding using additive
prediction-error expansion, in: Proc. 11th ACM Workshop Multimedia and Seciruty,
2009, pp. 19–24.

[38] C. Qin, C.C. Chang, Y.H. Huang, L.T. Liao, An inpainting-assisted reversible stegano-
graphic scheme using a histogram shifting mechanism, IEEE Trans. Circuits Syst.
Video Technol. 23 (7) (2013) 1109–1118.

[39] R.M. Rad, W. KokSheik, G. Jing-Ming, A unified data embedding and scrambling
method, IEEE Trans. Image Process. 23 (4) (2014) 1463–1475.

[40] F. Huang, J. Huang, Y.Q. Shi, New framework for reversible data hiding in encrypted
domain, IEEE Trans. Inf. Forensics Secur. 11 (12) (2016) 2777–2789.

[41] X. Niu, Z. Yin, X. Zhang, J. Tang, B. Luo, Reversible data hiding in encrypted AMBTC
compressed images, in: Digital Forensics and Watermarking: 15th International
Workshop, 2017, pp. 436–445.

88

http://refhub.elsevier.com/S0923-5965(18)30204-2/sb1
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb1
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb1
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb2
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb2
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb2
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb3
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb3
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb3
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb4
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb4
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb4
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb5
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb5
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb5
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb6
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb6
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb6
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb6
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb6
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb7
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb7
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb7
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb8
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb8
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb8
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb8
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb8
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb9
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb9
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb9
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb10
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb10
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb10
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb10
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb10
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb11
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb11
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb11
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb11
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb11
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb12
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb12
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb12
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb12
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb12
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb13
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb13
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb13
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb14
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb14
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb14
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb15
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb15
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb15
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb16
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb16
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb16
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb16
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb16
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb18
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb18
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb18
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb18
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb18
http://dx.doi.org/10.1007/S11045-017-0497-5
http://dx.doi.org/10.1007/S11045-017-0497-5
http://dx.doi.org/10.1007/S11045-017-0497-5
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb20
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb20
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb20
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb21
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb21
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb21
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb22
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb22
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb22
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb22
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb22
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb24
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb24
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb24
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb26
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb26
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb26
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb27
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb27
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb27
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb27
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb27
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb28
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb28
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb28
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb29
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb29
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb29
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb30
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb30
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb30
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb30
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb30
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb32
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb32
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb32
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb34
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb34
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb34
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb34
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb34
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb35
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb35
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb35
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb35
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb35
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb36
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb36
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb36
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb38
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb38
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb38
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb38
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb38
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb39
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb39
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb39
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb40
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb40
http://refhub.elsevier.com/S0923-5965(18)30204-2/sb40

	Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion
	Introduction
	Related works
	Existing predictors
	VRAE methods
	J-VRAE methods
	S-VRAE methods

	Block-level prediction-error expansion
	Block-level predictor (BLP)
	Block-level prediction-error expansion (BPEE)
	Data extraction
	Comparison

	ABPEE-RDHEI
	Image encryption
	Data embedding
	Adaptive pixel selection
	ABPEE
	Side information

	Data extraction and image recovery
	Scheme I
	Scheme II

	Discussions and analysis
	Embedding rate
	Performance analysis
	Security analysis

	Simulation results and comparisons
	Comparison of embedding strategies
	Performance comparison

	Conclusion
	Acknowledgments
	References

