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Abstract—Cloud service is a natural choice to store and
manage the exponentially produced images. Data privacy is one
of the most concerned points in cloud-based image services.
Reversible data hiding over encrypted images (RDH-EI) is an
effective technique to securely store and manage confidential
images in the cloud. However, existing RDH-EI schemes have
obvious weaknesses such as reliable key management system
dependence and single point of failure. To securely store and
manage confidential images in the cloud, in this study, we propose
a new reversible data hiding strategy via image secret sharing. We
first design a secure (r, n)-threshold preprocessing-free matrix
secret sharing (PFMSS) technique. It can directly share m-bit
data by matrix multiplication without preprocessing. Using the
PFMSS, we further design a secure (r, n)-threshold reversible
data hiding scheme over encrypted images. The content owner
divides a confidential image into n shares without accessing
to a secret encryption key, and then sends the n shares to n
cloud-based image servers from competing providers. For each
share, some additional data, e.g., integrity and identification of
the image, can be embedded into it and these data can also
be losslessly extracted. An authorized receiver can recover the
confidential image from r shares. By designing, the content
owner doesn’t need to access a secret key when encrypting the
image and the scheme can withstand n − r points of failure.
Simulation results show that our scheme can ensure image
content confidentiality and has a much larger embedding capacity
compared to state-of-the-art schemes.

Index Terms—Reversible data hiding, encrypted image, mul-
tiple data hiders, secret sharing

I. INTRODUCTION

With the fast development of information technology, a
greatly large number of images are exponentially produced
everyday by different kinds of imaging devices such as
smartphones, digital cameras, and various IoT devices. The
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tremendous growth of images causes heavy pressure for image
storage and management and cloud service is a natural choice
to store and manage the exponentially produced images [1].
When images are stored in the cloud, cloud server may
embed some additional data into the images, e.g., time stamps,
remarks and copyright data, for authentication management,
copyright protection, and so on. Some reversible data hid-
ing (RDH) schemes were developed using lossless compres-
sion [2], histogram shifting [3], [4], difference expansion [5],
or prediction-error expansion [6]. Especially, deep learning
shows powerful ability in RDH, since it can help find the
optimal embedding positions in an image [7], [8].

Data privacy is a concerned point in cloud-based image
services, since many image owners are unwilling to share their
image content to cloud servers or any other authorized one [9].
Recently, many researches focus on reversible data hiding over
encrypted images (RDH-EI), which is an effective technique
to securely store and manage confidential images in cloud
servers [10]–[12]. In an RDH-EI scheme, the content owner
encrypts the confidential image into encrypted image to protect
its confidentiality. The cloud server can embed additional data
over the encrypted image for the purpose of management,
identification, and etc., without accessing the image content,
while the data embedding operation is reversible. Thereafter,
the authorized receiver can completely recover the original
image.

The existing RDH-EI schemes can be divided into three
categories based on the embedding room vacation technique:
reserving room before encryption (RRBE) [13]–[15], vacating
redundancy in encryption (VRIE) [16]–[18], and vacating
room after encryption (VRAE) [19]–[21]. For the RRBE-based
schemes, the image owner first compresses an original image
to vacate embedding room, and then encrypts the compressed
image using any existing encryption algorithm. These schemes
can achieve a high embedding capacity [14], [22], while the
encrypted results have high security level. However, since
room reservation is performed in the original image, it may
cause heavy computation cost to the image owner. For the
VRIE-based schemes, the image owner encrypts an original
image using special public key cryptosystems (e.g., learning
with errors-based cryptography). These cryptosystems can
bring some data redundancy during the encryption such that
some modifications to the encrypted image cannot affect the
correctness of decryption [23]. Thus, the data hider can embed
data by slightly modifying the encrypted image. The encrypted
image is highly secure. But these cryptosystems cause large
data expansion and the size of the encrypted image is much
larger than that of the original image, as discussed in [23].
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For the VRAE-based schemes, the image owner uses some
special encryption methods to retain some data redundancy
of the original image in the encrypted image and the data
hider uses the preserved redundancy to vacate room for data
hiding [24], [25]. This strategy vacates embedding room in the
encrypted image and can greatly reduce the computation cost
to the image owner. It is suitable for cloud services, where
cloud server acts as the data hider that has large computation
resource. But special encryption techniques are required to
preserve data redundancy and ensure image confidentiality.

In this study, we propose a novel RDH-EI scheme using
image secret sharing. We first develop an (r, n)-threshold
preprocessing-free matrix secret sharing (PFMSS) technique.
In contrast to the existing secret sharing techniques used
in [26], [27] that share image pixels in prime finite fields,
PFMSS can directly share m-bit pixels without any prepro-
cessing. Using the PFMSS, we further propose an RDH-
EI scheme called PFMSS-RDHEI, in which a novel most
significant bit (MSB) prediction method, called error class and
value encoding (ECVE), is developed to encode image pixels
in the encrypted domain. Compared to the existing MSB pre-
diction methods introduced in [13], [14], the developed ECVE
can separate more compressible significant bits for the same
prediction error range, achieving a large embedding room.
The PFMSS-RDHEI allows the content owner to encrypt its
image into n shares for n cloud servers. For each share, some
additional data can be embedded into it and the embedding
operation is reversible. An authorized receiver can recover the
original image from r shares. The contributions and novelty
of this study are concluded as follows:

• We present the first RDH-EI scheme that securely stores
and manages confidential images without a reliable key
management system (KMS). The content owner can en-
crypt an image into n encrypted shares without a secret
key involved, while an authorized receiver can losslessly
recover the image with at least r shares. Thus, our scheme
can withstand n − r points of failure, and the collusion
attack of r − 1 shares as well.

• We develop an (r, n)-threshold image secret sharing
method called PFMSS, which can directly encrypt m-
bit pixels without any preprocessing. Formal analysis is
provided to prove its correctness and justify its security.

• We propose a novel encoding method ECVE that can
fully separate the compressible bits from image pixels,
and thus can vacate a large room for data embedding.

• Extensive evaluation results show that our RDH-EI
scheme can protect the image content confidentiality
while achieving a superior embedding capacity in contrast
to the state-of-the-art RDH-EI schemes.

Our scheme is suitable for many scenarios, for instance,
the remote medical consultation, which is shown in Fig. 1.
The IoT device generates medical images which are to be
outsourced to the cloud for storage and management. For
privacy protection, each medical image is first encrypted into
n shares by the IoT gateway [28], such as a medical center,
and then outsourced to n cloud servers from competitive server
providers. Each cloud server can embed some additional data
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Fig. 1: Secure storage and management of medical images in remote medical
consultation.

into the image share, e.g., time stamps, remarks and copyright
data, for authentication management, copyright protection, and
so on. The authorized hospital, doctor or patient can receive
r image shares to recover the medical image. Since the n
cloud servers are from different competitive providers, they
are unwilling to have the collusion operations. Actually, our
scheme can resist the collusion attack of r− 1 cloud servers.

The remainder of this paper is organized as follows. Section
II reviews the related work of the MSB prediction techniques
and RDH-EI schemes. Section III introduces the PFMSS.
Section IV presents our RDH-EI scheme. Section V discusses
the property of our RDH-EI scheme and presents the experi-
mental results, and Section VI evaluates its performances and
compares it with the state-of-the-art schemes. Finally, Section
VII concludes the paper.

II. RELATED WORK

In this section, we introduce the MSB prediction techniques
for data embedding, and then review the RDH-EI schemes.

A. MSB Prediction Techniques

A natural image usually has high pixel redundancy, and
one can make use of these pixel redundancy to compress
the image or vacate some room for hiding data. The MSB
prediction technique is an effective method to utilize the
pixel redundancy by predicting the MSBs of a pixel using
its neighbor pixels. Then the MSBs can be vacated for data
embedding. Puteaux et al. [12] developed a MSB prediction
method by recovering the MSB of a pixel using its prediction
value. This method can embed one bit into each pixel at
most, but may suffer from recovery failure since there is
no mechanism to guarantee the correctness of flag blocks.
Besides, its maximum embedding rate is only 1 bpp. To
improve the embedding capacity, Chen et al. [29] proposed an
iterative prediction method on bit planes. Then the significant
bit planes have large proportion of ‘0’, which is beneficial
for embedding room vacation. Yin et al. [30] proposed a
new MSB prediction method that vacates embedding room
by calculating the number of the same bits between a pixel
and its prediction value. The pixel can be recovered losslessly
using the number of the same bits.

Most of the MSB prediction methods introduced above
vacate embedding room from the experience aspect. To exploit
pixel redundancy sufficiently, some works were devoted to
theoretically calculate the maximum number of significant
bits that can be vacated for data embedding [13], [14].
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Puteaux et al. [12] proved that the MSB of a pixel can
be vacated for data embedding using bit replacement if the
absolute value of prediction error is less than 64. Inspired by
this conclusion, Mohammadi et al. [13] embedded data into
multiple significant bit planes of an image and then recovered
the bit planes using more accurate prediction error ranges.
Later, Yu et al. [14] enhanced the embedding capacity by
designing a new prediction error division. Compared with the
MSB prediction methods in [13], [14], our proposed ECVE
can separate more embeddable bits within the same prediction
error, and thus can achieve larger embedding capacity.

B. RDH-EI Schemes

Existing RDH-EI schemes can be divided into RRBE-
based schemes [13]–[15], VRIE-based schemes [16]–[18] and
VRAE-based schemes [19]–[21].

1) RRBE-Based RDH-EI Schemes: In the RRBE-based
schemes [14], [22], the content owner first reserves embedding
room in the plain image by image compression, and then en-
crypts the compressed image using an existing stream cipher.
The data hider can directly embed some secret data into the re-
served room, and the receiver with related keys can recover the
original image and embedded data. Thus, the key point of an
RRBE-based scheme is how to reserve embedding room in the
plain image. Recently, the main trend of RRBE-based RDH-EI
schemes is to reserve large embedding room by compressing
the prediction errors of plain images. For example, the authors
of [22] and [31] adopted the median edge detector (MED)
predictor to predict a plain image, and then separately utilized
the bit-plane encoding method in [10] and the pixel encoding
method in [32] to encode the prediction errors, achieving
a large embedding capacity. Qiu et al. [33] calculated the
prediction errors of pixels and then compressed the pixels
whose prediction errors are within the range of [−T, T ], while
preserving the original values of the other pixels. However, the
threshold T is determined by exhaustive enumeration, which
is time-consuming. The RRBE-based RDH-EI schemes can
achieve a high embedding capacity, because the high pixel
redundancy of plain images can be fully exploited. However,
these embedding capacity reserving operations are usually very
complex and time-consuming, and cause heavy computation
costs to the content owners, especially for some performance-
limited terminal devices.

2) VRIE-Based RDH-EI Schemes: In the VRIE-based
schemes [16], [17], the content owner uses special public
key encryption strategies to encrypt an original image and
these encryption strategies can bring data redundancy such
that some modifications to the encrypted image cannot affect
the correctness of decryption. The data hider can embed data
by slightly modifying the encrypted image. Ke et al. [23]
proposed such a scheme by encrypting an original image
using learning with errors-based cryptography. The data hider
first determines the modification range that cannot affect the
correctness of decryption and divides the range into several
sub-ranges. Then, the data hider can embed different data
to the encrypted image by adding the corresponding mod-
ifications to it. Wang et al. [17] proposed a VRIE-based

scheme using McEliece cryptography. The data hider can
embed data into the encrypted image by slightly changing the
encrypted image, which cannot affect the image decryption.
As the used cryptosystems are secure, the image content in
these VRIE-based schemes can be well protected. However,
these cryptosystems cause large data expansion and the size
of the encrypted image is much larger than that of the original
image [23].

3) VRAE-Based RDH-EI Schemes: The VRAE-based
schemes vacate embedding room in the encrypted image
by data hider [24], [25]. These schemes are more suitable
for cloud platforms because the cloud servers act as data
hiders and they usually have high performance. To retain
data redundancy in the encrypted domain for data embed-
ding, most VRAE-based schemes encrypt an image using
lightweight symmetric encryption methods, such as bitwise
XOR [34] and block-based or in-block permutation [32], [35],
[36]. However, these VRAE-based RDH-EI schemes using
only bitwise XOR as encryption method are frail under the
ciphertext-only attack [37] while the block permutation and
co-modulation encryption has a low ability to resist the known-
plaintext attack [38]. To obtain a higher security level, some
RDH-EI schemes [39], [40] encrypt images using some public
key encryption strategies and the secret data are embedded
using the homomorphic property between the plain images and
encrypted images. For example, the authors in [39] encrypted
plain images using the Paillier and EIGamal cryptosystems,
and then embeded secret data into the encrypted images using
the additive and multiplicative homomorphisms for modular
multiplication, respectively. However, these encryption strate-
gies usually suffer from high computation cost and large data
expansion [40].

Recently, several RDH-EI schemes have been developed
using secret sharing techniques [26], [27], [41]. Some of
them can resist single point of failure by encrypting the
confidential image to be multiple shares for decentralized
storage. However, these schemes only partly solve the above
issues and have the following properties. (1) Most of their used
secret sharing techniques process image pixels in prime finite
fields so that they cannot be directly applied to m-bit image
pixels [26], [27]; (2) Each pixel is encrypted independently
without involving any random number in the encryption, thus
only achieving limited security [26]; (3) Some schemes don’t
consider the data redundancy in the encrypted domain well
enough and achieve a small embedding capacity [26], [41].

C. Discussions

From the analysis above, the existing MSB prediction
techniques cannot sufficiently separate all the compressible
significant bits from image pixels. For the RDH-EI techniques,
the RRBE-based schemes may cause heavy computation costs
to the content owner, the VRIE-based schemes may cause large
data expansion, and the VRAE-based schemes may have secu-
rity drawbacks, and also large data expansion. Besides, all the
existing RDH-EI schemes require a reliable key management
system (KMS) [42] to manage the secret keys. However, it
is practically costly to implement a reliable KMS in such a
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TABLE I: Important notations in this paper.

Notation Description
F (y) A prime polynomial in GF (28)
X A matrix of size n× r for sharing
h A vector [h1, h2, · · · , hr]

T to be shared
h1 The secret value s
h′ A random integer vector [h2, · · · , hr]

T

s Sharing results with n elements
Xr Any r × r sub-matrix of X
sr Sharing results with r elements

f(x)
A degree-(r − 1) polynomial passing
through the point (0, s)

I The original 8-bit image with size M ×N
I(j) The j-th pixel of image I
B A block of image I with size S1 × S2

B(j) The j-th pixel of block B
EIi The i-th encrypted image

p(i, j)
The pixel at position (i, j) in an image
or a block

p̂(i, j) The prediction value of p(i, j)
e(i, j) The prediction error of p(i, j)
pL The incompressible LSBs of a pixel
pM The compressible MSBs of a pixel

L
The total encoded result of an encrypted
image except for each block’s first pixel

EMi The i-th marked encrypted image
⊗ Polynomial multiplication
⊕ Bitwise XOR operation

multiparty environment over insecure public networks [42].
In this study, we aim to propose a new secret sharing-based
RDH-EI scheme that can solve the above issues. The important
notations used in this paper are listed in Table I.

III. PFMSS
Herein, we present an (r, n)-threshold PFMSS technique

(2 ≤ r ≤ n) and analyze its correctness and security.

A. (r, n)-Threshold PFMSS
A polynomial with integer coefficients that cannot be factor-

ized into polynomials of lower degree with integer coefficients
is called a prime polynomial, for example, the y2 + y + 1.
The algebraic operations in the finite field can be extended to
polynomial operations. Following the polynomial operations
in GF (2m), an n×r coefficient matrix in the (r, n)-threshold
PFMSS can be constructed.

Algorithm 1 presents the pseudocode for generating the
coefficient matrix using n random integers generated by a
pseudo-random number generator (PRNG). Note that ⊕ in-
dicates bitwise XOR operation and ⊗ indicates polynomial
multiplication. After constructing an n × r coefficient matrix
X, the sharing process can be expressed as

s = X⊗ h mod F (y), (1)

where F (y) is a prime polynomial in GF (2m), h =
[h1, h2, · · · , hr]T , where h1 is the secret to be shared, and
h2, h3, · · · , hr are r − 1 random numbers in GF (2m).

B. Correctness
The correctness of a secret sharing scheme indicates that

the secret can be recovered from any r shares with their

Algorithm 1. Generation of the coefficient matrix.

Input: Random integer sequence b = {bk}nk=1, where {bk}
are n different elements and 0 < bk < 2m.

1: Initialize an n× r matrix X ∈ Rn×r.
2: Set the elements in the first column of X as 1.
3: for j = 2 to r do
4: for i = 1 to n do
5: x(i, j) = x(i, j − 1)⊗ (bi ⊕ (j − 2)).
6: end for
7: end for

Output: Coefficient matrix X.

identities [43]. Because the sharing operation in Eq. (1) is
performed in the finite field using matrix multiplication, the
secret can be obtained by the matrix inverse operation. Then
we first present Theorem 1 [44] to indicate the sufficient
condition for the matrix inverse operation using polynomial
operations in the finite field.

Theorem 1. For an r × r square matrix Xr and a prime
polynomial F (y) in GF (2m), the polynomial matrix operation

sr = Xr ⊗ h mod F (y)

is reversible. Furthermore, its inverse operation is

h = X−1r ⊗ sr mod F (y),

if det(Xr) and F (y) are two coprime polynomials.

Theorem 1 is a basic theorem of modern cryptography
theory and gives the sufficient condition of matrix inverse
operation in a finite field. Next, we propose Lemma 1 stating
that the determinant of any r× r sub-matrix of the coefficient
matrix generated by our proposed Algorithm 1 and the prime
polynomial F (y) are two coprime polynomials.

Lemma 1. For the n × r matrix generated by Algorithm 1,
the determinant of its any r × r sub-matrix is coprime with
the prime polynomial F (y).

Proof: Assume that the i1-th, i2-th, · · · , ir-th rows are
selected from the n× r matrix X generated by Algorithm 1.
Then, these r rows can form an r × r sub-matrix Xr, which
is shown as

Xr =


1 bi1 · · · bi1 ⊗ (bi1 ⊕ 1)⊗ · · · ⊗ (bi1 ⊕ (r − 2))
1 bi2 · · · bi2 ⊗ (bi2 ⊕ 1)⊗ · · · ⊗ (bi2 ⊕ (r − 2))
...

...
. . .

...
1 bir · · · bir ⊗ (bir ⊕ 1)⊗ · · · ⊗ (bir ⊕ (r − 2))

 .
(2)

Now we calculate the determinant of Xr using the following
steps.

Subtraction. For the j-th (2 ≤ j ≤ r) column, we update it
by subtracting the multiplication of its previous column with
bi1 ⊕ (j−2). Take the element Xr(h, j) as an example. From
Eq. (2), Xr(h, j) = Xr(h, j − 1) ⊗ (bih ⊕ (j − 2)). Note
that the subtraction and addition operations in GF (2m) are
both XOR operation ⊕. After subtracting the multiplication
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of Xr(h, j− 1) with bi1 ⊕ (j− 2), we can update Xr(h, j) as

Xr(h, j)

= Xr(h, j − 1)⊗ (bih ⊕ (j − 2))⊕Xr(h, j − 1)⊗ (bi1 ⊕ (j − 2))

= Xr(h, j − 1)⊗ ((bih ⊕ (j − 2))⊕ (bi1 ⊕ (j − 2)))

= Xr(h, j − 1)⊗ (bih ⊕ bi1)
= Xr(h, j − 2)⊗ (bih ⊕ (j − 3))⊗ (bih ⊕ bi1)
= Xr(h, 1)⊗ (bih ⊕ 0)⊗ · · · ⊗ (bih ⊕ (j − 3))⊗ (bih ⊕ bi1)
= bih ⊗ (bih ⊕ 1)⊗ · · · ⊗ (bih ⊕ (j − 3))⊗ (bih ⊕ bi1).

(3)

Obviously, Xr(1, j) = 0 (2 ≤ j ≤ r). Besides, Xr(h, 2) =
Xr(h, 1)⊗(bih⊕bi1) = bih⊕bi1 (1 ≤ h ≤ r). Since the linear
transformations of a matrix do not change its determinant, we
can obtain the determinant of Xr as

det(Xr)

=

∣∣∣∣∣∣∣∣
1 0 · · · 0
1 bi2 ⊕ bi1 · · · bi2 ⊗ · · · ⊗ (bi2 ⊕ (r − 3))⊗ (bi2 ⊕ bi1)
...

...
. . .

...
1 bir ⊕ bi1 · · · bir ⊗ · · · ⊗ (bir ⊕ (r − 3))⊗ (bir ⊕ bi1)

∣∣∣∣∣∣∣∣ .
(4)

Expansion. Expanding the above determinant along the first
row, we can obtain that

det(Xr)

=

∣∣∣∣∣∣∣∣
bi2 ⊕ bi1 · · · bi2 ⊗ · · · ⊗ (bi2 ⊕ (r − 3))⊗ (bi2 ⊕ bi1)
bi3 ⊕ bi1 · · · bi3 ⊗ · · · ⊗ (bi3 ⊕ (r − 3))⊗ (bi3 ⊕ bi1)

...
...

...
bir ⊕ bi1 · · · bir ⊗ · · · ⊗ (bir ⊕ (r − 3))⊗ (bir ⊕ bi1)

∣∣∣∣∣∣∣∣ .
(5)

Factor extraction. Observe that all entries in the h-th (1 ≤
h ≤ r − 1) row have a factor of bih+1

⊕ bi1 . After extracting
the factor for each row, one can then obtain

det(Xr) =
∏

2≤k≤r

(bik ⊕ bi1)⊗∣∣∣∣∣∣∣∣
1 bi2 · · · bi2 ⊗ (bi2 ⊕ 1)⊗ · · · ⊗ (bi2 ⊕ (r − 3))
1 bi3 · · · bi3 ⊗ (bi3 ⊕ 1)⊗ · · · ⊗ (bi3 ⊕ (r − 3))
...

...
. . .

...
1 bir · · · bir ⊗ (bir ⊕ 1)⊗ · · · ⊗ (bir ⊕ (r − 3))

∣∣∣∣∣∣∣∣ .
(6)

Repeating the above subtraction, expansion, and factor
extraction steps. Note that the multiplier in the subtraction
step is always bim ⊕ (j − 2), where m is 1 in the first round,
2 in the second round, and so on. After r− 2 rounds, one can
eventually obtain

det(Xr) =
∏

2≤k≤r

(bik ⊕ bi1)⊗ · · · ⊗
∏

r−1≤k≤r

(bik ⊕ bir−2)

⊗
∣∣∣∣1 bir−1

1 bir

∣∣∣∣ ,
=

∏
1≤j<k≤r

(bik ⊕ bij ).

(7)

According to Algorithm 1, all the parameters satisfy 0 < bk <
2m, (k = 1, 2, · · · , n), where all bks are different from each
other. Because F (y) is a prime polynomial in GF (2m), all
factors of det(Xr) are coprime with F (y). Thus, det(Xr) and
F (y) are coprime polynomials. Because the i1-th, i2-th,· · · ,

ir-th rows are any r rows of X, the determinant of any r× r
sub-matrix is coprime with F (y).

Thus, sr = Xr ⊗ h mod F (y) is reversible, and h can be
completely recovered via

h = X−1r ⊗ sr mod F (y), (8)

where sr = [si1 , · · · , sir ]T .

C. Security

First, we present Definition 1 [45] to define the security of a
secret sharing scheme. The security of a secret sharing scheme
indicates that any t (t < r) shares with their identities cannot
reveal anything about the secret [46].

Definition 1. An (r, n)-threshold sharing scheme (Share,
Reconstruct) over GF (2m) is perfectly secure if: ∀x, x′ ∈
GF (2m),∀S ⊆ {1, · · · , n} s.t. |S| < r, and for every
possible |S|-tuple of shares α = (α1, · · · , α|S|), we have

Pr
Share(x)→(s1,··· ,sn)

[(si)i∈S = α],

= Pr
Share(x′)→(s′1,··· ,s′n)

[(s′i)i∈S = α].

Definition 1 indicates that if the probability of obtaining
any |S| shares from any secret value is the same, then every
unauthorized set S, i.e., |S| < r, can learn nothing about the
secret and the (r, n)-threshold sharing scheme is secure.

Then, we construct a degree-(r − 1) polynomial f(x) as
follows

f(x) = s⊕
r∑

k=2

(hk⊗(x⊕0)⊗· · ·⊗(x⊕(k−2))) mod F (y),

(9)
where s is a constant, and h2, · · · , hr are random numbers in
GF (2m).

Corollary 1. When every element of h′ = [h2, · · · , hr]T in
Eq. (9) is uniformly distributed, f(x) is a random degree-
(r − 1) polynomial passing through the point (0, s).

Proof: Suppose that g(x) is a degree-(r− 1) polynomial
passing through (0, q1) as follows

g(x) = q1 ⊕ (

r∑
k=2

(qk ⊗ xk−1)) mod F (y). (10)

When the coefficients of every degree in f(x) and g(x) are
the same, f(x) = g(x), namely,

f(x) = s⊕
r∑

k=2

(hk ⊗ (x⊕ 0)⊗ · · · ⊗ (x⊕ (k − 2)))

= s⊕ (h2 ⊗ x)⊕ (h3 ⊗ x⊗ (x⊕ 1))

⊕ · · · ⊕ (hr ⊗ x⊗ (x⊕ 1)⊗ · · · ⊗ (x⊕ (r − 2)))

= q1 ⊕ (q2 ⊗ x)⊕ · · · ⊕ (qr ⊗ xr−1) = g(x).

(11)

Then, we can obtain the relationships between the coefficients
q = [q1, · · · , qr]T and h = [s, h2, · · · , hr]T . For example,
q1 = s and

q2 = h2 ⊕ (1⊗ h3)⊕ (1⊗ 2⊗ h4)

⊕ · · · ⊕ (1⊗ 2⊗ · · · ⊗ (r − 2)⊗ hr).
(12)
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As a result, we can obtain the relationship between q and h
as follows:

q =



1 0 · · · 0 0

0 1 · · ·
r−3∏
i=1

i
r−2∏
i=1

i

...
...

. . .
...

...

0 0 · · · 1
r−2∑
i=1

i

0 0 · · · 0 1


⊗ h mod F (y). (13)

The r× r matrix in the above equation is an upper triangular
matrix, whose diagonal elements are equal to 1. Thus, its
determinant is 1. Because F (y) is a prime polynomial in
GF (2m), 1 and F (y) are coprime polynomials. Then accord-
ing to Theorem 1, Eq. (13) is reversible. Thus, there is a one-
to-one map between h and q, and q1 = s is a constant. Set
q′ = [q2, · · · , qr]T . Then, there is a one-to-one map between
h′ and q′ as well.

Since every element in h′ = [h2, · · · , hr]T is uniformly
distributed, q′ = [q2, · · · , qr]T is uniformly distributed in
GF (2m). Thus, g(x) is a random degree-(r − 1) polynomial
passing through (0, s). Since f(x) = g(x), f(x) is also a
random degree-(r − 1) polynomial passing through the point
(0, s).

Next, we propose Lemma 2 stating the sufficient condition
to ensure the security of our PFMSS scheme over GF (2m).

Lemma 2. The PFMSS scheme over GF (2m) is secure if
every element of h′ = [h2, · · · , hr]T is uniformly distributed
in the GF (2m).

Proof: Suppose that
1 b1 · · · b1 ⊗ · · · ⊗ (b1 ⊕ (r − 2))
1 b2 · · · b2 ⊗ · · · ⊗ (b2 ⊕ (r − 2))
...

...
...

...
1 bn · · · bn ⊗ · · · ⊗ (bn ⊕ (r − 2))

⊗

s
h2

...
hr

 =


s1
s2
...
sn

 ,
(14)

which is equivalent to the degree-(r − 1) polynomial f(x)
described in Eq. (9) passing through (n + 1) points,
(0, s), (b1, s1), · · · , (bn, sn). Because every element of h′ =
[h2, · · · , hr]T is uniformly distributed in GF (2m), f(x) is a
random degree-(r−1) polynomial that passes through a fixed
point (0, s), according to Corollary 1.

The total number of degree-(r−1) polynomials is (2m)r in
the finite field GF (2m). According to the Lagrange interpo-
lation in GF (2m), the number of degree-(r− 1) polynomials
that pass through any t different points is (2m)r−t (Corollary
3.10 on page 57 of [47]).

The number of degree-(r − 1) polynomials f(x) passing
through the point (0, s) is (2m)r−1. For ∀S ⊆ {1, · · · , n} s.t.
|S| < r, the number of degree-(r − 1) polynomials f(x)
passing through |S|+1 different points (0, s), {(bi, si)|i ∈ S}
is (2m)r−|S|−1. Thus, for the f(x) that passes through the
point (0, s), the probability of passing through the |S| + 1

different points (0, s), {(bi, si)|i ∈ S} is

Pr =
Pr[f(0) = s, f(bi) = si(i ∈ S)]

Pr[f(0) = s]

=

(2m)r−|S|−1

(2m)r

(2m)r−1

(2m)r

= (
1

2m
)|S|,

(15)

which denotes the probability of obtaining any |S| shares from
the secret s. Notice that the possibility is independent of s, and
{bi|i ∈ S}. Thus, the PFMSS scheme over GF (2m) is secure,
according to Definition 1.

D. Comparisons with Prior Secret Sharing Schemes

Recently, some secret image sharing schemes based on
matrix have been developed and we compare our proposed
PFMSS with these schemes from the aspects of extra pro-
cessing, security, pixel expansion and recovery quality. Ta-
ble II lists the comparison results. The schemes in [48], [49]
share and recover image pixels using matrix multiplication.
The scheme in [48] shares an image over Z257 finite field.
When processing an 8-bit image, the encrypted image may
exist pixels with value 256 and these pixels should be post-
processed to avoid data size overflow. The scheme in [49]
shares an image in the ring of integers modulo 256 (Z256)
using an n × r coefficient matrix K. The matrix is randomly
generated until it satisfies two conditions: 1) Any r row vectors
of K are linearly independent; 2) The determinant of any r×r
submatrix of K is coprime with 256. These two conditions are
necessary and sufficient to ensure that the secret value can be
recovered losslessly with any r shares. However, the success of
this method relies on experiment trying and has no theoretical
foundation. Besides, the security of the sharing process hasn’t
been analyze and cannot be guaranteed.

The schemes in [50], [51] share an image into n shares
by directly dividing it into n parts according to a generated
matrix with elements 0 and 1. The binary matrix ensures that
the whole secret image can be recovered losslessly with at least
r shares. However, the schemes cause information leakage
since each share contains partial pixels of the secret image. To
protect image confidentiality, a secure stream cipher is required
to encrypt the image [51].

The schemes in [52], [53] are visual secret sharing schemes.
The scheme in [52] shares a binary image to n color shares.
Since more memory units are required to store a pixel after
sharing, the scheme suffers from pixel expansion. Besides,
it is a lossy method, due to its bitwise-or operation in
the recovering process. The scheme in [53] shares an 8-bit
grayscale image to n shares, and offers two decoding options:
the stacking-to-see decryption and lossless recovery. Since
each share has larger file size than the original image, the
scheme suffers from pixel expansion.

For our proposed PFMSS, it can directly encrypt m-bit data
without extra processing, such as 8-bit grayscale image pixels.
Its security has been proved in Section III-C. In addition,
each share has the same size as the secret image with no
pixel expansion. Thus, although some previous matrix-based
secret sharing schemes are secure, our proposed PFMSS shows
superiority in the RDH-EI applications.
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TABLE II: Comparisons with different matrix-based (r, n)-threshold secret
image sharing schemes.

Methods No extra
processing

Security
guarantee

No pixel
expansion

Lossless
recovery

Hua et al. [48] × X X X
Yu et al. [49] X × X X
Chen et al. [50] × × X X
Bao et al. [51] × × X X
Liu et al. [52] X X × ×
Wu et al. [53] X X × X
Our PFMSS X X X X

E. Discussions

For an m-bit image I, the (r, n)-threshold PFMSS for the
j-th pixel I(j) can be expressed as

s(j) = X⊗ h mod F (y), (16)

where h = [I(j), h2 · · · , hr]T and h2, · · · , hr are r−1 random
numbers. The sharing result s(j) = [s1(j), s2(j), · · · , sn(j)]T
includes the n shares of the j-th pixel. A party Pi holds the
share (i, si(j)), where i is the identity.

When one collects r shares, he/she can recover the orig-
inal pixel without any data loss. Suppose that the i1-th, i2-
th, · · · , ir-th shares have been collected. First, an n × r
matrix X is generated using Algorithm 1. Then, an r × r
matrix Xr is constructed using the i1-th, i2-th, · · · , ir-th
rows of X. The r shares of the j-th pixel are obtained as
sr(j) = [si1(j), si2(j), · · · , sir (j)]T. Finally, the r−1 random
numbers and I(j) can be recovered using Eq. (8).

Most existing secret sharing schemes can only process
values in prime finite fields and thus a preprocessing operation
is required to process m-bit data. The PFMSS scheme can
achieve the following properties: (1) It can directly process
m-bit data without preprocessing. (2) The secret sharing
and reconstruction processes are all performed using matrix
multiplication. (3) It is a nondeterministic system because
r− 1 random numbers h2, · · · , hr are used. Then, even share
a secret several times using the same coefficient matrix, the
obtained shares are completely different.

IV. PFMSS-BASED RDH-EI SCHEME

Using PFMSS, this section develops a new RDH-EI scheme
called PFMSS-RDHEI and Fig. 2 demonstrates its structure.
The content owner encrypts an original image into n encrypted
image EIi, which are sent to n cloud servers from competitive
providers. The cloud server is the data hider and can embed ad-
ditional data into the encrypted image to generate the marked
encrypted image EMi. The receiver can extract the embedded
data in each marked encrypted image and can completely
recover the original image from r marked encrypted images.

In the existing RDH-EI schemes, the content owner uses a
secret key to encrypt the original image, while the receiver
should use a related key to recover the original image. Thus,
a reliable KMS should be used to manage and distribute these
secret keys, which is practically costly to implement such a
multiparty environment over insecure public networks [42].
However, in our PFMSS-RDHEI, the security of the image

Original

Image I

(r,n)-threshold

secret sharing

EIrEI1 EIn

Data 

Embedding

Data

Data Extraction Image Recovery

Embedded Data Original Image I

… …

EMrEM1 EMn… …

Data 

Embedding

Data

Data 

Embedding

Data

Content

owner

Data

hiders

Receiver

EMi EMi1EMi1 EMirEMir…

Fig. 2: The structure of our PFMSS-RDHEI.

depends on the (r, n)-threshold secret sharing mechanism, and
does not need a secret key.

A. Content Owner

The content owner first encrypts the image I into n image
shares block-by-block, and then embeds some extra informa-
tion into the shares using a bit-pair encoding method. Finally,
n encrypted images are generated and sent to n data hiders.

1) Block-Based (r, n)-Threshold Image Sharing: In our
RDH-EI scheme, the content owner encrypts the image block-
by-block. Suppose that the 8-bit grayscale image I is of size
M ×N and the block size is S1 × S2. For each image block,
a coefficient matrix X is generated using Algorithm 1.

The pixels are shared block-by-block, and the coefficient
matrix X for sharing a block is the same. Then, a total number
of dM/S1e × dN/S2e coefficient matrix Xs are generated
using a pseudo-random number generator. For each image
block B of size S1 × S2, r − 1 random integers in GF (28),
namely h2, · · · , hr, are generated. Then the (r, n)-threshold
sharing operation to its j-th pixel B(j) is expressed as

s1(j)
s2(j)

...
sn(j)

 =


1 x12 · · · x1r
1 x22 · · · x2r
...

...
...

...
1 xn2 · · · xnr

⊗

B(j)
h2

...
hr

 mod F (y), (17)

where F (y) = y8 + y4 + y3 + y + 1. Note that h2, · · · , hr
are completely different and randomly generated when sharing
the pixels in different blocks. After sharing all the dM/S1e×
dN/S2e blocks, n image shares can be generated. Because
F (y) is a prime polynomial in GF (28), these image shares
are also 8-bit grayscale images.

2) Bit-Pair Encoding: In addition, some extra information,
including the block sizes S1 and S2, parameter r, and identity
of the image share, should be embedded into the fixed posi-
tions such that the data hider and receiver can extract these
information. We use 8 bits to encode each of them and embed
them into the last 32 pixels using LSB replacement.

The original LSBs of the last 32 pixels should be embedded
into the image share and we develop a bit-pair encoding
method to embed them as follows. (1) Divide the image of size
M×N into MN/2 adjacent pixel pairs. (2) For each pixel pair,
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extract the two most significant bits (MSBs) and encode ‘00’,
‘11’, ‘01’ and ‘10’ as ‘0’,‘10’,‘110’ and ‘111’, respectively. (3)
Combine all the codes of the MSBs to obtain a bit sequence B.
(4) Process t pixel pairs until 2t ≥ 32+dlog2(MN/2)e+LB ,
where we use dlog2(MN/2)e bits to represent t and LB is
the length of B. (5) Embed the original LSBs of the last 32
pixels, t with dlog2(MN/2)e bits and bit sequence B into the
2t MSBs of the t processed pixel pairs. Finally, n encrypted
images EI1,EI2, · · · ,EIn are generated and sent to n data
hiders.

B. Data Hider

After receiving an encrypted image, a data hider can embed
data into it to obtain a marked encrypted image. First, the
data hider extracts the block sizes S1 and S2, parameter r,
and the identity of the encrypted image from the LSBs of
the last 32 pixels, and then recovers the LSBs of the last 32
pixels using the inverse process of bit-pair encoding. Then, for
each block of the encrypted image, the data hider calculates
its prediction errors e(i, j)s using an improved MED predictor
and then encodes the pixels using our ECVE method. Note that
the first pixel p(1, 1) in each block is not processed. Finally,
embed some extra information into the LSBs of the last 32
pixels and embed the encoding result into the image, except
for the first pixel of each block. The rest pixels can be used
to embed additional data.

1) Improved MED predictor: For each block of the en-
crypted image, we first predict its pixels to generate the
prediction errors using an improved MED predictor. For a
pixel p(i, j), its prediction value p̂(i, j) is calculated as

p̂(i, j) =


α, for i = 1, j 6= 1;
β, for i 6= 1, j = 1;
max(α, β), for γ ≤ min(α, β);
min(α, β), for γ ≥ max(α, β);
α+ β − γ, otherwise,

(18)

where α = p(i, j−1), β = p(i−1, j), and γ = p(i−1, j−1),
which are the adjacent pixels of the current pixel p(i, j) in the
left, upper, and upper-left directions, respectively. Then the
prediction error e(i, j) is calculated as

e(i, j) = p(i, j)− p̂(i, j). (19)

2) Concept of ECVE: The ECVE method can sufficiently
separate the compressible bits from a pixel according to its
prediction error. In the next description, for simplicity, we
denote p(i, j), p̂(i, j) and e(i, j) as p, p̂ and e, respectively.
For an 8-bit pixel p, its prediction error is e = p−p̂. According
to the range of e, the pixel p can be divided into two parts:
the k least significant bits and (8 − k) most significant bits,
denoted by pL and pM , respectively. The pM are compressible
while the pL are incompressible.

When the prediction error e = −1, 0 or 1, the k = 0 and
all the 8 bits of the pixel p are compressible bits. Otherwise,
when e ∈ [2k, 2k+1) or e ∈ (−2k+1,−2k](1 ≤ k ≤ 7), the k
least significant bits of the pixel, i.e., pL, should be reserved.
Thus, according to the range, all the prediction errors can be
divided into 17 classes and Table III shows how to encode
these 17 classes. Suppose that a pixel p can be decomposed

TABLE III: Codes of the prediction error e.

e k Code of e pL
1 e ∈ (−28,−27] 7 2 p7p6p5 p4p3p2p1
2 e ∈ (−27,−26] 6 02 p6p5 p4p3p2p1
3 e ∈ (−26,−25] 5 002 p5 p4p3p2p1
4 e ∈ (−25,−24] 4 0002 p4p3p2p1
5 e ∈ (−24,−23] 3 0000 2 p3p2p1
6 e ∈ (−23,−22] 2 0000 02 p2p1
7 e ∈ (−22,−21] 1 0000 002 p1
8 e = −1 0 0000 0002 *
9 e = 0 0 0000 0000 *

10 e = 1 0 0000 0001 *
11 e ∈ [21, 22) 1 0000 001 p1
12 e ∈ [22, 23) 2 0000 01 p2p1
13 e ∈ [23, 24) 3 0000 1 p3p2p1
14 e ∈ [24, 25) 4 0001 p4p3p2p1
15 e ∈ [25, 26) 5 001 p5 p4p3p2p1
16 e ∈ [26, 27) 6 01 p6p5 p4p3p2p1
17 e ∈ [27, 28) 7 1 p7p6p5 p4p3p2p1

into (p8p7p6p5 p4p3p2p1)2, where p8 and p1 are the most
and least significant bits, respectively. For example, a pixel
p = 202 = 110010102 and its prediction value p̂ = 211. Then
its prediction error e = p− p̂ = −9 ∈ (−24,−23]. According
to Table III, the code of e is 00002, and pL = p3p2p1 = 0102.

3) Reversibility of ECVE: Here, we conclude that a pixel p
can be recovered using the code of e, its predication value p̂,
and the pL. For the pixel p, it consists of the k least significant
bits pL and (8−k) most significant bits pM . Correspondingly,
suppose that its prediction value p̂ can be divided into two
parts, p̂L and p̂M . The recovery process of the pixel p is as
follows.

First, according to the code of e and Table III, we can obtain
the range of e. Then, based on the range, the pixel p or its
(8− k) most significant bits pM can be recovered as follows.

• When e ∈ [−1, 1], we can directly obtain that p = p̂+ e.
• When e ∈ [2k, 2k+1)(1 ≤ k ≤ 7), the pM can be

obtained by

pM =

{
p̂M + 1, pL ≥ p̂L;
p̂M + 2, pL < p̂L.

(20)

• When e ∈ (−2k+1,−2k](1 ≤ k ≤ 7), the pM can be
obtained by

pM =

{
p̂M − 1, pL ≤ p̂L;
p̂M − 2, pL > p̂L.

(21)

When e ∈ [2k, 2k+1) or e ∈ (−2k+1,−2k], we can recover
the pixel p by combining the (8−k) most significant bits pM
and the k least significant bits pL.

To better show the process of our ECVE method, we provide
an illustrate example using a block with size 2×2 and show the
encoding and decoding processes in Fig. 3. Note that the first
pixel p(1, 1) of the block is not processed. We first calculate
the prediction values of all other pixels using the improved
MED predictor in Eq. (18). Then, the encoding process to the
three pixels p(1, 2), p(2, 1) and p(2, 2) is as follows:

• For the pixel p(1, 2), its prediction value p̂ = 24 accord-
ing to Eq. (18) and then its prediction error e = p− p̂ =
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Fig. 3: Encoding and decoding examples of our ECVE method.

−1. According to Table III, the code of e is 00000002
and the pixel doesn’t have pL.

• For the pixel p(2, 1), its prediction value p̂ = 24 and then
its prediction error e = p − p̂ = 67 ∈ [26, 27). Then the
code of e is 01 and the pL of p(2, 1) is p6p5p4p3p2p1 =
0110112.

• For the pixel p(2, 2), its prediction value p̂ = 90 and then
its prediction error e = p− p̂ = −31 ∈ (−25,−24]. Then
the code of e is 0002 and the pL of p(2, 2) is p4p3p2p1 =
10112.

The decoding process to the three pixels is as follows:
• For the pixel p(1, 2), since the code of its prediction

error e is 00000002, then e = −1 according to Table III.
Besides, we can obtain its prediction value p̂ = 24. Then
the pixel p(1, 2) is recovered as p = p̂+ e = 23.

• For the pixel p(2, 1), since the code of its prediction error
e is 01, then e ∈ [26, 27) and k = 6. Since p̂ = 24,
p̂M = 002 and p̂L = 0110002. Since we can obtain its 6
least significant bits as pL = 0110112 and pL ≥ p̂L, the
2 most significant bits are obtained as pM = p̂M + 1 =
002 +1 = 012. Thus, we can recover the pixel p(2, 1) as
p = pM ||pN = 010110112 = 91.

• For the pixel p(2, 2), since the code of its prediction error
e is 0002, then e ∈ (−25,−24] and k = 4. Since p̂ = 90,
p̂M = 01012 and p̂L = 10102. Since we can obtain its
4 least significant bits as pL = 10112 and pL > p̂L, the
4 most significant bits are obtained as pM = p̂M − 2 =
01012−2 = 00112. Thus, we can recover the pixel p(2, 2)
as p = pM ||pN = 001110112 = 59.

4) Encoding Process of ECVE: The ECVE method is used
to encode the image pixels. Except for the first pixel of
each block, the pL of all pixels and their prediction errors’
codes should be stored and encoded. We use a binary vector
PL to store all pL and use L to store the corresponding
length. Because the code of prediction error e may contain
at most eight bits, we use eight vectors {C1,C2, · · · ,C8}
to store the codes of all the pixels’ prediction errors in the
8-bit planes. Because these codes of prediction errors have
different lengths, the eight vectors also have different lengths.
Notice that the proportion of 0s is significantly larger than

the sum of proportions of 1s and 2s. These eight vectors
are sparse and can be significantly compressed. After com-
pressing these eight vectors using the arithmetic code, we
can obtain eight compressed vectors {CC1,CC2, · · · ,CC8}.
To completely recover the original {C1,C2, · · · ,C8}, the
numbers 0s, 1s and 2s should be stored. We use 24 integers
N = {N1, N2, · · · , N24} to record them. In addition, we use
eight integers LC = {LC1, LC2, · · · , LC8} to record the
lengths of {CC1,CC2, · · · ,CC8}. L can be encoded using
3 + dlog2(MN)e bits, whereas LCi and Ni can be encoded
using dlog2(MN)e + 1 and dlog2(MN)e bits, respectively.
Thus, all the pixels, except for the first pixel of each block,
can be encoded as L = L‖N‖LC‖PL‖CC1‖ · · · ‖CC8.

Finally, the block sizes S1 and S2, parameter r, and the
identity of the encrypted image are embedded into the LSBs
of the last 32 pixels. If the last 32 pixels contain the first pixels
of some blocks, these first pixels can be put at the end of L
for lossless recovery. The data L should be pre-embedded in
the encrypted image. Except for the first pixel of each block,
all pixels can be vacated for data embedding.

5) Data Hiding: The vacated room for data embedding is
obtained from the pixels of all image blocks except for the
first pixel. The data hider can determine the position of the
first available space from the length of L. Note that, if the
additional data are confidential, the data hider can encrypt
them using an existing cryptographic algorithm (e.g., AES)
before embedding.

C. Receiver

A receiver can extract additional data from a marked en-
crypted image and recover the original image from r marked
encrypted images.

1) Data Extraction: For a marked encrypted image, the
receiver can extract the additional data as follows:

• Step 1: Extract the block sizes S1 and S2, parameter r,
and the identity of the encrypted image from the LSBs
of the last 32 pixels.

• Step 2: Divide the marked encrypted image into non-
overlapping blocks with size S1 × S2. Retrieve all bits
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except for the first pixel of each block. These bits
comprise the image codes and embedded data.

• Step 3: Exclude the codes of the image and obtain the
embedded data.

2) Image Recovery: A receiver with r marked encrypted
images can recover the original image as follows:

• Step 1: For each marked encrypted image, extract the
block sizes S1 and S2, parameter r, and the identity from
the LSBs of the last 32 pixels.

• Step 2: Decode the r marked encrypted images using
ECVE method to recover the r encrypted images.

• Step 3: Generate the coefficient matrix X for each image
block using Algorithm 1 with the public pseudo-random
number seed. Suppose that the identities of the r marked
encrypted images are i1, i2, · · · , ir. Construct matrix Xr

using the i1-th, i2-th, · · · , ir-th rows of X. Obtain the
inverse matrix X−1r .

• Step 4: For the k-th image block, its j-th pixel
can be recovered using the j-th pixels of the k-
th image blocks of the r encrypted images, namely
si1(j), si2(j), · · · , sir (j). The reconstruction process is
defined as follows:

B(j)
h2

...
hr

 = X−1
r ⊗


si1(j)
si2(j)

...
sir (j)

 mod F (y). (22)

Once all pixels have been recovered, the k-th image block
can be obtained. After all image blocks are recovered, the
original image I is acquired.

V. PROPERTY DISCUSSION AND EXPERIMENTAL RESULTS

This section discusses the data embedding property of the
proposed RDH-EI scheme and presents the simulation results.

A. Redundancy Preservation

In this section, we analyze that some data redundancy
remains within each block in the encrypted images. In our
scheme, an image is encrypted to be n image shares using
our proposed secret sharing method. For an image B of size
S1×S2, the encryption process of its j-th pixel B(j) is shown
in Eq. (17). Thus, the i-th sharing result for the pixel B(j)
can be calculated as

si(j) = B(j)⊕ (xi2 ⊗ h2)⊕ · · · ⊕ (xir ⊗ hr) mod F (y), (23)

where ⊕ is the bitwise XOR operation. Denote that Ai =
(xi2 ⊗ h2)⊕ · · · ⊕ (xir ⊗ hr) mod F (y). Then

si(j) = B(j)⊕Ai. (24)

When encrypting the S1 × S2 pixels in the image block B,
the coefficient matrix X and r−1 random integers h2, · · · , hr
are kept the same. Then for the t-th pixel B(t) in the image
block B, its i-th share si(t) can be generated using the same
way as si(j),

si(t) = B(t)⊕Ai. (25)

(a) (b) (c)

(d) (e) (f)

Fig. 4: Six classical images with size 512 × 512. (a) Airplane; (b) Baboon;
(c) Jetplane; (d) Lena; (e) Man; (f) Peppers.

Since (n1 ⊕ n3)⊕ (n2 ⊕ n3) = n1 ⊕ n2, we can get that

si(j)⊕ si(t) = (B(j)⊕Ai)⊕ (B(t)⊕Ai)

= B(j)⊕B(t).
(26)

This indicates that the XOR correlation of the two pixels B(j)
and B(t) can be preserved in the generated image shares.
Thus, when using the same parameters to share an image
block, the generated n image shares have the same XOR
correlation with the original image within the block. Because a
natural image usually has high data redundancy, the generated
n image shares can inherent some of the data redundancy when
they have the same XOR correlation with the original image.
Then our proposed ECVE method can well utilize these data
redundancy to vacate room for data embedding.

B. Experimental Results

In this section, we simulate the proposed PFMSS-RDHEI,
and evaluate its performance.

1) Experiment Settings: We first present the implementa-
tion settings in our experiments.
Datasets. We use six classical images and two image datasets
“BOSSbase”1 and the grayscaled “FFHQ”2 as the test images.
The six images are shown in Fig. 4. The dataset “BOSSbase”
contains 10,000 grayscale images, and these images contain
natural scenery, human face and all kinds of topics. The dataset
“FFHQ” contains 52,001 images, and we use it to test the
feasibility of our scheme. All the test images are grayscale
images of size 512× 512.
Evaluation Metrics. We evaluate our PFMSS-RDHEI scheme
from the aspects of security level, embedding rate (ER),
recovery ability and separation ability. A higher level of
security enables better protection of the image content. The
ER reflects the embedding capacity of each encrypted image
by a data hider. The recovery ability indicates the recovery
quality of the original image. The separation ability indicates
whether the data extraction and image recovery are separate
or not.
Implementation Environment. For all the competing meth-
ods, we implemented them strictly following the settings of

1http://agents.fel.cvut.cz/stegodata/
2https://www.kaggle.com/datasets/arnaud58/flickrfaceshq-dataset-ffhq
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 5: Simulation results of the PFMSS-RDHEI scheme under (3, 3)-threshold with block sizes 2× 2 and 4× 4. (a) Original image Jetplane; (b)-(d) Three
encrypted images with block size 2 × 2; (e)-(g) Three marked encrypted images with secret data embedded in (b)-(d); (h)-(j) Three encrypted images with
block size 4× 4; (k)-(m) Three marked encrypted images with secret data embedded in (h)-(j); (o) Reconstructed image from (e)-(g) or (k)-(m).

their original papers. All the programs are developed by CLion
2020 with the C++ programming language and run on 64-bit
Windows 11 with AMD Ryzen 7 5800H @3.20GHz, 16GB
RAM.

2) Simulation Results: Fig. 5 simulates the PFMSS-RDHEI
scheme using image Jetplane under (3, 3)-threshold with
block sizes 2 × 2 and 4 × 4. The embedded data are some
randomly generated bits. It is obvious that the PFMSS-RDHEI
scheme can encrypt a meaningful image into unrecognized en-
crypted images with uniform distribution. Since the encryption
is done block-by-block, some data redundancy retains within
each block for data embedding. Thus, the visual effect is better
with smaller block size, which can be seen from the figures.
However, even when block artifact exists, all pixels in the
encrypted images can be distributed very uniformly, as shown
in their histograms. This means that the image content can
be well protected. When embedding additional data into these
encrypted images, the obtained marked encrypted images also
have uniform pixel distributions.

3) Embedding Rate: The embedding capacity indicates the
number of additional data that can be embedded into each
encrypted image by a data hider. It can be evaluated using
the embedding rate (ER) as bits per pixel (bpp), which is
calculated as

ER =
Total embedding capacity - Payload

Total number of pixels
. (27)

Since the first pixel of each image block is not encoded, the
total embedding capacity is 8×(M×N−dM/S1e×dN/S2e).
The payload includes the codes of pixels L and the extra
information embedded in the LSBs of the last 32 pixels, as
discussed in Section IV-B4. Thus, the ER can be obtained as

ER =
8× (M ×N − dM/S1e × dN/S2e)− L− 32

M ×N . (28)

There are four parameters in our (r, n)-threshold RDH-EI

TABLE IV: Embedding rates of (3, 3)-threshold PFMSS-RDHEI for different
images with different block sizes (S1 = S2 = S).

Images Encrypted PFMSS-RDHEI
Images S = 2 S = 4 S = 8 S = 16 S = 32

Airplane
1st 2.668 3.322 3.473 3.505 3.508
2nd 2.668 3.321 3.474 3.504 3.507
3rd 2.668 3.321 3.474 3.504 3.510

Baboon
1st 0.401 0.515 0.548 0.557 0.565
2nd 0.401 0.515 0.549 0.558 0.567
3rd 0.401 0.515 0.548 0.559 0.562

Jetplane
1st 1.877 2.386 2.527 2.571 2.589
2nd 1.877 2.386 2.528 2.570 2.583
3rd 1.877 2.386 2.527 2.570 2.588

Lena
1st 1.568 1.973 2.083 2.111 2.120
2nd 1.568 1.974 2.083 2.112 2.123
3rd 1.568 1.973 2.083 2.114 2.117

Man
1st 1.250 1.570 1.655 1.678 1.688
2nd 1.249 1.570 1.654 1.680 1.688
3rd 1.249 1.570 1.655 1.679 1.687

Peppers
1st 1.418 1.762 1.842 1.856 1.861
2nd 1.418 1.763 1.842 1.857 1.863
3rd 1.418 1.762 1.842 1.856 1.859

“BOSSbase”
1st 2.178 2.763 2.929 2.981 3.000
2nd 2.178 2.763 2.929 2.981 3.000
3rd 2.178 2.763 2.929 2.981 3.000

“FFHQ”
1st 1.991 2.518 2.664 2.708 2.723
2nd 1.991 2.518 2.664 2.708 2.723
3rd 1.991 2.518 2.664 2.708 2.723

scheme: the parameters r, n, and block sizes S1 and S2. The
proposed PFMSS encrypts an image into n encrypted images
with the same size and it can be recovered using r ones. Then,
the parameters r and n have a slight influence on the ER.
Because the proposed ECVE method encodes the encrypted
image block-by-block, the ER is significantly affected by the
block sizes S1 and S2. Table IV lists the embedding rates of
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TABLE V: Data expansion rates of the homomorphic encryption-based and
secret sharing-based RDH-EI schemes.

Methods Content owner Each data hider
Zheng et al. [39] 8, 16 8, 16
Chen et al. [40] 64, 128 64, 128
Chen et al. [26] n 1
Chen et al. [27] n 1
Qin et al. [41] n 1
PFMSS-RDHEI n 1

the (3, 3)-threshold scheme for different images with block
sizes 2, 4, 8, 16, 32. Notice that the ERs significantly improve
with the increase of block size. One has great flexibility in
selecting a proper block size according to different situations.

As can be seen from Table IV, the image Airplane has
much higher ERs than other images under the same block
size. This is because it has higher smoothness and thus its
prediction errors are closer to 0. We only list the embedding
rates of our PFMSS-RDHEI scheme under the (3, 3)-threshold,
because the settings of r and n cause a slight change in
the embedding rates. With different (r, n)-thresholds, we can
achieve approximately the same embedding rates.

VI. PERFORMANCE ANALYSIS

This section evaluates the performance of our scheme and
compares it with other secret sharing-based RDH-EI schemes.

A. Data Expansion
In an RDH-EI scheme, data expansion occurs when the total

size of the marked encrypted image is larger than that of the
original image. The expansion rate is introduced to calculate
the data expansion, which is defined as the ratio between the
total bits of the marked encrypted image and the total bits of
the original image. For most traditional VRAE-based schemes,
data expansion does not occur. However, they usually use some
lightweight encryption methods to keep data redundant in the
encrypted domain, and thus have limited security levels [37],
[38]. Here, we evaluate the data expansion in the homomorphic
encryption-based and secret sharing-based RDH-EI schemes
because they have high security levels. Table V lists the
data expansion comparison of the homomorphic encryption-
based and secret sharing-based RDH-EI schemes. A secret
sharing-based RDH-EI scheme encrypts an original image into
n encrypted images and sends them to n data hiders for
data embedding. However, the homomorphic encryption-based
RDH-EI schemes only have one data hider. Data expansion
occurs seriously in these schemes that apply homomorphic
encryption [39], [40]. Note that for the two encryption schemes
in [39], the data expansions are 8 times and 16 times,
respectively, and the data expansions are determined by the
security parameters set by users. Compared to the homo-
morphic encryption-based schemes, the secret sharing-based
schemes in [26], [27], [41] and our PFMSS-RDHEI scheme
have much less data expansion with acceptable expansion
rates. The expansion rate of all secret sharing-based schemes
is n for the entire scheme, however, is 1 for each data hider,
indicating no data expansion. Note that for the scheme in [26],
there is only one encrypted image, which means that n = 1.

TABLE VI: Embedding rates of our PFMSS-RDHEI scheme using different
embedding methods with (3, 3)-threshold and block size 4× 4.

Images Encrypted Methods
Images [13] [14] ECVE

Airplane
1st 2.3401 2.5878 3.3211
2nd 2.3400 2.5878 3.3212
3rd 2.3397 2.5876 3.3210

Baboon
1st 0.3637 0.3255 0.5145
2nd 0.3637 0.3254 0.5144
3rd 0.3638 0.3255 0.5145

Jetplane
1st 1.9074 1.9659 2.3856
2nd 1.9074 1.9660 2.3857
3rd 1.9072 1.9657 2.3854

Lena
1st 1.4999 1.6705 1.9735
2nd 1.4999 1.6705 1.9734
3rd 1.4994 1.6703 1.9732

Man
1st 1.2218 1.2667 1.5702
2nd 1.2218 1.2668 1.5702
3rd 1.2222 1.2669 1.5704

Peppers
1st 1.3796 1.4775 1.7628
2nd 1.3795 1.4775 1.7629
3rd 1.3794 1.4774 1.7628

B. Performance of ECVE

Since our developed ECVE method can sufficiently separate
the compressible and incompressible bits of a pixel, it can
vacate a large room for data embedding. To show its high
performance, we design experiment to compare it with two
state-of-the-art encoding methods in [13], [14]. Specifically,
we test the embedding rates of our PFMSS-RDHEI scheme
using our ECVE and the encoding methods in [13], [14],
respectively. The block size is set as 4× 4 and the threshold
is set as (3, 3).

Table VI shows the embedding rates of encrypted images
using the three encoding methods with block size 4 × 4. As
can be seen, our PFMSS-RDHEI scheme can achieve the
largest embedding rates when using ECVE. This is because
our ECVE divides prediction errors into 17 classes, which
is shown in Table III. For a pixel p, when its prediction
error e satisfies that |e| ∈ [2k, 2k+1) (0 ≤ k ≤ 6), the
methods in [13], [14] can separate at most 6 − k and 7 − k
embeddable bits, respectively, while our ECVE method can
separate 8− k embeddable bits for data embedding. Besides,
when |e| ∈ [27, 28), our ECVE method can separate one
embeddable bit; however, the embedding methods in [13], [14]
cannot separate any embeddable bit. When e = 0, our ECVE
and the method in [13] can use all the eight bits of the pixel for
data embedding; however, the method in [14] only separates
seven embeddable bits. As a result, for a same prediction error,
our ECVE method can separate more compressible bits and
thus can vacate more room for data embedding, compared to
the encoding methods in [13], [14].

C. Comparison of Embedding Capacity

The developed PFMSS can encrypt images into encrypted
images with high data redundancy within each block, and the
proposed ECVE method can fully utilize the data redundancy.
Thus, our RDH-EI scheme can achieve a large embedding
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(a) r = 3, n = 3 (b) r = 3, n = 4 (c) r = 4, n = 4 (d) r = 4, n = 5 (e) r = 5, n = 5

(f) r = 5, n = 6 (g) r = 6, n = 6 (h) r = 6, n = 7 (i) r = 7, n = 7 (j) r = 7, n = 8

Fig. 6: Embedding rate comparisons between different secret sharing-based RDH-EI schemes under different settings of r and n.

TABLE VII: Theoretical time complexity of different secret sharing techniques.

(r, n)
Methods

Chen et al. [26] Chen et al. [27] Qin et al. [41] PFMSS

(2, n)

One sharing
for a pixel

Addition 3 1 1 1
Multiplication 6 1 1 1

One sharing for
image of size M ×N

Addition 3MN MN MN MN
Multiplication 6MN MN MN 1

S2MN

(r, n)

One sharing
for a pixel

Addition 2r − 1 r − 1 r − 1 2r − 3

Multiplication r(2r − 1) r(r−1)
2

r(r−1)
2

2r − 3

One sharing for
image of size M ×N

Addition (2r − 1)MN (r − 1)MN (r − 1)MN (2r−4+S2)

S2 MN

Multiplication r(2r − 1)MN r(r−1)
2

MN r(r−1)
2

MN (2r−3)

S2 MN

capacity. To demonstrate the high embedding capacity of our
proposed scheme, we compare it with other secret sharing-
based RDH-EI schemes. The block size in our PFMSS-RDHEI
scheme is set as 4 × 4. Since the different encrypted images
of our scheme have slightly different embedding rates, as
shown in Table IV, we use the average embedding rates for
comparison. The Chen et al. [26] method is not applicable
when r is odd. The Qin et al. [41] method contains two
versions. The version without preprocessing is selected and
the parameter is set as the optimal value for each image.

Fig. 6 demonstrates the embedding rates of different secret
sharing-based RDH-EI schemes with different settings of r and
n. As can be seen, the embedding rates of Chen et al. [26] and
Qin et al. [41] methods remain approximately the same with
different r or n. The Chen et al. [27] method can achieve
the best embedding rate when n = 2, since its embedding
rate is 7/n. It is obvious that for most test images, with an
increase of r and n, our PFMSS-RDHEI scheme can achieve
the largest embedding rates. The comparison results prove the
superiority of our scheme in embedding capacity.

D. Security Evaluation

Our proposed scheme encrypts an image block-by-block.
Our design intentionally uses the same matrix coefficients
to share the pixels within each block such that some pixel
correlation can remain for subsequent data embedding. But
we use different and randomly generated matrix coefficients
to share the pixels in different blocks. When sharing two pixels

TABLE VIII: Running time comparison (in seconds) of different secret
sharing-based RDH-EI schemes for image Lena.

(r, n) Parties
Methods

Chen et
al. [26]

Chen et
al. [27]

Qin et
al. [41]

PFMSS-
RDHEI

(2, 2)
Content owner 0.0018 0.0021 0.0013 0.0004
Data hider 0.0069 0.0051 0.0079 0.0433
Receiver 0.0155 0.0281 0.0722 0.0851

(3, 3)
Content owner - 0.0037 0.0157 0.0008
Data hider - 0.0059 0.0057 0.0436
Receiver - 0.0472 0.1178 0.1318

(4, 4)
Content owner 0.0213 0.0192 0.0353 0.0126
Data hider 0.0157 0.0066 0.0053 0.0444
Receiver 0.0433 0.0630 0.1542 0.1780

using different and random parameters, the results are random
and do not retain any information of the two pixels. We have
theoretically discussed and proved this security property in
Lemma 2 of Section III-C. Suppose that an original image
size is M × N and the block size is S1 × S2. Since the
security of a block is dependent on its first pixel and the
sharing result is within [0, 255], the space of the sharing
operation is 256dM/S1e×dN/S2e. When setting a small block
size such as 2 × 2, the space of the brute-force attack is
256d256/2e×d256/2e = 256128×128 and the encrypted image
can keep a high security level. When the block size increases,
more pixel redundancy can be preserved by our ECVE method
for embedding more data, but the image security may degrade
accordingly. As a result, although some pixel correlation exists
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TABLE IX: Comparisons of different VRAE-based RDH-EI schemes.

Methods Encryption Strategies Lossless
Recovery Separable Free-

Preprocessing Security
Resistance to
Single Point

of Failure

Without
KMS

Bhardwaj et al. [34] XOR × × X Limited × ×
Yi et al. [32] Block Permutation and Co-Modulation X X X Limited × ×
Liu et al. [35] In-Block Pixel Permutation and Co-XOR X X X Limited × ×
Wang et al. [36] Block Permutation and Co-XOR X X X Limited × ×
Zheng et al. [39] Homomorphic Encryption X X X High × ×
Chen et al. [40] Homomorphic Encryption X X X High × ×
Chen et al. [26] Secret Sharing X × × Limited × ×
Chen et al. [27] Secret Sharing X X × High X ×
Qin et al. [41] Secret Sharing X X X/×∗ High X ×
PFMSS-RDHEI Secret Sharing X X X High X X
∗indicating one version needs preprocessing while the other doesn’t need.

in each block, our scheme can balance the trade-off between
the security and embedding capacity by setting a proper block
size. Besides, our scheme can keep the image confidentiality
from the collusion attack of r − 1 cloud servers, and can
withstand n− r points of failure.

E. Complexity Analysis

We analyze the complexity of our new secret sharing
scheme PFMSS and the developed PFMSS-RDHEI scheme.
Table VII lists the theoretical time complex of our PFMSS
and the sharing schemes used in [26], [27], [41]. Note that
in our PFMSS and the sharing scheme used in [41], the
addition and multiplication operations denote the XOR and
polynomial multiplication, respectively. When sharing a pixel,
our PFMSS requires the minimum numbers of multiplication,
because 2r − 3 ≤ r(r−1)

2 with a positive integer r. Even our
PFMSS requires more addition operations than the sharing
schemes used in [27], [41], it can still has a lower time
complexity, because the multiplication operation is much more
time-consuming than the addition operation. Besides, since
our PFMSS encrypts an image block-by-block using the
same parameters, it requires to calculate only one matrix for
encrypting a block. Thus, our PFMSS has the lowest time
complexity in sharing an image when setting the block size S
as an integer larger than 1.

We also test the actual time cost of different secret sharing-
based RDH-EI schemes. We test the running time of different
schemes under (2, 2), (3, 3) and (4, 4) thresholds to provide
diverse results and set the embedding rate as 0.4 bpp. For
fairness, set the block size S as 2 in our PFMSS-RDHEI
scheme. Table VIII lists the running time of different parities
of these schemes. Since the parameter r in the scheme [26]
should be even, we only test its results under (2, 2)-threshold
and (4, 4)-threshold. As can be seen from the results, our
PFMSS-RDHEI requires more running time than others under
data hider and receiver, because the arithmetic code is used
to encode the image data during data hiding. But the data
hiders in the cloud service are usually the cloud servers that
have strong computation resources. On the other hand, our
PFMSS-RDHEI requires the least time in the content owner,
which usually has limited performance.

F. Property Comparisons with Prior Studies

Finally, we compare the features of different VRAE-based
RDH-EI schemes from different aspects and Table IX lists the
results. The scheme in [34] is lossy and the receiver cannot
completely recover the original image, while the other schemes
are lossless. The schemes in [26], [34] are not separable,
which means that the embedded data can only be extracted
after the marked encrypted images have been decrypted.
Among all secret sharing-based schemes, our scheme and one
scheme in [41] can directly encrypt the 8-bit pixels without
preprocessing, while the other secret sharing-based schemes
in [26], [27] need a preprocessing operation before encryption.
To keep data redundant in the encrypted domain, the traditional
VRAE-based RDH-EI schemes in [32], [34]–[36] usually use
some lightweight encryption methods with limited security
levels [37], [38]. The homomorphic encryption-based schemes
in [39], [40] can achieve high security levels. However, they
suffer from high computation costs and large data expansion.
The Chen et al. [26] method can only achieve lightweight
security with proper parameter settings as reported in the
original literature. Our scheme and other secret sharing-based
RDH-EI schemes in [27], [41] can ensure image content
confidentiality. The schemes in [26], [32], [34]–[36], [39],
[40] encrypt an image to be only one encrypted image and
thus cannot resist single point of failure. The image cannot
be recovered if the only one encrypted image is damaged
or lost. Besides, all these existing schemes rely on reliable
KMS, which is practically costly to implement in such a
multiparty environment over insecure public networks. As a
result, our PFMSS-RDHEI scheme is lossless and separable,
it can encrypt an image without a preprocessing operation and
has a high security level. Besides, it can resist n− r points of
failure without relying on a reliable KMS.

VII. CONCLUSION

In this study, we proposed a new RDH-EI scheme with
multiple data hiders. We first proposed an (r, n)-threshold
preprocessing-free matrix secret-sharing (PFMSS) method,
which can directly encrypt m-bit data using matrix multipli-
cation without preprocessing. Formal analysis is provided to
prove its correctness and justify its security. Besides, we fur-
ther proposed a novel error class and value encoding (ECVE)

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3298803

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 19,2023 at 03:04:21 UTC from IEEE Xplore.  Restrictions apply. 



15

method. Since it can sufficiently separate compressible sig-
nificant bits from image pixels, and thus can obtain a large
embedding capacity. An illustrate example is provided to show
the encoding and decoding processes of ECVE. In our RDH-
EI scheme, the content owner can encrypt its image block-
by-block using the PFMSS and obtain n encrypted shares for
n competing cloud servers. Each data hider can embed data
into the encrypted share to obtain a marked encrypted image.
The embedded data can be extracted from a marked encrypted
image, and the original image is recovered from r marked
encrypted images. Experimental results show that the proposed
RDH-EI scheme can effectively protect the images and achieve
a higher embedding capacity compared to the state-of-the-art
RDH-EI schemes. Our future work aims to further enhance
the embedding capacity in encrypted domain and investigate
the data embedding in video since video has much more data
redundancy than image.
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