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Abstract—Early works on reversible data hiding in encrypted
images (RDHEI) usually generate only one encrypted image
from the original image, if the encrypted image is lost or
maliciously damaged by an attacker, all information about the
original image will be lost. Thus, storing images in distributed
servers is an effective solution. Therefore, this paper proposes an
RDHEI method using (k, n)-threshold secret sharing. It is not a
traditional secret sharing technique, but takes its principles and
ideas. In this algorithm, we combine the image encryption and
sharing process to generate n shares and send them to the cloud
for storage. It maintains the advantage of (k, n)-threshold secret
sharing technique that only at least k© shares can successfully
recover the original image while less than % shares cannot. In
addition, the size of each share is smaller than the original
image, so that it can save storage spaces. By Huffman coding
the pixel difference in the encrypted image block, secret data are
embedded into these shares. It is a full reversible method that
data extraction and image recovery are performed separately and
losslessly. Simulation results, comparisons and security analysis
are demonstrated to show superior performances of the proposed
algorithm.

Index Terms—reversible data hiding, secret image sharing,
sharing matrix, image encryption

Reversible data hiding (RDH) [1] in digital images is a
technique that can losslessly recover the cover image after
extracting the embedded secret data. It generates the data-
embedded-image visually indistinguishable from the cover
image and aims to protect the secret data from being revealed.
Recently, a lot of RDH methods have been proposed, such
as histogram shifting [2]-[4], difference expansion [5], [6],
prediction-error expansion [7], [8], etc. Image encryption is
another popular technique for privacy protection [9], [10].
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It changes the meaningful image into noise-like one so that
the unauthorized user can not access its content. With the
popularization of mobile Internet technology and the rise and
wide application of cloud computing technology, the mode
of storing, editing and processing data on the local PC has
gradually changed to the mode of providing services on the
cloud computing platform [11], [12]. To protect users’ privacy,
images are encrypted before uploading to the cloud. The
cloud service provider may add tags (hereafter we call it
secret data) to the encrypted image to indicate the source,
type, owner, authentication information and so on, for ease of
management. The receiver only with corresponding keys can
extract secret data and/or recover the original image. Thus,
the reversible data hiding technology in encrypted images
(RDHEI) is developed and it can realize the safe storage and
management of cover images.

Existing RDHEI methods mainly use the block cipher [13],
stream cipher or homomorphic encryption to encrypt the
original image. For example, method in [13] uses the
block cipher to encrypt the original image and embed one
bit of secret data into each encrypted image block, data
extraction is performed by analyzing the local standard
deviation of each decrypted block. Inspired by this method,
Zhang [14] proposed an RDHEI method by applying stream
cipher to each image block, data embedding is accomplished
by flipping the 3 least significant bits(LSBs) of each
encrypted image blocks. Later, some improvements of RDHEI
methods have been proposed, such as reducing the data
extraction error by side-match [15], improving the embedding
rate by compression [16], key modulation [17], histogram
shifting [18], [19], prediction-error expansion [20], room
reservation [21]-[25]. Most of these previous methods are
separable RDHEI methods, which means data extraction and
image recovery are performed separately. On the other hand,
some researchers show their interests in developing RDHEI
methods using homomorphic encryption [26]-[30], such as
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Paillier encryption [31]. However, the computation cost of
these methods is extremely high and the generated encrypted
image usually suffers from serious data expansion, which
means the bit-depth of the encrypted image is much larger
than the original one.

Early works on RDHEI usually generate only one encrypted
image from the original image, if the encrypted image is lost
or maliciously damaged by an attacker, all information about
the original image will be lost. Therefore, in order to make the
application loss-tolerant, a better solution is to store the image
in distributed cloud-based servers. However, if each cloud
server holds a full copy of the encrypted image, it will cause
a waste of storage space. In addition, attackers will have more
chances to get the encrypted image from multiple servers.
Thus, we suggest to use the k-out-of-n threshold secret sharing
method to solve these problems. The definition of k-out-of-n
threshold secret sharing was proposed by Shamir [31], where
n different noise-like shares (shadows) are generated from the
original image and any no less than k shares (kK < n) can
recover the original image, while less than k£ shares can not.
Then, each share is stored in different cloud servers. All shares
are noise-like images so that the k-out-of-n threshold secret
sharing can also be regarded as an encryption method [32].
Fig. 1 shows the application model of cloud-based secret
sharing and data hiding in encrypted domain. There are three
entities: content-owner, cloud data center(CDC) and receiver.
The content-owner divides the original image into several
noise-like shares and sends them to different CDCs. The CDC
then embeds secret data into the share. Once receiving the
share transmission request, the CDC extracts the secret data
from the share and sends the share to the receiver. After
obtaining sufficient shares, the receiver is able to recover the
original image losslessly. In this way, even if n —k CDCs are
compromised, the original image can still be recovered from
other k shares.

Recently, Wu et al. [30] proposed an RDHEI method
using the Shamir’s (k,n)-threshold secret sharing. It uses
the polynomials over a finite filed to generate shares and
constructs the polynomial by Lagrange Interpolation to obtain
the original image. In this method, n shares are generated
using a pair-wise image encryption method and each share
has the same size as the original image. Therefore, for an
original image with Z pixels, the generated n shares contain
a total of n x Z pixels. Because adjacent pixels are encrypted
by same parameters, pixel pairs in each share preserve the
difference as it in the original image, traditional RDH methods
such as difference expansion and difference histogram shifting
can be used for data embedding. Due the utilization of prime
number 251 in an 8-bit pixel image, this algorithm needs a
preprocessing to restrict the pixel value in the range of [0,
250] before image sharing.

In order to realize the distributed storage and management
of digital images, this paper proposes a reversible data hiding
method using (k, n)-threshold secret sharing. It is not a sharing
technique in the traditional sense, but takes its principles and
ideas. The main contributions and advantages of the proposed
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Fig. 1: Application model of cloud-based secret sharing and data
hiding in encrypted domain.

algorithm are summarized as follows.

e We proposed an RDHEI method for distributed storage
and management. It combines the encryption and (k,n)-
sharing matrix to generate n shares and uses the Huffman
coding for data hiding.

o The size if each share is smaller than the original image,
therefore, it can save storage spaces.

e The loss of less than n — k shares will not affect
the recovering of the original image, which makes the
application more fault-tolerant. Meanwhile, any fake
share and/or the lack of enough true shares will cause
failing to recover the original image, which makes the
application model more secure.

o Experimental results and analysis demonstrate the
proposed algorithm has relatively higher embedding rate
and better performances than several related work.

The rest of this paper is organized as follows. Section I
reviews the (k,n)-sharing matrix definition [33] and (k,n)-
sharing matrix generation method [34]. The RDHEI method
using (k, n)-threshold secret sharing is proposed in Section II.
Section III demonstrates the experimental results of the
proposed algorithm and comparisons with several existing
works. The security is analyzed in Section IV. Finally, we
draw the conclusion in Section V.

I. PRELIMINARY

In this section, we first review the definition of (k,n)-
sharing matrix and secret sharing/reconstruction processes
using the sharing matrix [33]. Then a (k,n)-sharing matrix
generation method [34] is reviewed and followed by a
discussion to show that the generated matrix satisfies the
(k,n)-sharing matrix definition in [33].
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A. (k,n)-sharing matrix definition

Let S*™) be an n x w binary matrix, S®*™) (i, j) € {0,1},
where 1 < 7 < n, 1 < j < w. Randomly selecting any p
rows of elements from matrix S(*™) generates a p x w binary
matrix Z(s,j), where 1 < p < n and 1 < s < p. If matrix
Sk satisfies three following three conditions, it is called
the (k,n)-sharing matrix. 1)

1) there is at least one “1” in each row in matrix (k)

namely

> 8 (,j) #0 (1)
j=1

2) there is at least one “1” in each column in matrix Z
when p > k, namely

P

> Z(s,4) #0 )

s=1

3) there is at least one zero column in matrix Z when p <
k, namely

I1 (Z Z(w‘)) =0 (3)
j=1

For example: Eq. (4) is a (3,4)-sharing matrix satisfying the
conditions in Egs. (1)-(3).

010011
Gay_ |0 01101
S 100110 @
111000

B. Secret sharing using (k,n)-sharing matrix

1) Sharing process: Suppose that we want to share the
original integer data P into n shares using S, where P
and S are with a size of 1 x w and n x w, respectively.
We construct the i’ share R(;) by

Ry =Px*S(3i,:), 1=1,2,---,n (5)
where “*” is the point-to-point multiplication in this paper.
Therefore, the i share R;) is generated by the it" row of
the sharing matrix S,

2) Reconstruction process: When k, (k. > k) shares are
combined, we can losslessly reconstruct the original data P.
Firstly, we combine these k,. shares to form a matrix R[kr] with
a size of k,. x w, where each row of R[kr] is a share. Similarly,
we construct a matrix S|, ) which contains the corresponding
k, rows of the original sharing matrix S(**). Thus, Sk, 18
with a size of k, x w as well. Then, we reconstruct the original
data P by

P(j) = Rye,) (L DI Rk, ) 2, DI -+ [ By, (Rry ) (6)

’9

,w and “|[” is the bit-level boolean

where j =
function “or”.

1,2,

3) Example: Here, we use an example to show the detailed
secret sharing and reconstruction processes using the sharing
matrix. Suppose the secret data P = [1 2 3 4 5 6] and
the sharing matrix S in Eq. (4) is used to distribute P
into 4 shares. Using Eq. (5), we can obtain shares Ry =
020056], Roy=1[003406], Rgy=[100450] and
Ry =112 300 0]. Then, we randomly select &, (k. > 3)
shares to form Rig . E.g., if k. = 3 and R(y), R(2) and Ry,
are selected, we obtain R[3) as
0 2 0 0 5
0 0 3 40
12 3 000
Using Eq. (6), we obtain the recovered P =[1 2 3 4 5 6].

[«20N )

Rz = @)

C. (k,n)-sharing matrix generation

In [34], Chao et al. introduced a (k,n) shadows-assignment
matrix. In this paper, we call it (k,n)-sharing matrix. Next,
we review the generation method of the (k,n)-sharing matrix
and followed by an illustrative example.

1) Generation method: Firstly, we construct a matrix M;
with a size of n x 1. It consists of (n—k+1) ones and (k—1)
zeros, where 1 < k < n. For example, M; = [1 1 1 0 0]7
for (k,m) = (3,5). Then, we obtain all possible permutations
of My, denoted as M;, i = 2,3,..N, where N' = CF~! =
WJ—HU' Finally, we concatenate these N matrices to
form the (k,n)-sharing matrix S*™) as shown in Eq. (8),
where S(*7) is with a size of n x N.

S = (M), M, ..., Mp7] ®)

2) An illustrative example: Here, we give an example
of generation of sharing matrix S, We first generate
matrices M; = [1 1 1 0 0]7 and obtain its all possible
permutations M; (¢ = 2,3,...,10). Finally, we concatenate
M; (i = 1,2,...,10) to obtain the sharing matrix S as
shown in Eq. (9)

1 1
Ml—{i],Mg—{é],Mg—{

0 1

0 0

1
1
5(3,5) — 1
0
0

D. Discussion

Here, we discuss that the generated sharing matrix satisfies

the three requirements of (k,n)-sharing matrix definition.

e According to the sharing matrix generation algorithm,
each column of S®™) is a permutation of M; which
contains (n — k + 1) ones and (k — 1) zeros, and
S(*:n) s formed by all permutations of M;. Therefore,
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(n—k+1)N
n

each row of S*:™) contains ones. Because

(n—k+1N _ (n—1)!

n - (k—1)!(n—k)!
each row of S(*:) which meets the condition in Eq. (1).

o We randomly select p rows from S*™) to form matrix
7, where each column of S contains (n — k + 1)
ones. When p > k, each column of Z contains at least
p—k+1 > 1 ones. Thus, there is at least one “1” in each
column when p > k which perfectly meets the second
condition of Eq. (2).

e We randomly select p rows from S to form matrix
Z, where each column of S*™) contains (k — 1) zeros.
If p < k, we obtain p < k — 1. Thus, there exists at least
one “0” column in Z when p < k, and the third condition
is satisfied as well.

> 1, there is at least one “1” in

(k,n)

II. PROPOSED ALGORITHM

The framework of the proposed algorithm is shown in Fig. 2.
It consists of three phases: 1) generation of shares at the
content-owner side; 2) data embedding and extraction at the
service-provider side; 3) image recovery at the receiver side. In
the first phase, the original image is encrypted and separated
into n shares. Then these shares are sent to different cloud
service-providers for secret data embedding. Once receive
the image transmission request, the service-provider extracts
secret data from marked shares and then sends them to the
receiver. At the receiver side, after obtaining no less than &
shares, the receiver reconstructs these shares to form a single
image and decrypt it losslessly to get the recovered image.
Next, we introduce our proposed algorithm in detail.

A. Generation of shares

Generation of shares including two steps: 1) image
encryption and 2) sharing process. It first generates an
encrypted image with same size of original image, and then
separate it into n shares using the (k, n)-sharing matrix, where
the size of each share is smaller than the original image.

1) Image encryption: Assume that an mj X meo original
image I, with pixel values in the range of [0, 255], is divided
into ¢ non-overlapped blocks. Each block I; ; is with a size of
2 x 2, where (3, j) is the row and column index of each block,
thus ¢ = my xmo/4 and 1 < ¢ < mq1/2, 1 < j < mo/2. We
use I, to denote the p'" pixel of the block I; ; in raster-
scan order, where p = 1,2,3,4. The framework of image
encryption method is shown in Fig. 3. We first apply a block
permutation to shuffle all blocks within the original image,
then use a row and column substitution operation to change
pixel values. In order to enhance the security, four rounds of
permutation and substitution procedures are performed. Next,
we introduce the image encryption method in detail.

According to the image encryption key K.,., we shuffling
the image block within the original image. Note that the each
image block is considered as a single unit for permutation. The
permutation operation does not rely on any specific method,
any scrambling algorithm can be used. In block substitution
procedure, we first generate one row and one column of 2 x 2
random blocks R; and C; using K., and add them to

Original image

Block permutation

S e ;

Adding surrounding
blocks

!

Row substitution

!

Column substitution

!

Remove surrounding

blocks

Kenc

4 rounds

Block substitution

Encrypted image

Fig. 3: Framework of image encryption.
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Fig. 4: An example of adding surrounding pixels.

the top and left of the original image, respectively, where
i and j are block index, pixel values in the same random
block are equal and all values are in the range of [0, 255].
Fig. 4 shows an example of adding surrounding pixels to an
original image with 25 blocks. Using K.,., we then apply
the row and column substitution operation using Eqs. (10)
and (11), respectively, where V; ; and W; ; are random values
within the range of [0, 255]. These two equations show one
round of block substitution where I and O are the input
and output images, respectively. Then the output image is
considered as the new input one to do the second round of
block permutation and substitution. After four rounds, we
obtain the final encrypted image E. Note that the random
values Cj, R;, V; j and W; ; used in each round are different
and they all generated by the image encryption key Kepec.

p _J @+ Zgzl CF+Vi;) mod 256, (if j=1)
B (7 + 351 UF ;1 + Vi;) mod 256, (otherwise)
(10)
(ifi =1)

(U7, + Sh_, OF 4 ;+Wi;) mod 256, (otherwise)
an

or. — {([U?,j + Zi:l RF + Wi;.;) mod 256,
4 —
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Fig. 2: Framework of the proposed algorithm.

2) Sharing process: After obtaining the encrypted image,
we generate a sharing matrix 8*™) for secret image sharing
based on parameters k and n defined by the content-owner. In
this phase, each 2 x 2 image block is considered as a single
unit for processing. Because there are ¢ image blocks, the size
of 8% should be n x t. Then, we explain how to generate
8(m) and n shares.

According to the sharing matrix generation method shown
in Section I-C, we first generate a basic sharing matrix S*-")
with a size of n x N. If N' > ¢, we then randomly select ¢
columns from S*™) using K., to generate the matrix 8§(*:");
otherwise, we duplicate S*™) for [-L.] times to form a large
matrix with a size of n x [ﬁ]/\/’ . Using K.y, we permute
all columns in 8™ and then randomly select ¢ columns
from this matrix to generate $(*™). Note that the permutation
only changes the column indexes while keeps the row indexes
unmodified.

For image sharing, the encrypted image should be first
reshaped into a 1D block matrix with a size of 1 x ¢ blocks,
where each element is a 2 x 2 encrypted image block.
Therefore, the 1D block matrix is actually with a size of 2 x 2t
pixels. Using 8*™) and the image sharing method proposed
in Section I, we then generate n shares, where each share is
also a 1D block matrix, and the number of blocks equals to the
number of “1”’s in the corresponding row matrix of 8(*). For
example, if the i*" row of 8(*) contains ¢; number of “17s,
the i*" share contains ¢; image blocks. For ease of illustration,
we reshape each share into an image with a size of m; X Mg,
where My = [%} Note that, each 2x 2 block is considered as
a single unit for processing. If 4g; mod m; # 0, we randomly
select 51 — (¢; mod “5') blocks from the current share and
append them to the end of the share.

In order to successfully reconstruct the encrypted image
from these shares, we should know the original image size,
sharing matrix and the mapping relationship between the share
and sharing matrix’s row index. Because the row sizes of the
original image and the shares are equal, we only need to store
the collum value ms. For the sharing matrix, we store the
parameters k and n. Therefore, we use 40 bits to store these
information, where 16 bits for storing the collum value mo
and 8 bits for storing the parameters k, n and sharing matrix’s
row index ¢, respectively. Because the redundancy is preserved

Huf fuman Source

code symbol Probability

0 Al 0.4 0

0

100 A2 .21 —— B
101 A3 0.15  ——

110 MM 0.13 2 1

1
111 A5 0.11 ——

Fig. 5: Example of Huffman coding.

in the image blocks, we can embed the 40-bit information into
the share by traditional RDH methods. In this paper, we adopt
the DE method [35] for embedding. For example, using the
security key K., we can randomly select some image blocks
for embedding. Finally, these shares are upload to n different
CDC:s for storage.

B. Data embedding and extraction

1) Data embedding: At the service-provider side, some
additional data are embedded into the encrypted shares for
the purpose of management. The data embedding procedure
consists of three steps: 1) pixel grouping; 2) Huffman coding;
3) data embedding.

1) Pixel grouping

For each image block in share R, we calculate the difference
value €] by
ej = Rzl - RZ?

i (=234 (12)

where ¢ is the block index and we assume that there are
ts blocks in R. We then separate whole pixels in R; into
three categories, namely reference pixel, embeddable pixel and
non-embeddable pixel. Reference pixels consist of the first
pixel R} in each block, and they will not be changed during
the data embedding phase. For the rest pixels, we separate
them into two categories based on the difference value and a
given positive integer 7. If —y < e/ < ~, the current pixel
is embeddable pixel; otherwise, it is non-embeddable pixel.
The embeddable pixel is able to embed additional data while
the non-embeddable pixel is not. The value of parameter ~y
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Fig. 6: Illustration of bits allocation for data embedding.

will influence the embedding rate and it will be discussed
in Section III. Once v is given, the number of embeddable
pixels b, and non-embeddable pixels b, are calculated, and
thus b. + b, = 3ts.

2) Huffman coding

Huffman coding is a method of compressing source symbols
with variable-length codes based on the probabilities of source
symbols. Symbols with high probability will assign short code
lengths, while symbols with low probability will assign long
code lengths. An example of Huffman coding is shown in
Fig. 5. The source symbols Al, A2, A3, A4 and A5 are with
the probabilities of 0.4, 0.21, 0.15, 0.13 and 0.11, respectively.
After Huffman coding, symbols Al~AS5 are encoded with
different lengths of code bits. The symbol Al with the highest
probability is encoded by a one-bit code “0”, and the symbol
A5 with the lowest probability is encoded by a three-bit code
“111”. Thus, the average code length of using Huffman coding
is 1*0.4+3*0.21+3%0.15+3*%0.13+3*0.11=2.2 bits. If we use
fixed-length codes to encode these 6 symbols, the average code
length should be [log, 6] = 3 bits. Therefore, the utilization
of Huffman coding can decrease the storage space. Once the
source symbols’ probabilities are given, the corresponding
Huffman codes are generated.

3) Secret data embedding

In this phase, we compress embeddable pixels using
Huffman coding to empty out spare space for secret data
embedding. The detailed bits allocation for data embedding
is shown in Fig. 6. Firstly, all non-embeddable pixels are
separated into two categories, namely group-I and group-II
with b,,, and b,,, pixels respectively, where pixels in group-II
are randomly selected from the non-embeddable pixels using
the data-hiding key K. Thus, by, +b,, = b,, and the value of
br, will be discussed later. Secondly, one bit is utilized to label
the embeddable pixel and the non-embeddable pixel in group-
I. Here we use “0” to denote the non-embeddable pixel in
group-I and “1” to denote the embeddable pixel respectively.
Because pixels in group-II are determined by K , we don’t
need any specific bit to label them. Thirdly, for the pixel in
group-I, the remaining 7 bits will be kept unmodified; for the
embeddable pixel, the rest bits will be replaced by Huffman
code and secret data. The pixels in group-II are utilized for
storing side-information. Next, we will introduce the data
embedding procedure in detail.

In order to embed secret data, the embeddable pixels
are compressed by Huffman coding. Here we compress the

difference value eg of embeddable pixels instead of directly

compressing their pixel values. Because the value of eg is in
the range of [—~,~], there are 2y + 1 different values. We
encode all difference values by Huffman coding and totally
get 2v+1 Huffman codewords, which are one-to-one mapping
to the corresponding difference value. Here we denote the
Huffman codewords by c_,,c_y41,---,co, -+ ,Cy, Where
¢i (—y < i < 7) indicates the codeword when the difference
value equals to i. We use [; (—y < @ < ) to denote the
bit length of the codeword c;, thus the maximum value of
l; should be no larger than 7. For the embeddable pixel,
according to e/, we then replace following /; bits by Huffman
codeword and use the rest 7 — [; bits to accommodate secret
data. Because the non-embeddable pixel bits that have been
replaced, including the first bit of pixels in group-I and all
bits in group-II, are useful for image recovery at the receiver
side, they should be stored with secret data. Therefore, the total
number of pure embedded secret data bits T can be calculated
by

2l
T="Y " (T—1L)p; — b, — 8by,, (13)

1=—"

where p; is the number of embeddable pixels when the
difference value equals to :. In order to enhance the security,
the secret data should be encrypted before data embedding.

Since the Huffman code is needed in data extraction phase,
the Huffman code lookup table should be stored in the share as
the side-information. We use the pixels in group-II to embed
the side-information by bit replacement, and the length of the
side-information will be experimentally shown in Section III
After secret data and side-information embedding, we finally
obtain the marked share M.

2) Data extraction: After receiving the image transmission
request, the service-provider extracts the secret data from
marked shares and sends them to the receiver.

Because the data extraction procedures for each marked
share are the same, we take one case for example. For
the marked share M, we first divide it into a number of
2 x 2 non-overlapped blocks. According to the labeling bits
and K4, we then classify the three bottom right pixels of
each block into embeddable pixels, non-embeddable pixels
of group-I and group-II, respectively. Next, we extract the
side-information from the pixels in group-II. According to
the Huffman code lookup table, we can easily identify the
Huffman code and secret data. Thus secret data bits are
extracted from the embeddable pixels sequentially. Finally, we
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decrypt the extracted secret data bits using Ky to obtain the
plain-text data.

To recover the share, after extracting the side-information,
we obtain the difference value ¢! of each embeddable pixels
using the Huffman code lookup table and the codewords stored
in embeddable pixels. Then, we recover the embeddable pixels
by

M! =M; —e]. (14)
For bits in non-embeddable pixels (group-I and group-II) that
have been replaced, we use the extracted side-information to
recover them. Therefore, all pixels in the sharing image are
successfully recovered.

C. Image recovery

Image recovery consists of two steps: share combination
and image decryption. Share combination process generates a
single image (encrypted version) from obtained shares, image
decryption process then decrypts it to obtain the original
image.

1) Share combination: We denote the obtained k, shares
as M), Ml(3), - -+ , M, . For each share, we first extract the
image column value mg, sharing matrix parameters k, n, and
the row index ¢ of the sharing matrix using K.,.. According
to the extracted information and K.,., we generate the sharing
matrix $(*) with a size of n x ¢ in the same way as proposed
in Section II-A2. According to the row index ¢, we use the ith
row of 8% to recover the image share M;). We denote the
it row of 8¢™) by 8™ Therefore, each binary number of
85’“’”) indicates a 2 x 2 block in recovered share. Therefore,
we scan Sl(-k’") bit by bit to recover the share. If the current bit
is “17, we keep the corresponding block of M(;, unmodified;
if the current bit is “0”, we insert a 2 x 2 zero block into
the M;). Followed by these steps, all k. shares are recovered
and each of them is with a size of 2 x 2t pixels. Next, we
combine these k. shares into a whole share M, ; with a size
of 2k, x 2t pixels. Finally, we reconstruct the all image blocks
using Eq. (6). Here an image block is considered as a single
element for processing. Finally, we reshape the reconstructed
image blocks into an m; X mq image E, which is the same as
the encrypted image. The reshape way is the inverse procedure
as proposed in Section II-A2.

D. Image decryption

Image decryption is an inverse procedure of encryption.
According to K.,., we first add surrounding blocks to E and
apply the column and row block substitution using Egs. (15)
and (16), respectively, where [E and U are the input and output
images for one round of block substitution. We then inversely
permutate the blocks and using the generated image as the
input image to do the second round of inverse substitution
and permutation. All the random values used in the decryption
phase are generated by the same way as proposed in encryption
phase. After four rounds, we obtain the final decrypted image
L.

Fig. 7: The four Test images. (a) Lena; (b) Baboon; (c) Boat; (d)
Goldhill

or = J B =X RE—Wi;) mod 256,  (ifi=1)
BV (BY = Sa_ EFy; — W) mod 256, (otherwise)
15)
(if j=1)

3

» _ J @7, =3 CF—Vi;) mod 256,
(07, — Sp_, OF, 1 —Vi;) mod 256, (otherwise)
(16)

III. SIMULATION RESULTS AND COMPARISONS

In this section, we show the experimental results of the
proposed algorithm and the comparisons with some related
work. Fig. 7 shows all test images used in the demonstration.
All of them are 8-bit public available standard images' with
a size of 512 x 512, including “Lena”, “Baboon”, “Boat” and
“Goldhill”.

A. Simulations

Figs. 8-9 show the experimental results of the proposed
algorithm using (3, 5)-sharing matrix and (7, 8)-sharing matrix
respectively. As can be seen, all shares and marked shares
are noise-like images, and the original image can be perfectly
recovered at the receiver side. In addition, the size of each
share is smaller than that of the original image. Because each
share discards some image blocks according to the “0”s in
the sharing matrix. We use pq and p,, to calculate the data
expansion rate of one share and n shares comparing to the
original image, respectively, where p; is defined as

As
Ao’
As and A, represent the size of a share and the original image,

respectively. Using the proposed sharing matrix, p; can be
approximately calculated by

p1 = A7)

n—k+1
py N ————. (18)
n
and thus
b =npr =~n—k+ 1. (19)

Therefore, the size of the share is Z=E+L of the original image,

and thus the share’s size in Fig. 9 and Fig. 8 are g and % of
the original image, respectively.

Thttp://decsai.ugr.es/cvg/dbimagenes/g512.php
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Fig. 8: Simulation results of the proposed algorithm using (3,5)-sharing matrix. (a) The original Lena image; (b)-(f) 5 shares; (g)-(k) 5
marked shares with embedding rate of (g) 1.6735 bpp, (h)1.6778 bpp, (i)1.6696 bpp, (j)1.6737 bpp, (k) 1.6725 bpp, respectively, where
v = 13; (1) the losslessly reconstructed image using any 3 marked shares.
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Fig. 9: Simulation results of the proposed algorithm using (7,8)-sharing matrix. (a) The original Boat image; (b)-(f) 8 shares; (j)-(q) 8 marked
shares with embedding rate of (j) 1.5691 bpp, (k) 1.5715 bpp, (1) 1.5492 bpp, (m) 1.5614 bpp, (n) 1.5652 bpp, (0) 1.5701 bpp, (p) 1.5660
bpp, (q) 1.5709 bpp, respectively, where v = 13; (r) the losslessly reconstructed image using any 7 marked shares.

Because the size and number of the shares are not equal to
that of the original image, we introduce a new definition of
the embedding rate (ER) by

B total embedded bits in the " share

FER, - -
total bits of the i*" share / 8

(20)

and

> total embedded bits in the i share
S, total bits of the i*" share / 8

where ER; and ER, indicate the embedding rate for
each share and the average embedding rate for n shares,
respectively. Usually, ER; and E'R, have similar values,
because image blocks are randomly distributed after image
encryption and thus they are randomly distributed in each

ER, =

21

share as well. In Figs. 8 and 9, we set the parameter v = 13
for demonstration, the average embedding rates ER, of the
experiments are 1.6734 bpp and 1.5654 bpp, respectively.

Using difference values of ~y, the number of embeddable
and non-embeddable pixels will be different, thus results in
different embedding rates. We use these four test images to
demonstrate how does the parameter  affect the embedding
rate. The results are listed in Tables I and II, where (k,n)
are set to (3, 5) and (7, 8), respectively. From the results we
can observe that, as the r increases, the average embedding
rate 'R, increases first and then decreases. The maximum
average embedding rate of the four test images are 1.688 bpp
(Lena), 0.634 bpp (Baboon), 1.572 bpp (Boat) and 1.364 bpp
(Goldhill), respectively. As can be seen, images with more
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smooth texture will achieve a higher embedding rate. When
r is small, it may result in negative embedding rate, which
means it can not embed any secret data. For example, when
r = 1, the average embedding rate for Baboon is -0.350 bpp.
This is because most of the pixels are non-embeddable pixels,
which result in more space to store the auxiliary information,
including the first bit of pixels in group-I and all pixel bits
in group-II, and thus the pure embedded bits T" calculated by
Eq. (13) will be negative. When r is large, it is unable to
embed data well, because some of the Huffman codewords
length may larger than 7. For example, r > 14 for Lena when
(k,n) equals to (3,5) as shown in Table. I. In addition, compare
the two tables we can see that, the average embedding rates for
the same image are similar under various 7. This is because the
blocks in encrypted are randomly distributed, no matter what
n is, image blocks in each share are randomly distributed as
well.

Next, we discuss about the side-information that is made
up of the Huffman code lookup table. Given a certain value
n, each of the n shares has similar image size and texture
smoothness. Therefore, the length of the side-information for
each encrypted sharing image will be roughly equal. In this
demonstration, we show the average side-information length of
n encrypted sharing images. The results are listed in Tables III
and IV, where (k,n) are set to (3, 5) and (7, 8), respectively.
From the results we can observe that the length of the side-
information increases as the increasing of r. This is because
under a certain r, there are totally 2r + 1 difference value
e should be encoded by Huffuman coding, which results in
2r + 1 Huffman codewords to be stored. In addition, the
length of side-information is not very large so that they can
be stored in dozens of pixels. When r is relatively large, e.g.,
r > 14 for Lena image, we don’t list the side-information
length, since the maximum length of the Huffman codeword
is larger than 7. In addition, compare Tables III and IV we
can see that for the same test image, the values of (k,n) have
little effect on the length of the side-information. For example,
when r < 12, the side-information for Lena image have the
same length when (k,n) is set to (3, 5) and (7, 8); when
r = 13, their side-information differs in length by only 1 bit.
Because for a certain test image, each of n shares has similar
image block statistical redundancy, results in similar histogram
of difference value e and almost the same Huffman codes.

B. Comparisons

Different from most of the RDHEI methods that generate
only one encrypted image, the proposed method generates
multiple shares based on the parameters n. Therefore, we
compare the data expansion rate of the proposed algorithm
with several related methods. The results are shown in
Table. V. Methods in [26] and [27] adopt the Paillier
homomorphic encryption method, the encrypted image pixel
will expand from 8 bits to 1024 bits when a 512-bit secret key
is used. Therefore, the encrypted image is seriously expanded.
Because methods in [17], [21], [26], [27], [29] generate only
one encrypted image, the data expansion rate u; for one

TABLE VI: Embedding rate comparison.

Method Test images '

Lena Baboon Boat Goldhill

Li et al. [26] <0.008 <0.008 <0.008 <0.008
Zhang et al. [27] < 0.008 <0.008 <0.008 <0.008
Zhou et al. [17] 0.188 0.188 0.188 0.188
Ma et al. [21] 0.952 0.683 0.996 0.912
Chen et al. [29] 0.500 0.500 0.500 0.500
Wu’s DHSM [30] 0.647 0.562 0.626 0.645
Proposed 1.686 0.632 1.572 1.364

encrypted image and u,, for whole encrypted images are the
same. Wu et al.’s method generates n shares of the same
size as the original image. Therefore, the data expansion rate
Ln 18 n. For the proposed method, the size of each share is
smaller than the original image due to the utilization of sharing
matrix, the data expansion rate for one share and whole shares
approximately equal to (n—k-+1)/n and n—k+1, respectively.

In order to show the embedding performances of the
proposed algorithm, we compare it with several related works.
The results are shown in Table VI. For fair of comparison, we
use the following formula to calculate the embedding rate of
method in [17], [21], [26], [27] . For Wu et al.’s and proposed
method, we use the Eq. (21) for simulation. From the results
we can observe that the proposed algorithm outperforms these
existing methods in embedding capacity.

_ total embedded bits
~ total bits of the encrypted image/8

(22)

€

IV. SECURITY ANALYSIS

Using the proposed algorithm, the successful recovery of
the original image depends on two conditions: enough true
shares and correct key K.,.. Lack of any one condition can
not recover the original image. For an unauthorized user, if he
has the security key K.,., he may collect true shares as much
as he can and use the obtained insufficient shares to recover
the original image. Alternatively, he may use a small amount
of fake shares instead of true shares to recover the original
image. Therefore, we should ensure that only enough true
shares can successfully recover the original image. In addition,
if someone has enough true shares, we should ensure the use
of incorrect key can not reconstruct the original image as well.

Based on previous analysis, we verify the security of the
proposed algorithm from the following three aspects: integrity
analysis, fake share analysis and security key analysis.

A. Integrity analysis

For the (k,n)-secret sharing based RDHEI, we should
ensure that the successful reconstruction of the original image
depends on enough true shares. That is when k, < &k
or when fake shares are involved, the original image can
not be successfully recovered. The simulation is shown in
Fig. 10, where Boat image is applied for demonstration and
(k,n) = (5,7). From the results in Fig. 10(b) we can see that
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TABLE I: Average embedding rate ER, of 8> based shares under various 7.

r
ERq (bpp) [T 3 5 7 9 10 12 13 14 16 19 22
Lena 0466 1228 1.548 1.656 1.686 1.686 1.678 1.672 — — — —
Baboon -0.350 -0.007 0.216 0384 0491 0527 0.576 0593 0.606 0.624 0.632 0.630
Boat 0.522 1250 1.487 1.553 1570 1.572 1.567 1.562 1.557 — — —
Goldhill 0.127  0.753 1.074 1231 1316 1338 1362 1364 1.363 1.355 — —
TABLE II: Average embedding rate ER, of 8("® based shares under various 7.
ER, (bpp) :
| 3 5 7 9 10 12 13 14 16 19 22
Lena 0468 1231 1.552 1.660 1.691 1.691 1.683 1.677 — — — —
Baboon -0.349 -0.005 0.218 0.386 0.494 0530 0579 059 0.610 0.627 0.635 0.633
Boat 0.524 1254 1491 1556 1573 1575 1570 1.565 1.560 — — —
Goldhill 0.125 0751 1.072 1229 1315 1337 1361 1363 1362 1.355 — —
TABLE III: The average side-information length of shares using §3:9).,
Side-information length (bits) !
1 3 5 7 9 10 12 13 14 16 19 22
Lena 13 39 66 112 149 170 208 229 — —_ - —
Baboon 13 39 66 94 144 162 198 218 237 275 333 3%
Boat 13 39 73 114 151 169 210 232 252 — — —
Goldhill 13 39 66 111 145 164 201 222 241 282 — —
TABLE 1IV: The average side-information length of shares using 8T8,
Side-information length (bits) "
1 3 5 7 9 10 12 13 14 16 19 22
Lena 13 39 66 112 149 170 208 230 — - = =
Baboon 13 39 66 94 144 162 199 218 237 275 333 395
Boat 13 39 75 114 151 169 210 232 253 — — —
Goldhill 13 39 66 111 145 164 201 222 241 283 — —

when only 4 true shares are combined, the original image can
not be successfully recovered.

B. Fake share analysis

Next, we demonstrate how fake shares affect the recovered
image. Fig. 10(c) shows the result of image recovery using 4
true shares and 1 fake share. Fig. 10(d) shows the result of
image recovery using 5 true shares and 1 fake share. As can be
seen, even enough true shares are adopted, the reconstructed
image is still noise-like when only 1 fake share is involved.

C. Security key analysis

Fig. 10(e) demonstrates the result of using 6 true shares and
incorrect key K.,.. Therefore, even with enough true shares,
it also can not recover the original image without the correct
key. Only when the correct key is used and no less than 5 true
shares are combined with no fake share, the original image
can be completely recovered (Fig. 10(f)).

V. CONCLUSION

In this paper, a novel RDHEI method based on (k,n)-
threshold secret sharing has been proposed. It encrypts the
original image block by block with a size of 2 x 2 and uses a
(k, n)-sharing matrix for image sharing. Each generated share
has a smaller size than the original image. Experimental results
and analysis have validated its efficacy and performances with
several state-of-the-art approaches. In the future work, we are
devote to developing sharing method to make the size of shares
smaller so that it can save more storage spaces.
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