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Abstract—This paper addresses the multi-view subspace
clustering problem and proposes the self-paced enhanced low-
rank tensor kernelized multi-view subspace clustering (SETKMC)
method, which is based on two motivations: (1) singular values
of the representations and multiple instances should be treated
differently. The reasons are that larger singular values of the
representations usually quantify the major information and should
be less penalized; samples with different degrees of noise may
have various reliability for clustering. (2) many existing methods
may cause the degraded performance when multi-view features
reside in different nonlinear subspaces. This is because they usually
assumed that multiple features lie within the union of several
linear subspaces. SETKMC integrates the nonconvex tensor norm,
self-paced learning, and kernel trick into a unified model for multi-
view subspace clustering. The nonconvex tensor norm imposes
different weights on different singular values. The self-paced
learning gradually involves instances from more reliable to less
reliable ones while the kernel trick aims to handle the multi-view
data in nonlinear subspaces. One iterative algorithm is proposed
based on the alternating direction method of multipliers. Extensive
results on seven real-world datasets show the effectiveness of the
proposed SETKMC compared to fifteen state-of-the-art multi-view
clustering methods.
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I. INTRODUCTION

VERITABLE multi-view data deluge has been unleashed

by the advance of information technology. For example,
beyond the original image, several different types of features of
multimedia data including LBP, Gabor, SIFT, and powerful deep
features are extracted for face recognition, action recognition [ 1],
[2]. The same content can be recorded with multimedia data such
as images, videos, audio, and documents, etc [3]. Other exam-
ples include multimedia retrieval and video surveillance, among
which multiple features or videos are extracted. In multimedia
retrieval, images and videos can be described by some typical
multimedia features such as bag-of-visual-words (BOW), Fisher
vectors, Vector of locally aggregated descriptors (VLAD), and
deep features. In multi-camera video surveillance, human ac-
tivities of interest are recorded by multi-cameras, where each
camera corresponds to a view. Therefore, multimedia data are
closely related with multi-view data [4]. These multimedia data
are captured from diverse viewpoints or various sources and
consequently result in complex characteristics including con-
sistent and diverse information. Considering the difficulty of la-
beled samples and multi-view features of multimedia data sam-
pled from a union of subspaces, multi-view subspace clustering
(MVSCO) [2], [5]-[7], partitioning a large number of unlabeled
multimedia data into several distinct clusters, has recently flour-
ished in motion segmentation, person re-identification, back-
ground subtraction, video image recognition, social multimedia
data clustering, gene detection and so on [8].

Generally, both MVSC and single-view subspace cluster-
ing (SVSC) methods follow the same pipeline: representation
learning and spectral clustering [9]. The first step aims to
find a representation of multimedia data by pursuing a desir-
able affinity matrix with some specific characteristics such as
low-rankness [10]-[12], sparsity [13], [14] and block diagonal-
ity [15], while the last step aims to obtain the clustering results
by inputting the affinity matrix into the spectral clustering algo-
rithm [16]. The representation learning (i.e., the first step) can
be roughly formulated as

4
3 1 v v v v
n;,n;2llX XVZ°||, + AR(Z") (1)
where X" and Z" denote the v-th multi-view feature and its cor-
responding representation, respectively; || - ||; aims to measure
the noises, such as the Gaussian noise (l3-norm), impulse noise
(l1-norm), sample-specific noise (l2 1-norm); R(-) denotes the
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regularizer. For example, Liu ef al. [10] proposed the low-rank
representation (LRR) method for SVSC. Zhang et al. [1] and Xie
et al. [17] extended LRR from the matrix form into the tensor
form to exploit the low-rank tensor property of the representa-
tion tensor in the vector space and the tensor space, respectively.
Chen et al. [2] exploited the Tucker decomposition to encode
the low-rank property. Beyond the above self-representation, the
studies in [11], [18], [19] adopted the Markov chain to construct
the multi-view transition probability matrices which are decom-
posed into the sum of a low-rank term and a sparse component.
Despite the great success of subspace clustering methods, three
challenging problems may arise. (1) using the convex /;-norm
(or nuclear norm) to characterize the sparsity (or low-rankness)
may amplify the approximation error of the original nonconvex
lp-norm and rank function. Many studies [20]—[22] have pointed
out that both of them are not accurate approximations of the
original nonconvex /p-norm and rank function. (2) since most
of them assume that all multimedia data lie within the union of
several linear subspaces, their clustering performance may not
be guaranteed when multiple views come from the non-linear
subspaces [23]. (3) different norms such as ly-norm, /;-norm,
l3,1-norm, and mixture of Gaussians, restrict the sample noise
but still treat them equally, and thus it is impossible to avoid the
disturbance of abnormal samples to clustering.

To solve the first challenge, existing solutions designed an
effective alternative closer to the rank function. For example,
the study in [22] uses three non-convex functions instead of the
nuclear norm in denoising to achieve powerful results. To ad-
dress the second challenge, two strategies i.e., manifold learning
and kernel trick were adopted to represent nonliearity of mul-
timedia data. The representative method of manifold learning
is the Laplacian regularizer. Specifically, Yin et al. [24] incor-
porated the manifold learning with LRR to capture the global
low-rankness and local geometrical structure embedding with
nonliearity for SVSC. Similar ideas were followed in [25], [26]
for MVSC. But the Laplacian regularizer considers only the lo-
cal structure of multimedia data through the similarity of points
to points. Some state-of-the-art methods using the kernel trick
include [23],[27], [28]. For example, Xiao et al. [23] applied ker-
nel trick to map the original feature from the original input space
into a new feature space, such that the mapped features may re-
side in multiple linear subspaces. Inspired by the block diagonal
representation [15] and kernel trick, Xie et al. [27] proposed the
implicit block diagonal LRR. Since different samples may con-
tain different degrees of noise, it is more reasonable to treat them
separately. One possible solution to handle the third challenge
is the self-paced learning [29], which processes the data sample
from the simple order to complex order. In summary, most of
existing literatures merely consider to solve one or two of the
above three challenges. To the best of our knowledge, there is
no work to address these three challenges simultaneously.

In this paper, we propose the Self-paced Enhanced low-rank
Tensor Kernelized Multi-view subspace Clustering (SETKMC)
method to simultaneously solve the three challenges described
above. Instead of the convex [;-norm and nuclear norm,
SETKMC proposes one novel nonconvex tensor norm by ex-
ploiting one nonconvex function to less penalize the large tensor
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singular values, subsequently yielding a nonconvex and much
challenging model. SETKMC uses the kernel trick to handle the
multi-view data in the nonlinear subspaces. In order to distin-
guish samples with different reliability, SETKMC also adopts
the self-paced learning to incrementally process instances from
the simple order to complex order. Thus, the proposed SETKMC
is a unified model that simultaneously solves the tensor nuclear
norm’s biased approximation of tensor rank, the nonlinearity
and the side effect caused by some difficult instances. Based on
the alternating direction method of multipliers, we propose an
effective algorithm to solve the nonconvex SETKMC model, in
which the low-rank tensor term is derived by the difference of
convex method. The contributions of this paper are summarized
as follows:

® We propose a novel method, namely self-paced enhanced
low-rank tensor kernelized multi-view subspace clustering
method (SETKMC), which unifies the nonconvex tensor
norm, the kernel trick, and the self-paced learning.

e Unlike most existing methods which over-penalize the
larger singular values and ignore the side effect caused by
some difficult instances, SETKMC proposes the enhanced
low-rank tensor norm to estimate the singular values more
accurately than the tensor nuclear norm and adopts the
self-paced learning strategy to process from easy exam-
ple to complex example for clustering. Besides, SETKMC
utilizes the kernel trick to overcome the nonlinearity.

e Extensive experiments on seven real-world databases
demonstrate the effectiveness of the proposed SETKMC
compared to several state-of-the-art convex, kernel and
deep multi-view clustering methods.

The remainder of this paper is organized as follows. The re-
lated works for multi-view clustering are summarized in Sec-
tion II. Some preliminaries are shown in Section III. Section IV
presents the proposed SETKMC model and designs an effec-
tive algorithm to solve the SETKMC model. Section V reports
the results of extensive experiments and model analysis. The
conclusion of this paper is summarized in Section VI.

II. RELATED WORK

In this section, we mainly review multi-view tensor cluster-
ing methods, multi-view kernel clustering ones and self-paced
learning.

A. Multi-View Tensor Clustering

Recent advances have proven that multi-view tensor cluster-
ing methods have achieved superior performance over multi-
view matrix ones. This is because they stack the representation
matrices from multiple views as a 3-dimensional tensor to cap-
ture two-dimensional spatial correlation and one-dimensional
view correlation. The seminal works are [1] and [17], both of
which followed the general model

+0¢Z [E" |21

=X Z'+EY, Z=9(Z" 7%, ...,

mm R(Z

sit. X zZVy, (@
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where V' is the number of all views. V features {XV €
R4*n1V_ are to measure the same object. Matrix XV (v =
1,2,...,V) denotes the v-th feature matrix. Z* € R™*" is the
corresponding representation matrix. d,, is the dimension of a
sample vector in the v-th feature matrix. n is the total number of
data points. R(Z) is the regularizer to measure the low-rankness
of the representation tensor Z. For example, the study in [1] used
the unfolding-based tensor nuclear norm, while that in [17] used
the tensor nuclear norm in Eq. (3). Chen et al. [30] used the
Tucker decomposition to capture the low-rankness. Under the
low-rank tensor representation framework, Wu et al. [31] used
the projected graph learning to learn the view-specific affin-
ity matrix, eliminating the curse of high-dimensional data. Xu
et al. [32] imposed the low-rank tensor property on a third-order
tensor, in which each frontal slice is the indicator matrix of the
v-th view. Other followers include [18], [19], [33], [34]. How-
ever, the tensor norm in these methods treats the different sin-
gular values equally, leading to over-penalizing singular values
and the biased estimation.

B. Multi-View Kernel Clustering

Existing multi-view kernel clustering models can be roughly
classified into two categories based on how the kernels are used.
The first category is to use the predefined kernels, such as Lin-
ear kernel, Polynomial kernel, and Gaussian kernel, and then
combine these kernels either linearly or nonlinearly [35]. For
example, reference [36] proposed the kernel-based weighted
multi-view clustering method, in which different weights are im-
posed on several given kernel matrices according to the quality
of view information. Yu et al. [37] integrated the kernel trick with
the traditional k-means algorithm. Huang et al. [38] developed
the auto-weighted multi-view clustering method via kernelized
graph learning, in which similarity relationships were learned
in kernel spaces. The second category is to map non-linear data
into a new feature space, in which the multiple nonlinear features
may reside in several linear subspaces. For instance, in the single
view scenario, both of [23] and [27] adopted the kernel-induced
mapping to handle the nonlinear data and then learned the repre-
sentation from the new feature space. Inherited from the above
idea, Xie et al. [28] developed a kernelized version of [17] to
capture multiple views correlation. Chen et al. [9] used not only
the kernel trick, but also the joint optimization to jointly learn
the kernel representation tensor and affinity matrix.

C. Self-Paced Learning

Self-paced learning [39] and curriculum learning [40] are in-
spired by the learning process of humans/animals, i.e., learning
the model iteratively from easy samples to complex ones in a
self-paced fashion. Due to the advance of avoiding bad local min-
ima and promising performance, self-paced learning has been
widely explored in several fields. For example, Zhao et al. [41]
integrated the self-paced learning with matrix factorization to
handle the structure from motion and background subtraction.
Zhang et al. [42] proposed a self-paced multiple-instance learn-
ing framework for co-saliency detection. Zhou et al. [43] in-
tegrated the self-paced learning and ensemble learning into a
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TABLE I
BASIC NOTATIONS AND THEIR DESCRIPTIONS

Notation Meaning

X, X, x tensor, matrix, vector

x(F) the k-th frontal slice of tensor X’

X = fit(X, [],3) fast Fourier transformation along tube fiber

n, V, dy the number of samples, views, feature dimension
Xv EW) ¢ Rdvxn feature matrix and error of the v-th view

T, wY map function, weight of the v-th view

L ANAREIAS)
(K. f(w,B)
y’ Il e RXnXxXV

operator to form tensor Z € R**nxV
kernel matrices, regularizer for self-paced learning
auxiliary variable, Lagrange multiplier

e(@) exponential function

¥, A B, p parameters

I ll2,0. - le l2,1-norm, Frobenius norm

I l@s || - lloo t-SVD-nuclear norm, infinity norm

unified framework for ensemble clustering. Xu et al. [44] ex-
plored the self-paced learning for multi-view clustering.

Besides the aforementioned methods, there are also some
other related works. For example, the study in [45] developed
the enhanced tensor robust principal component analysis model
for image recovery. Zhang et al. [46] solved the MVSC in the la-
tent space. Due to the outstanding representation capacity, Wang
et al. [47] proposed a deep MVSC method by unified and dis-
criminative learning. Similarly, Xia ef al. [48] developed the
multi-view self-supervised graph convolutional clustering net-
work. Considering its comprehensive representation, multi-view
learning has recently been received substantial attentions in dif-
ferent applications including large-scale multimedia search [49],
[50], large-scale effective ensemble adversarial attacks [51], 3-D
object retrieval and classification [52].

III. PRELIMINARIES

We aim to develop an enhanced low-rank tensor represen-
tation to well describe the low-rankness of the representation
tensor. Thus, we start with some definitions that will be used
to derive the enhanced low-rank tensor norm as defined in Eq.
(4). Some notations are summarized in Table I. For a tensor
X € R™*n2Xns jtg block circular matrix beire(X) and block
diagonal matrix bdiag(X’) are defined as

rTx@®  xyhs) ... x@
x@  x@ .0 x3)
bcirc(X) = ,
| () plns-1) L (D
)
X
bdiag(X) =
X(”a)
The block vectorization is defined as bvec(X) =
[XM);...; xMs)]. The inverse operations of bvec

and bdiag are defined as bvfold(bvec(X)) =X and
bdfold(bdiag (X)) = X, respectively. Let ) € R"2"axns,
The t-product X %)) is an ni X ng X ng tensor, X x ) =
bvfold(bcirc(X) « bvec())). The transpose of X is
XT € Rnzxmixns by transposing each of the frontal slices and
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then reversing the order of transposed frontal slices 2 through
ng. The identity tensor Z € R™ *"1*"s ig a tensor whose first
frontal slice is an nq x n; identity matrix and the rest frontal
slices are zero. A tensor X € R"1*"1*"3 {5 orthogonal if it
satisfies X7 « X =X« X7 =7T.

Definition 3.1: (t-SVD) Given X, its t-SVD is defined as

X=UxGVT,

where U € R"*"1>X"s gpnd ) € R"2*"2*"3 are orthogonal ten-
sors, G € R™*™2%"s ig an f-diagonal tensor. Each of its frontal
slices is a diagonal matrix.

The main purpose of t-SVD is to make the tensor decomposi-
tion similar to that of the matrix singular value decomposition.
After that, the tensor multirank and its convex surrogate, i.e.,
tensor nuclear norm can be defined as follows:

Definition 3.2: (Tensor multirank) The multirank of a tensor
X € R"*n2Xms g a vector whose i-th element is the rank of
the i-th frontal slice of X.

Definition 3.3: (Tensor nuclear norm) The tensor nuclear
norm || Z|| g of atensor Z € R™ *"2%"s jg defined as the average
of the singular values of all the frontal slices of Z ,Le.,

ns
1

- z (k)
1IZlle = s D IEPL. ®)

k=1

The above tensor nuclear norm has been widely in [17], [19],
[28] for MVSC.

IV. THE PROPOSED SETKMC MODEL

In this section, we propose the SETKMC model, and then
solve SETKMC using the alternating direction method of mul-
tipliers (ADMM) and the difference of convex method.

A. Proposed SETKMC

Since the existing MVSC methods are introduced to handle
data points drawn from multiple linear subspaces, they may not
produce competitive performance when data points are from
nonlinear subspaces. To overcome this limitation, the studies
in [23], [28] adopted the kernel trick to deal with the single-view
clustering and multi-view clustering tasks, respectively. Refer-
ence [23] seeks a low-rank matrix representation using the ma-
trix nuclear norm while Reference [28] seeks a low-rank tensor
representation using the tensor nuclear norm defined in Eq. (3).
However, both of them ignore the fact that the matrix and tensor
nuclear norms are proved to overestimate the nonzero singular
values since they impose the equal weights on the larger and
smaller singular values. Besides, both of them fail to consider
the differences among samples due to noise and outliers. Mo-
tivated by the promising performance of the recently proposed
nonconvex penalty functions [20], [21], [53], we propose a novel
MVSC method using the self-paced enhanced low-rank tensor
kernerlized representation. The enhanced low-rank tensor norm
(ELTN) is defined as

o, (209))

IZlpron =) > (1—e 7 ), “)
P
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where e(*) is the exponential function, o;(Z)) is the i-th sin-
gular value of the j-th frontal slice of Z, ~v > 0 is a constant.
According to Eq. (3), one can see that the equal weights are im-
posed on all singular values, regardless of their values. However,
our ELTN can impose different weights on different singular val-
ues using the exponential function. Thus, the main idea of ELTN
is to estimate the singular values more accurately than the tensor
nuclear norm in Eq. (3).

To overcome the nonlinearity of multi-view features, we fol-
low the kernel theory [26] to map the original data R? into
a high-dimensional kernel Hilbert space H* (usually implicitly
defined). Consequently, each view X" is represented by a kernel
matrix KV € R™*", and the (i, j)-th element of K” is computed
by K =K(z},2y) = () n(zy), where K(x¥,2%) de-
notes the kernel function, 7 is a map function. Based on the above
discussions, the traditional self-representation XV = XV 2" +
E" would be formulated as 7(X?) = m(X"V)Z" 4+ EY, assum-
ing m(X") resides in multiple linear subspaces. Besides, since
each sample may contain the sample-specific error, [10] used
the [5 1-norm to eliminate noises. Thus, the self-representation
can be further expressed as

n

Im(X") = (X2 oq = > (P K PY)T . 5)

i=1

where P = I — Z". Besides, most existing methods use all
samples for multi-view clustering without considering their dif-
ferent credibility [54]. Intuitively, compared with easier reliable
samples, ones infected with noise and outliers should be grad-
ually added to the learning process. To achieve this, we adopt
the self-paced learning theory to learn easy to hard samples.
Accordingly, the proposed SETKMC is formulated as

V n
ZT{H;% I1Zl|eLrN + A; ;wivgv(Piv) + f(w,p)

st. PP=1-2° v=1,2,...,V, (6)
Z=0(72"2%...,2"),
w' = [wi,ws,...,wy] €[0,1]",

where g*(P?) = S (p?" K¥p?)'/? is derived from Eq. (5).
w? is composed of the weights of n samples in the v-th view.
Parameter 5 > 0 is to control the speed of samples.

To well understand the proposed SETKMC model in Eq. (6),

several remarks are shown as follows:

e Without considering the self-paced learning theory to han-
dle the third challenge as discussed in the Introduction
section, our SETKMC model will reduce to the following
ETKMC model:

v
%I%IHZ”ELTNJr)»ZQU(PU)
> = @)
st. PP=1—-2", v=1,2,...,V,

Z=0(z",2%...,2").

This paper will evaluate the clustering performance of both
SETKMC in Eq. (6) and ETKMC in Eq. (7) in the next
section.
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e When we replace our ELTN with the traditional tensor nu-
clear norm in Eq. (3) and without considering the self-pace
learning, our SETKMC will reduce to the method in [28]
which is emerged as our main competitor.

e Operator ®(-) aims to construct the representation tensor
Z by storing all Z", such that the spatial pair-wise cor-
relations and view relationships among multiple views are
well encoded. Then tensor Z was imposed by the enhanced
low-rank tensor norm to explore the low-rank tensor repre-
sentation. Function ¢ (-) is determined by the kernel type
to handle the nonlinearity of multi-view features. Function
f(w, B) is called the regularizer determining the examples
and views to be selected during training. In summary, the
proposed SETKMC model addresses the above three chal-
lenges simultaneously for multi-view subspace clustering.

e Note that our SETKMC and ETKMC obtain the clus-
tering results by performing the spectral clustering al-
gorithm [16] on the affinity matrix S defined as S =

T
v (2 +127).

B. Optimization of SETKMC

Both SETKMC and ETKMC models can be solved by the
traditional ADMM. We first solve the SETKMC model. To ad-
dress the inseparability of variable Z, we introduce one auxil-
iary variable ). Then, the constrained SETKMC model in Eq.
(6) is transformed to the following unconstrained augmented
Lagrangian function:

V. n
L,V 2, Pw)=|Vllerrn+r D> > wig"(P)+f(w,B)
v=1 i=1
II v ., ©Y
+£ (Z—y+p|%+2|f—z - P +p||%>,

®)
where O and II are Lagrange multipliers. p is the non-negative
penalty parameter. Following the alternative update strategy, Eq.
(8) can be divided into the following four subproblems: "
Update )Y: We minimize Eq. (8) with respect to ) and fix the
other variables:

' = argminy |Vl prry + SV - TIE ©

where 7 = Z + % Since our ELTN in Eq. (4) is nonconvex, we
cannot directly yield the closed-form solution of Eq. (9). Inspired
by [17], [18], we first rotate ) € RV jnto Y € RV,
transform Eq. (9) into the frequency domain, and separate n
problems whose j-th problem is

1%
. 1 . 1 .. ~ .
N :argnf;i_n; E P(0i(37),7) + §||3” - T%, 10
(|

where ) = fft(), [], 3). )7 is the j-th frontal slice of ). Con-
sidering the nonascending order of singular values and the anti-
monotone property of gradients of the exponential function, we

! For simplicity, the iteration number k is omitted in the updates of all variables.
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have
0 < Vo(oh,7) < Vo(ah,7) <--- < Ve(ok,v), (1)
B0 (V7),7) < ¢(af,7) + Vo(oF, ) (0:(7) — aF), (12)

where o denotes the i-th singular value of Y7. V(o¥, v) is the
gradient of ¢(c;()7), ) at o¥. Eq. (12) is derived by the super-
gradient definition of the concave function [55]. Accordingly,
Eq. (10) is relaxed into

1%
Vi, =argmin =Y ¢(oF,5) +
yroPi4

A 1, ~. o
o7, V@i 7) —ol) + IV =T NE (3)

The optimal solution of Eq. (13) can be yielded by the general-
ized weighted singular value thresholding (WSVT) [55].

Update Z: We minimize Eq. (8) with respect to Z and fix the
other variables:

* : 1 v v
Z =argmmz\|3—3’+;\\%+ZHZ —M|%, (14

where MV =1 — PV + %. Obviously, it is a quadratic opti-
mization problem about Z". Setting its derivative to zero, the
closed-form solution of Eq. (14) is Z¥ = 0.5 % (Y¥ — HT +
M'U)'

Update P": We minimize Eq. (8) with respect to P and fix
the other variables:

v* . - v v v P v v |12
PY = v A 7" (P —||P" = F"||%. (15
wgminp. 3wt " (P) + 5 I as)
where F* =1—- 2"+ %. The optimal solution can be ob-
tained from [9], [28].
Update w: We update the sample weights in the v-th view w”

by minimizing Eq. (13), which can be separated into n smaller

scale subproblems:
w! = argmin . w?g"(PY) 4+ f(w?, B), (16)

where f(w?, ) is the popular soft weight regularizer [44] in-
stead of the original hard weights. f(w?, 3) is defined as

he

@i, 8) = (1 e 7 —wp)(HHe T )< - =L

The optimal w}" of the i-th sample in the v-th view can be ob-
tained by setting the gradient with respect to w; to zero, i.e.,

1+67%

YR "

v
Wi

Finally, Lagrangian multipliers ©, IT and penalty parameter
p are updated by

0V =0+ p(I — Z° — PY);
=1+ p(Z - Y);

pr= miH{T * P, pmam}~ (18)
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Algorithm 1: SETKMC for Multi-View Subspace Cluster-
ing.

Input: multi-view kernel matrices {K"}Y_,; parameters:
Yy Ay B
Initialize: ), Z, P, O, Il initialized to 0; p = 1073,
T=15e€e=10";
1:  while not converged do
2: forv=1toV do

3: Update Y, Z", PY, w" by Eqgs. (13), (14), (15),
and (17), respectively;

4: end for

5: Update ©%, I1, and p by Eq. (18);

6: Check the convergence condition

7

maX{ 1 Zk11 — Virilloos 1)

<e€
11—z ;i’+1||oo} -
8: end while

k4+1
QOutput:Representation tensor Z.

wherel < 7 < @ is to facilitate the convergence speed [56].
Pmaz 18 the max value of the penalty parameter p. Algorithm 1
summarizes the whole procedures of our SETKMC model in
Eq. (6).

C. Optimization of ETKMC

By introducing one auxiliary variable )/ to make variable Z
separable, the augmented Lagrangian function of the ETKMC
model in Eq. (7) is

I
£, 2,P) = Wlprry + 512 =Y+ i+

@1)
3 (Xg”(P”) + gIII ~Z°-P’+ pll%) - (19

v

Due to the page limitation, we give only the sub-problems of
ETKMC different from these of SETKMC.

Update P": We minimize Eq. (19) with respect to P” and fix
the other variables:

P = argmin . ig”(P") + §||P” —FU2. (20)
The difference between Eqs. (15) and (20) is that the ETKMC
model does not take weights on ¢g¥(P") into consideration.
Meanwhile, solving Eq. (19) does not involve solving the weight
subproblem like Eq. (16).

D. Differences With Existing Works

It can be seen clearly that our approach in Eq. (6) integrates
the low-rank tensor representation, the kernel trick, and the
self-paced learning into a unified model. From the discussions in
Section II and the paradigm, these highly related works include
multi-view tensor clustering methods [1], [17]-[19], [32], [33],
[45], multi-view kernel clustering ones [9], [28] and self-paced
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learning-based ones [43], [44]. One significant difference be-
tween our approach and them is that existing methods merely
consider to solve only one or two of the above-mentioned three
challenges while our SETKMC addresses all three challenges
in one unified model. Specifically,

¢ Differences with the methods in [1], [9], [17]-[19], [28],
[33]: Although these existing methods utilized the low-
rank tensor representation to capture the high-order cor-
relations among all views, the tensor nuclear norm may
result in over-penalizing singular values and the biased es-
timation. Instead of treating all singular values equally, our
SETKMC and ETKMC use the enhanced low-rank tensor
norm to explicitly consider the salient differences between
singular values.

¢ Differences with the methods in [32], [45]: The methods
in [32], [45] and our SETKMC and ETKMC share the simi-
lar idea using different and enhanced tensor nuclear norms
to overcome the biased estimation of the tensor nuclear
norm. However, [45] aims to handle the image recovery and
background modeling tasks. The work [32] assigns a rea-
sonable weight to the indicator matrix of each view while
our SETKMC and ETKMC impose the low-rank constraint
on the self-representation tensor. Besides, our SETKMC
and ETKMC also integrate the self-paced learning and the
kernel trick for multi-view clustering.

e Differences with the methods in [49]-[52]: These exist-
ing methods and our SETKMC and ETKMC follow the
same mechanism to make full use of the consistency and
complementary information among multiple views. How-
ever, our SETKMC and ETKMC explore the problem of
multi-view subspace clustering while these existing they
are to solve the problems of large-scale multimedia search,
large-scale effective ensemble adversarial attacks, and 3-D
object retrieval and classification.

V. EXPERIMENTAL RESULTS

The main aim of multi-view clustering is to partition unla-
beled data points into their corresponding clusters by exploiting
the multi-view information. This means that multi-view fea-
tures and evaluation metrics are indispensable to evaluate the
multi-view clustering methods. As a result, we first introduce
seven real-world datasets in Section V-A-(1), each of which ex-
tracts several different types of features. In Section V-A-(2),
we also selected 15 state-of-the-art multi-view clustering meth-
ods to verify the effectiveness of the proposed SETKMC and
ETKMC algorithms. Following [4], [9], [17], Section V-A-(3)
reports six evaluation metrics including accuracy (ACC), nor-
malized mutual information (NMI), adjusted rank index (AR),
Fscore, Precision, and Recall. Finally, we analyse the proposed
SETKMC including parameter selection and numerical conver-
gence.

A. Experimental Settings

(1) Databases: We selected seven real-world databases as
testing data. They are StillDB, ORL, Flowers, COIL-20, Ex-
tended YaleB, CMU-PIE-15 and 100leaves. StillDB [59] is a
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TABLE II
SUMMARY OF THESE SEVEN REAL MULTI-VIEW DATASETS
Category Dataset Instance | View | Cluster
Action image StillDB 467 3 6
Face image ORL 400 3 40
Face image YaleB 640 3 10
Face image CMU-PIE-15 1020 3 68
Flower image Flowers 1360 3 17
Object image COIL_20 1440 3 20
Leaves 100leaves 1600 3 100

LT-MSC

tSVDMSC KtSVDMSC ETKMC

Fig. 1. Comparison of affinity matrices learned by LT-MSC [1], LMSC [7],
GLTA [2], tSVD [17], KtSVD [28], and our ETKMC on ORL database. The
figure is viewed better in zoomed PDF.

still image database for action recognition including 467 im-
ages belonging to 6 categories. ORL? is a face image database
containing 400 face images with 40 different subjects. Flowers®
is a flower database which consists of 1360 samples totally with
17 species. COIL-20" is an object image database which con-
tains 1440 object images taken by a camera from 72 different
angles. Extended YaleB? is a face image database with 640 face
images of 10 people. All of them are captured under different
lighting conditions. Following [1], there are three types of fea-
tures, including 2500 d Intensity, 3304 d LBP, and 6750 d Ga-
bor. CMU-PIE-15 is a subset of the multi-view face CMU-PIE
dataset. It is composed of 68 subjects and 1020 images in total.
Following [60], Intensity, LBP and HOG are used as three types
of features. 100leaves® is made up of 1600 samples from 100
plant species. For each sample, three types of features are ex-
tracted as multi-view data, including the shape descriptor, fine
scale margin and texture histogram. We also summarize the de-
tails of these seven databases in Table II.

(2) Baselines: We compare the proposed SETKMC with
the following fifteen state-of-the-art multi-view clustering base-
lines. The details of them are given as follows: (1) RMSC [11]:

2[Online]. Available: http://www.uk.research.att.com/facedatabase.html

3[Online]. Available: http://www.robots.ox.ac.uk/vgg/data/flowers/

4[Online]. Available: http://www.cs.columbia.edu/CAVE/software/softlib/

5[Online]. Available: http://vision.ucsd.edu/.leekc/ExtYaleDatabase/ExtYaleB.
html

6[Online]. Available: https://archive.ics.uci.edu/ml/datasets/One-hundred+
plant+species+leaves+data+set
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(a) StillDB
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(e) Flowers (f) 100leaves

Fig.2. ACC value of our SETKMC with different combinations of A and « on
(a) StillDB, (b) ORL, (¢) YaleB, (d) CMU-PIE-15, (e) Flowers, and (f) 100leaves
database.
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Fig. 3. Convergence (error, ACC and NMI) versus iteration of the proposed

SETKMC algorithm.

performing the Markov chain spectral clustering on the shared
low-rank representation matrix via low-rank and sparse de-
composition; (2) DIMSC [6]: adopting the Hilbert-Schmidt
Independence criterion to enforce the diversity of different
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TABLE III
MEAN CLUSTERING RESULTS ON STILLDB AND ORL DATASETS
StillDB

Method ACCYT NMIt ARt F-score Precisiont Recallf

RMSCI[11] 0.305+0.010 | 0.089+0.009 | 0.0734+0.011 | 0.22140.002 | 0.2314+0.004 | 0.219£0.002
DiMSC[6] 0.323+0.002 | 0.1224+0.008 | 0.08340.001 | 0.24940.000 | 0.2354+0.004 | 0.256+0.002
LT-MSC[1] 0.3424+0.002 | 0.136+0.002 | 0.0904+0.001 | 0.25240.002 | 0.24340.001 | 0.261£0.003
MLANI57] 0.349+0.000 | 0.138+0.000 | 0.0984+0.000 | 0.27240.000 | 0.24240.000 | 0.310£0.000
LMSC[7] 0.32740.003 | 0.136+0.003 | 0.08440.011 | 0.26940.005 | 0.2354+0.007 | 0.247+0.012
GLTA[2] 0.3661+0.007 | 0.12640.005 | 0.102£0.005 | 0.262+0.003 | 0.251+0.004 | 0.2754+0.003
tSVD[17] 0.34740.010 | 0.13040.004 | 0.088+0.003 | 0.255+0.004 | 0.239+0.002 | 0.273+0.006
ETLMSC[18] || 0.604+0.043 | 0.5204+0.015 | 0.42340.029 | 0.523+0.024 | 0.518+0.022 | 0.528+0.027
RMSL[58] 0.356+0.003 | 0.13140.001 | 0.09040.002 | 0.24340.001 | 0.24740.001 | 0.240+0.002
KtSVD[28] 0.764+0.001 | 0.58940.002 | 0.54640.003 | 0.6234+0.002 | 0.6334+0.002 | 0.613£0.002
JLMVCI[9] 0.776+0.009 | 0.593+0.010 | 0.5624+0.013 | 0.6364+0.011 | 0.646+0.011 | 0.625+0.012
LRTG[30] 0.369+0.002 | 0.1274+0.001 | 0.09940.001 | 0.28140.001 | 0.23940.001 | 0.340+0.001
GNLTA[34] 0.630+0.030 | 0.528+0.019 | 0.44440.022 | 0.54140.018 | 0.5304+0.018 | 0.552+0.019
UGLTL[31] 0.299+0.002 | 0.079+0.006 | 0.0434+0.001 | 0.208+0.001 | 0.207+0.001 | 0.209+0.001
LTCPSC[32] 0.371+0.006 | 0.160+0.003 | 0.1054+0.004 | 0.25640.003 | 0.260+0.004 | 0.253+0.003
ETKMC 0.7884+0.002 | 0.61840.002 | 0.582+0.004 | 0.653+0.003 | 0.663+0.003 | 0.643+0.004
SETKMC 0.8054+0.003 | 0.65440.004 | 0.618+0.004 | 0.683+0.004 | 0.693+0.004 | 0.673+0.004

ORL

RMSCI[11] 0.723+0.007 | 0.872+0.012 | 0.6454+0.003 | 0.65440.007 | 0.60740.009 | 0.709+0.004
DiMSC[6] 0.838+0.001 | 0.940+0.003 | 0.80240.000 | 0.80740.003 | 0.76440.012 | 0.856+0.004
LT-MSC[1] 0.7954+0.007 | 0.93040.003 | 0.75040.003 | 0.768+0.004 | 0.766+0.009 | 0.83740.005
MLAN[57] 0.7054+0.022 | 0.85440.018 | 0.384+0.010 | 0.376+£0.015 | 0.254+0.021 | 0.721+0.020
LMSC[7] 0.8774+0.024 | 0.95040.006 | 0.839+0.021 | 0.843+0.021 | 0.805+0.026 | 0.884+0.016
GLTA[2] 0.847+0.025 | 0.9284+0.008 | 0.79440.022 | 0.79940.021 | 0.768+0.027 | 0.833+£0.017
tSVD[17] 0.970+0.003 | 0.9931+0.002 | 0.96740.002 | 0.9684+0.003 | 0.946+0.004 | 0.991£0.003
ETLMSC[18] || 0.946+0.018 | 0.986+0.005 | 0.9424+0.020 | 0.9434+0.019 | 0.918+0.026 | 0.970+£0.014
RMSL[58] 0.895+0.010 | 0.960+0.002 | 0.868+0.011 | 0.87240.011 | 0.8424+0.018 | 0.903+0.004
KtSVD[28] 0.971+0.021 | 0.994+0.007 | 0.97240.022 | 0.97240.022 | 0.95640.027 | 0.991£0.017
JLMVCI[9] 0.983+0.018 | 0.996+0.004 | 0.98340.018 | 0.98440.017 | 0.9734+0.028 | 0.994+0.006
LRTG[30] 0.933+0.003 | 0.970+0.002 | 0.90540.005 | 0.9084+0.005 | 0.888+0.004 | 0.928+0.007
GNLTA[34] 0.910+0.041 | 0.977+0.011 | 0.90440.049 | 0.9064+0.048 | 0.861+0.068 | 0.957+0.021
UGLTL[31] 0.9244+0.028 | 0.970+0.013 | 0.91240.033 | 0.9134+0.032 | 0.88740.041 | 0.941+0.024
LTCPSC[32] 0.9834+0.015 | 0.9964+0.003 | 0.982+0.016 | 0.982+0.016 | 0.968+0.027 | 0.996+0.004
ETKMC 0.9904+0.016 | 0.99340.005 | 0.989+0.016 | 0.990+0.016 | 0.984+0.025 | 0.996+0.006
SETKMC 0.984+0.017 | 0.993+0.006 | 0.98440.017 | 0.98440.016 | 0.97340.028 | 0.995+0.005
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views for MVSC; (3) LT-MSC [1]: the firstly proposed ten-
sor optimization-based MVSC by the sum of the tensor nu-
clear norm; (4) MLAN [57]: multi-view clustering with adap-
tive neighbours; (5) LMSC [7]: MVSC based on the la-
tent representation; (6) GLTA [2]: learning the representa-
tion tensor and affinity matrix simultaneously for MVSC; (7)
tSVD [17]: the second-representative tensor optimization-based
MVSC via tensor multi-rank minimization; (8) ETLMSC [18]:
learning an essential tensor for MVSC; (9) KtSVD [28]: the
kernel-regularized tSVD; (10) JLMVC [9]: jointly learning
kernel representation tensor and affinity matrix for MVSC;
(11) RMSL [58]: the reciprocal multi-layer subspace learn-
ing for MVSC; (12) LRTG [30]: low-rank tensor graph lear-
ing for MVSC; (13) GNLTA [34]: generalized nonconvex
low-rank tensor approximation for MVSC; (14) UGLTL [31]:
unified garph and low-rank tensor learning for MVSC; (15)
LTCPSC [32]: low-rank tenor constrained co-regularized multi-
view spectral clustering. In summary, they are roughly grouped
as convex matrix optimization-based methods (RMSC, DiMSC,
MLAN, LMSC), convex tensor optimization-based ones
(LT-MSC, GLTA, tSVD, ETLMSC, KtSVD, JLMVC, UGLTL),
kernel ones (KtSVD, JLMVC), and deep multi-view clustering
one (RMSL).

(3) Evaluation metrics: Following the experimental setting
in [1], [17], we select six popular clustering metrics to evalu-
ate the clustering performance, including accuracy (ACC), nor-
malized mutual information (NMI), adjusted rank index (AR),
Fscore, Precision, and Recall. The details of these six metrics
can be founded in [17]. Note that the higher values of these six
metrics demonstrate the better clustering performance. We fol-
lowed the parameter settings of all competitors and performed
each experiment ten times to eliminate the randomness pertur-
bation since most competitors and the proposed ETKMC and
SETKMC models perform the K-means algorithm to yield the
clustering results.

B. Clustering Performance Results

The multi-view clustering results of all methods on those
seven databases are reported in Tables III-VI, in which each
entry represents the mean values with standard deviations for
ten times experiments. For each database, the best results are
marked in red while the second-best ones are marked in blue.

It can be clearly observed that the proposed SETKMC and
ETKMC achieve the better performance in most cases compared
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TABLE IV
MEAN CLUSTERING RESULTS ON FLOWERS AND COIL-20 DATASETS
Flowers

Method ACCt NMIT ART F-scoref Precision? Recallf

RMSC[11] 0.3854+0.016 | 0.396+0.014 | 0.231+£0.019 | 0.249+0.011 | 0.2344+0.012 | 0.25640.010
DiMSCI6] 0.4344+0.014 | 0.4424+0.011 | 0.266+0.009 | 0.310+0.008 | 0.3024+0.007 | 0.318+0.010
LT-MSC[1] 0.4764+0.012 | 0.478+0.008 | 0.313+£0.009 | 0.354+0.008 | 0.3474+0.009 | 0.36140.008
MLAN[57] 0.50140.008 | 0.532+0.003 | 0.331+£0.010 | 0.373+£0.009 | 0.3454+0.010 | 0.40440.006
LMSC[7] 0.44240.009 | 0.444+0.009 | 0.275+0.007 | 0.318+0.012 | 0.3124+0.011 | 0.3254+0.011
GLTA[2] 0.52440.018 | 0.530£0.011 | 0.369+0.014 | 0.407+0.013 | 0.3954+0.013 | 0.41940.013
tSVD[17] 0.8364+0.005 | 0.852+0.002 | 0.766+0.002 | 0.780+0.002 | 0.77240.002 | 0.78940.002
ETLMSCI18] 0.8114+0.066 | 0.8744+0.025 | 0.7634+0.057 | 0.7784+0.054 | 0.7484+0.064 | 0.81040.041
RMSL[58] 0.51140.006 | 0.490+0.007 | 0.332+0.010 | 0.372+0.005 | 0.3614+0.008 | 0.38440.011
KtSVD[28] 0.9634+0.030 | 0.950+0.013 | 0.933+0.033 | 0.9374+0.031 | 0.93440.037 | 0.93940.024
JLMVC[9] 0.9654+0.010 | 0.9504+0.007 | 0.9304+0.015 | 0.9344+0.014 | 0.9324+0.016 | 0.93740.011
LRTG[30] 0.55040.011 | 0.555£0.003 | 0.389+0.007 | 0.427+0.006 | 0.4054+0.007 | 0.45240.007
GNLTA[34] 0.84540.058 | 0.895+0.029 | 0.808+0.058 | 0.819+0.055 | 0.7914+0.062 | 0.85040.049
UGLTL[31] 0.977£0.002 | 0.965+0.003 | 0.9534+0.004 | 0.956+0.004 | 0.955+0.004 | 0.956+0.004
LTCPSCJ[32] 0.91240.003 | 0.866+0.003 | 0.823+0.005 | 0.833+0.005 | 0.8304+0.005 | 0.83640.004
ETKMC 0.97540.002 | 0.956+0.001 | 0.947+0.004 | 0.950+0.004 | 0.9504+0.004 | 0.95140.004
SETKMC 0.98140.002 | 0.970£0.002 | 0.959+0.003 | 0.961+0.003 | 0.961+0.003 | 0.96240.003

COIL-20

RMSCJ11] 0.68540.045 | 0.800£0.017 | 0.637+0.044 | 0.656+0.042 | 0.6201+0.057 | 0.6984+0.026
DiMSC[6] 0.77840.022 | 0.846+0.002 | 0.732+0.005 | 0.745+0.005 | 0.7394+0.007 | 0.75140.003
LT-MSC[1] 0.80440.011 | 0.860+0.002 | 0.748+0.004 | 0.760+0.007 | 0.7414+0.009 | 0.77640.006
MLAN[57] 0.86240.011 | 0.961£0.004 | 0.835+0.006 | 0.844+0.013 | 0.7584+0.008 | 0.95340.007
LMSCJ[7] 0.7494+0.018 | 0.866+0.006 | 0.699+0.025 | 0.715+0.023 | 0.6554+0.041 | 0.79040.017
GLTA[2] 0.8784+0.008 | 0.9454+0.001 | 0.8694+0.007 | 0.8754+0.007 | 0.8564+0.013 | 0.89540.001
tSVD[17] 0.83040.000 | 0.884=+0.005 | 0.786+0.003 | 0.800+0.004 | 0.78540.007 | 0.80840.001
ETLMSCI18] 0.87740.065 | 0.947+0.024 | 0.862+0.057 | 0.869+0.054 | 0.8304+0.065 | 0.91440.045
RMSL[58] 0.82240.014 | 0.941£0.013 | 0.811£0.004 | 0.812+0.017 | 0.9054+0.010 | 0.8894-0.008
KtSVDI[28] 0.94040.008 | 0.967+0.005 | 0.928+0.012 | 0.932+0.011 | 0.9304+0.013 | 0.93440.010
JLMVC[9] 0.94540.037 | 0.970£0.010 | 0.937+0.033 | 0.940+0.042 | 0.9404+0.043 | 0.94140.042
LRTG[30] 0.92740.000 | 0.976+0.000 | 0.928+0.000 | 0.932+0.000 | 0.9054+0.000 | 0.96140.000
GNLTA[34] 0.90840.032 | 0.972+0.019 | 0.914+0.027 | 0.918+0.025 | 0.8834+0.035 | 0.95640.019
UGLTL[31] 1.000+0.000 | 1.0004+0.000 | 1.00040.000 | 1.000£0.000 | 1.000+£0.000 | 1.000+0.000
LTCPSC[32] 0.99040.021 | 0.990+0.008 | 0.984+0.021 | 0.985+0.020 | 0.98240.030 | 0.98940.009
ETKMC 0.96840.039 | 0.996+0.000 | 0.962+0.043 | 0.964+0.041 | 0.95740.048 | 0.9704+0.034
SETKMC 0.99340.033 | 0.994+0.003 | 0.987+£0.006 | 0.988+0.006 | 0.9874+0.006 | 0.98840.006

with their competitors. This directly demonstrates the superior-
ity and effectiveness of the proposed enhanced low-rank tensor
representation for MVSC.

(1) Our SETKMC and ETKMC Versus KtSVD: Specifically,
our ETKMC improves by 2.4%, 1.9%, 1.2%, 2.8%, 5.0%, 3.6%,
and 0.8% with respect to ACC metric on all databases over the
runner-up (KtSVD), respectively. While, the improvement of
our SETKMC over KtSVD is around 4.1%, 1.3%, 1.8%, 5.3%,
6.8%, 3.1%, and 1.1% in term of ACC, respectively. The reason
is that our proposed enhanced low-rank tensor norm can capture
the better low-rankness of the representation tensor against the
convex matrix and tensor nuclear norms. In contrast, KtSVD
adopted the off-the-shelf tensor nuclear norm without consider-
ing the different contributions of different singular values. This
can be further verified in Fig. 1 which gives the comparison
of affinity matrices learned by several competitors and the pro-
posed ETKMC. Ideally, the block-diagonal elements in affinity
matrices should be nonnegative while other elements should
be zero. Following this criterion, we can see that LT-MSC,

LMSC, and KtSVD cannot well characterize the cluster struc-
ture since they do not satisfy this block diagonal property. The
learned affinity matrix of ETKMC has better block diagonal
property against these of LT-MSC, LMSC, GLTA, tSVD, and
KtSVD.

(2) Our SETKMC and ETKMC Versus Deep method: Our
SETKMC and ETKMC have yielded the consistently better
performance than RMSL, the recently proposed deep MVSC
method. This also demonstrates the advantage of the proposed
SETKMC and ETKMC. The possible reason may be that the
performance of deep learning-based methods often relies heav-
ily on a large number of training samples.

(3) Kernel trick Versus No-kernel trick: KtSVD, JLMVC and
our SETKMC and ETKMC are based on the kernel trick to deal
with the data from nonlinear subspaces. Other competitors be-
long to no-kernel trick-based methods. As can be seen, KtSVD,
JLMVC, our SETKMC and ETKMC are the best four methods
among all competitors on most databases. This is because tradi-
tional subspace clustering methods such as LT-MSC, LMSC and
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TABLE V
MEAN CLUSTERING RESULTS ON YALEB AND CMU-PIE-15 DATASETS
YaleB

Method ACCT NMIT ART F-scoret Precisiont Recallt

RMSCJ11] 0.2104+0.013 | 0.1574£0.019 | 0.060£0.014 | 0.155+0.012 | 0.151+0.012 | 0.15940.013
DiMSC[6] 0.615+0.003 | 0.636+0.002 | 0.453+0.005 | 0.504+0.006 | 0.481+0.004 | 0.534+0.004
LT-MSC[1] 0.6264+0.010 | 0.63740.003 | 0.459+0.030 | 0.521£0.006 | 0.485+0.001 | 0.53940.002
MLAN[57] 0.3464+0.011 | 0.3524+0.015 | 0.093+0.009 | 0.213+0.023 | 0.159+0.018 | 0.3214+0.013
LMSC[7] 0.598+0.005 | 0.568+0.004 | 0.3544+0.007 | 0.423+0.006 | 0.390+0.006 | 0.463+0.005
GLTA[2] 0.6144+0.004 | 0.63140.006 | 0.439+0.007 | 0.497+0.006 | 0.473+0.006 | 0.52440.006
tSVD[17] 0.65240.000 | 0.66740.004 | 0.500£0.003 | 0.550+0.002 | 0.514+0.004 | 0.59040.004
ETLMSC[18] 0.325+0.011 | 0.3074+0.021 | 0.179+0.019 | 0.262+0.017 | 0.2574+0.017 | 0.267+0.017
RMSL|[58] 0.91440.005 | 0.83340.002 | 0.814£0.001 | 0.832+0.001 | 0.826+0.002 | 0.8384+0.001
KtSVDI[28] 0.8964+0.016 | 0.8934+0.015 | 0.813£0.027 | 0.832+0.024 | 0.821+0.024 | 0.84240.024
JLMVC[9] 0.910+0.022 | 0.89740.010 | 0.832+0.019 | 0.849+0.017 | 0.837+0.019 | 0.860+0.015
LRTG[30] 0.95440.000 | 0.90540.000 | 0.899+0.000 | 0.909+0.000 | 0.908+0.000 | 0.91140.000
GNLTA[34] 0.2184+0.018 | 0.1514£0.015 | 0.070£0.006 | 0.163+0.006 | 0.161+0.005 | 0.1634+0.007
UGLTL[31] 0.338+0.006 | 0.3444+0.005 | 0.1524+0.003 | 0.2424+0.002 | 0.2244+0.002 | 0.264+0.003
LTCPSC[32] 0.93640.006 | 0.90840.006 | 0.869+0.010 | 0.883+0.010 | 0.879+0.010 | 0.886+0.009
ETKMC 0.94640.002 | 0.92840.002 | 0.891£0.003 | 0.902+0.003 | 0.895+0.003 | 0.908+0.003
SETKMC 0.964+0.017 | 0.973+£0.008 | 0.9284+0.035 | 0.9354+0.031 | 0.92940.035 | 0.94240.027

CMU-PIE-15

RMSCJ11] 0.28240.010 | 0.56840.008 | 0.137+0.011 | 0.150+0.011 | 0.143+0.011 | 0.1584+0.011
DiMSC[6] 0.6734+0.034 | 0.82240.014 | 0.543+0.033 | 0.549+0.032 | 0.515+0.034 | 0.589+0.032
LT-MSC[1] 0.73240.015 | 0.85640.009 | 0.615£0.020 | 0.621+£0.020 | 0.583+0.023 | 0.664+0.018
MLAN([57] 0.37940.010 | 0.671£0.007 | 0.252+0.013 | 0.263+0.012 | 0.251+0.013 | 0.27740.011
LMSC[7] 0.75440.023 | 0.85840.009 | 0.599+0.017 | 0.605+0.013 | 0.562+0.015 | 0.6854+0.021
GLTA[2] 0.70840.020 | 0.84440.010 | 0.586+£0.028 | 0.592+0.027 | 0.555+0.028 | 0.63440.028
tSVD[17] 0.88340.014 | 0.94140.005 | 0.817£0.017 | 0.820+0.016 | 0.780+0.020 | 0.8634+0.013
ETLMSC[18] 0.6454+0.025 | 0.80840.013 | 0.525£0.027 | 0.532+0.026 | 0.494+0.030 | 0.57740.024
RMSL[58] 0.7544+0.005 | 0.858+0.001 | 0.646+0.001 | 0.6514+0.001 | 0.620+0.002 | 0.68440.001
KtSVDI[28] 0.89740.009 | 0.94840.004 | 0.840+£0.015 | 0.843+0.015 | 0.809+0.022 | 0.88040.008
JLMVC[9] 0.91640.013 | 0.9674+0.006 | 0.894+0.016 | 0.895+0.015 | 0.866+0.020 | 0.926+0.013
LRTG[30] 0.80740.009 | 0.88140.002 | 0.547+0.033 | 0.554+0.032 | 0.452+0.041 | 0.72040.003
GNLTA[34] 0.63940.030 | 0.80540.012 | 0.519£0.024 | 0.526+0.024 | 0.487+0.025 | 0.57240.025
UGLTL|[31] 0.4964+0.010 | 0.6704+0.008 | 0.318+0.008 | 0.3284+0.007 | 0.310+0.008 | 0.348+0.009
LTCPSC[32] 0.718+0.016 | 0.843+0.006 | 0.478+0.045 | 0.487+0.043 | 0.398+0.054 | 0.635+0.012
ETKMC 0.933+0.012 | 0.973+£0.004 | 0.919+0.012 | 0.91940.012 | 0.8884+0.019 | 0.95340.006
SETKMC 0.92840.012 | 0.97740.003 | 0.913£0.012 | 0.914+0.012 | 0.881+0.019 | 0.95140.006
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tSVD are under the assumption that data samples are generated
from several linear subspaces.

(4) Tensor optimization Versus Matrix optimization: Gener-
ally, these tensor optimization-based methods (LT-MSC, GLTA,
tSVD, ETLMSC, KtSVD, JLMVC, UGLTL, LTCPSC, our
SETKMC and ETKMC) outperform the matrix optimization-
based methods including RMSC, DiMSC, LMSC, owing to the
capture of multi-dimensional structure of the representation ten-
Sor.

C. Model Analysis

(1) Parameter selection: There are three parameters in
SETKMC model in Eq. (6), including , A, and 3. Here, we take
SETKMC as an example. In all experiments, we set 8 = 0.5.
Thus, two free parameters v and A are numerically selected
from the range in [1, 2] and [0.01, 0.1], respectively. We con-
duct a sensitivity test for different combinations of + and A in

Fig. 2. One can see that our SETKMC achieves promising per-
formance under different values of parameters v and A. For ex-
ample, ACC values of SETKMC are higher than these of the first
four competitors on the ORL and Flowers databases. Generally,
SETKMC is relatively robust to parameter . The best ACC is
obtained when parameter A falls in a range [0.01,0.05].

(2) Numerical convergence: Since it is intractable to guaran-
tee the theoretical convergence when the variables are more than
two and the objective function is nonconvex, we investigate the
numerical convergence of the proposed SETKMC algorithm. We
show the relative errors versus iterations in Fig. 3. Since the ACC
and NMI values versus iterations may demonstrate the numeri-
cal convergence of the algorithm to some extent, we also show
them in Fig. 3. One can see that, with the iterations increasing,
the ACC and NMI curves generally go up and achieve stable after
reasonable fluctuations. The proposed SETKMC quickly con-
verges within approximately 40 iterations on all testing datasets.
This demonstrates that the proposed SETKMC algorithm has
good numerical convergence.
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TABLE VI
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MEAN CLUSTERING RESULTS ON 100LEAVES DATASET

100leaves

Method ACCt NMIT AR?T F-scoref Precision? Recallf

RMSCJ11] 0.71140.026 | 0.87540.008 | 0.630+0.025 | 0.63440.025 | 0.595+0.027 | 0.679+0.022
DiMSC[6] 0.7214+0.024 | 0.8734+0.007 | 0.6384+0.021 | 0.6414+0.021 | 0.6074+0.025 | 0.680+0.018
LT-MSC[1] 0.736+0.007 | 0.8704+0.006 | 0.641+0.012 | 0.6444+0.012 | 0.615+0.012 | 0.6784+0.013
MLAN[57] 0.8834+0.001 | 0.9504-0.001 | 0.8304+0.001 | 0.8234+0.012 | 0.791+0.018 | 0.858+0.007
LMSC[7] 0.766+0.015 | 0.8924+0.004 | 0.686+0.011 | 0.689+0.011 | 0.655+0.013 | 0.725+0.010
GLTA[2] 0.826+0.012 | 0.9264+0.004 | 0.7724+0.011 | 0.775+0.011 | 0.7404+0.014 | 0.813+0.010
tSVD[17] 0.9234+0.014 | 0.9834+0.002 | 0.9214+0.012 | 0.9224+0.012 | 0.883+0.018 | 0.96440.005
ETLMSCI18] || 0.836+0.022 | 0.962+0.005 | 0.838+0.020 | 0.839+0.020 | 0.782+0.028 | 0.905+0.014
RMSL[58] 0.7304+0.004 | 0.8544+0.004 | 0.6184+0.003 | 0.6214+0.004 | 0.5934+0.002 | 0.65340.001
KtSVDI[28] 0.91940.010 | 0.9844-0.002 | 0.92040.009 | 0.92140.009 | 0.880+0.013 | 0.966+0.005
JLMVC[9] 0.9084+0.013 | 0.9794+0.004 | 0.906+0.015 | 0.9074+0.015 | 0.869+0.017 | 0.949+0.013
LRTG[30] 0.876+0.010 | 0.94940.003 | 0.8314+0.009 | 0.8334+0.009 | 0.796+0.011 | 0.8734+0.008
GNLTA[34] 0.85340.020 | 0.96240.006 | 0.846+0.020 | 0.8484+0.020 | 0.7974+0.022 | 0.906+0.018
UGLTLJ[31] 0.9004+0.009 | 0.9654+0.010 | 0.8854+0.012 | 0.8864+0.013 | 0.853+0.013 | 0.9224+0.013
LTCPSC[32] 0.94740.005 | 0.990+0.001 | 0.944+0.007 | 0.945+0.007 | 0.9114+0.013 | 0.98140.002
ETKMC 0.927+0.010 | 0.985+0.003 | 0.92740.010 | 0.928+0.010 | 0.889+0.014 | 0.970+0.007
SETKMC 0.9304+0.012 | 0.98740.005 | 0.9324+0.010 | 0.9324+0.010 | 0.895+0.014 | 0.973+0.006

VI. CONCLUSIONS

In this paper, we developed a novel multi-view subspace clus-
tering (SETKMC) method integrating the enhanced low-rank
tensor representation, the kernel trick and the self-paced learn-

ing.

SETKMC adopted the kernel trick to solve the nonlinearity

problem, proposed the enhanced low-rank tensor norm to better
approximate the tensor rank, such that the learnt representation
tensor can well capture the similarity between data points, and
utilized the self-paced learning to gradually involve instances
from easy to difficult. An effective algorithm was derived by the
alternating direction method of multipliers. Experimental results
have demonstrated that our ETKMC and SETKMC achieved
performance improvement compared to fifteen state-of-the-art
multi-view clustering methods.
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