
4700 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

SimLESS: A Secure Deduplication System Over
Similar Data in Cloud Media Sharing

Mingyang Song , Zhongyun Hua , Senior Member, IEEE, Yifeng Zheng , Member, IEEE,
Tao Xiang , Senior Member, IEEE, and Xiaohua Jia , Fellow, IEEE

Abstract— With the growing popularity of cloud computing,
sharing media data through the cloud has become a common
practice. Due to high information redundancy, media data take
up a significant amount of storage space. Moreover, similar media
data may have the same visual effect, resulting in unnecessary
duplication. Thus, it can greatly improve the cloud storage
efficiency by performing deduplication to the similar media data
stored on the cloud. However, data privacy is a growing concern
in cloud-based service. In this paper, we present SimLESS,
a secure deduplication system for similar data in cloud media
sharing. SimLESS allows the cloud to perform deduplication over
the encrypted similar media data of different distributors while
protecting the confidentiality and ownership of the data. When
uploading a media file, SimLESS allows the distributor to set
a distance threshold, and the cloud performs deduplication only
when there is a file on the cloud whose distance from the file being
uploaded is smaller than the threshold. Additionally, we provide
fine-grained access control for distributors to ensure that only
authorized media consumers can access the data. Furthermore,
our system prevents any distributor from claiming ownership of a
media file using only the tag of a similar file. We formally analyze
the security of SimLESS and implement a system prototype to
evaluate its performance. Our experimental results demonstrate
that the computation and communication costs of SimLESS are
practically affordable.

Manuscript received 31 May 2023; revised 13 August 2023 and 24 January
2024; accepted 24 March 2024. Date of publication 27 March 2024; date
of current version 7 May 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2022YFB3103500, in part by the National Natural Science Foundation of
China under Grant 62071142, in part by Guangdong Basic and Applied Basic
Research Foundation under Grant 2023A1515010714, in part by Guangdong
Provincial Key Laboratory of Novel Security Intelligence Technologies under
Grant 2022B1212010005, in part by Shenzhen Science and Technology
Program under Grant ZDSYS20210623091809029, in part by the Research
Grants Council of Hong Kong under Grant R1012-21 and Grant CityU
11213920. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Antonino Nocera. (Corresponding
author: Zhongyun Hua.)

Mingyang Song and Yifeng Zheng are with the School of Computer
Science and Technology, Harbin Institute of Technology, Shenzhen,
Guangdong 518055, China (e-mail: songmingyang2022@gmail.com;
yifeng.zheng@hit.edu.cn).

Zhongyun Hua is with the School of Computer Science and Technol-
ogy, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China,
and also with Guangdong Provincial Key Laboratory of Novel Security
Intelligence Technologies, Shenzhen, Guangdong 518055, China (e-mail:
huazyum@gmail.com).

Tao Xiang is with the College of Computer Science, Chongqing University,
Chongqing 400044, China (e-mail: txiang@cqu.edu.cn).

Xiaohua Jia is with the Department of Computer Science, City University
of Hong Kong, Hong Kong, China, and also with the School of Computer
Science and Technology, Harbin Institute of Technology, Shenzhen 518055,
China (e-mail: csjia@cityu.edu.hk).

Digital Object Identifier 10.1109/TIFS.2024.3382603

Index Terms— Similar media data, secure deduplication, access
control, cloud media sharing.

I. INTRODUCTION

THE rapidly developed cloud computing technologies
have greatly facilitated the communication between cloud

users [1], [2]. A cloud user can receive information and share
his/her data with other users through cloud servers at anytime
and anywhere [3], [4]. With the easy accessibility and rich
information of media data (e.g., images and videos), users tend
to browse and share media data through cloud services. Nowa-
days, many cloud service providers, such as Google Drive [5],
Dropbox [6], and Alibaba Cloud [7], provide users with data
sharing services, where a distributor can upload his/her data
and share them to some specified consumers. Among these
data, there exist a significant portion of similar media data.
According to the report in [8], about 0.25 billion images
are uploaded on Facebook daily and around 14%-52% data
crawled from a single trail are similar content. Besides, due to
the high information redundancy in media data, similar media
data often present the same visual effect. Thus, deduplicating
similar media data not only benefits the storage efficiency in
cloud media sharing, but also reduces communication cost
for users since they no longer need to upload similar media
files.

Coming with the cloud-based service are the acute privacy
concerns [9], [10]. When uploading the plaintext media data
to the cloud, the private media data are easily gained by
the cloud and even by other unauthorized consumers, which
seriously threatens the confidentiality of the media data and
even the privacy of the media data distributor [11], [12]. Thus,
considering the data confidentiality, the media data distributors
may tend to encrypt their data before uploading them to the
cloud [13], [14]. Besides, the access permission management
should be considered in cloud media sharing. The scheme
should guarantee that only the consumers specified by the
media data distributors can access the media content. As a
result, a secure solution is required in cloud media sharing to
protect the confidentiality of media data as well as allow the
cloud to deduplicate the similar media data.

To date, many secure deduplication schemes over encrypted
data have been developed and these schemes can be divided
into two categories: deduplication over identical data [15],
[16], [17], [18], [19], [20] and deduplication over similar

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7870-2422
https://orcid.org/0000-0002-3529-0541
https://orcid.org/0000-0001-7852-6051
https://orcid.org/0000-0002-9439-4623
https://orcid.org/0000-0001-8702-8302


SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4701

data [21], [22], [23]. To support secure deduplication over
identical data, the users are required to encrypt their data
using some deterministic encryption strategies, including
message-locked encryption (MLE) [15], [16], [17] and key
server-aided MLE [18], [19], [20]. These encryption strategies
derive encryption key from the plaintext itself and thus users
can encrypt identical plaintexts to the same ciphertexts such
that the cloud can perform deduplication. However, these
schemes cannot support similar data deduplication, as slightly
different plaintexts will be encrypted to completely different
ciphertexts. Thus, it requires more delicate designs to achieve
secure deduplication over similar data.

To enable secure deduplication over similar data, several
schemes have been developed [21], [22], [23] but they still
have some drawbacks. The scheme in [21] cannot support data
deduplication across different groups of users. The scheme
in [22] requires previous users to stay online to perform
password-authenticated key exchange (PAKE) with subsequent
users, which is practically unreasonable. To achieve similar
data deduplication in the ciphertext domain, the scheme in [23]
requires users to encrypt their files using only exclusive-OR
(XOR) operation such that similar files can be encrypted to
similar ciphertexts for deduplication. Since a same key is
used to encrypt all the blocks of a file, the XOR operation
cannot provide high-security protection for the file content.
Recently, Huang et al. [11] proposed SMACD to perform
secure deduplication in cloud media sharing. But SMACD
is designed for identical media data and cannot deduplicate
encrypted similar media data. Besides, it does not consider
the media data ownership security, which means that a media
distributor can claim the ownership of a file to the cloud using
only the tag of the file. Our scheme aims to achieve secure
deduplication for similar data and protect their ownership
security in cloud media sharing.

To achieve secure deduplication over similar data in cloud
media sharing, the following challenges must be addressed for
practical usability. (1) The cloud should check the similarity
between a new media file with other encrypted media files
stored on the cloud without knowing any content of the file.
For practical consideration, the similarity checking should not
rely on the previous distributors who uploaded similar files,
as they may go offline after uploading their data. (2) Subse-
quent distributors and authorized consumers must be able to
correctly recover the encryption key. The cloud only stores the
ciphertext uploaded by the initial distributor and does not keep
the ciphertexts of the subsequent distributors. Therefore, valid
distributors and authorized consumers must be able to recover
the encryption key used by the initial distributor to correctly
decrypt ciphertexts. (3) When a distributor claims ownership
of a file stored on the cloud, the cloud should be able to verify
that the distributor indeed owns a similar media file. However,
previous proof of ownership (PoW) techniques [24], [25], [26]
cannot be used to verify the ownership of similar media files,
as they prevent a valid subsequent distributor with a similar
media file from passing the verification process.

In this paper, we introduce SimLESS, a new secure dedu-
plication system designed specifically for similar media data
in cloud media sharing. We develop a fuzzy duplication

detection strategy that enables the cloud to compare the
similarity-preserving hash value of a new media file with those
of the encrypted media files stored on the cloud. To prevent
unnecessary deduplication, the distributor can set a distance
threshold, and the cloud performs deduplication only when
the distance between the file to be uploaded and at least one
media file on the cloud is smaller than the threshold. Thus,
the distributor can determine the fuzzy deduplication degree
based on the file’s importance. We also develop a secure
encryption key sharing mechanism using the ciphertext-policy
attribute-based encryption (CP-ABE) [27], [28] and fuzzy
extractor [29]. This mechanism allows all valid distributors
and their authorized consumers to recover the encryption key
used by the initial distributor, ensuring that they can decrypt
the ciphertexts stored on the cloud correctly. Furthermore,
we design a fuzzy PoW protocol based on fuzzy extractor to
protect media data ownership security. This protocol enables
the cloud to verify that a subsequent distributor indeed owns
a similar media file.

The contributions of this paper are summarized as follows.
• We propose a novel secure deduplication system for

similar media data, which, to our best knowledge, is the
first system that supports deduplication over encrypted
similar data in cloud media sharing.

• Our system allows the distributor of a media file to set
a distance threshold between his/her file and the media
files stored on the cloud, providing great feasibility for
determining the degree of similar deduplication based on
the file’s importance.

• Furthermore, we conduct a formal analysis of our scheme
from the aspects of media data recovery and PoW for
similar media data. Our security proofs demonstrate that
our scheme protects the confidentiality of media content
and media data ownership security.

The rest of the paper is organized as follows. Section II
introduces some preliminaries used in this paper. Section III
presents the problem formalization of SimLESS. Section IV
presents the design of SimLESS in detail. Section V-B
provides the formal analysis of correctness and security of
SimLESS. We implement a prototype of SimLESS on a
commercial cloud platform and evaluate its performance in
Section VI. Section VII reviews some related work and we
conclude our study in Section VIII.

II. PRELIMINARIES

This section presents some preliminaries used in our Sim-
LESS and Table I lists some important notations in this paper.

A. Bilinear Pairing of Composite Order

For a given security parameter κ , run the composite bilin-
ear parameter generator Gen(κ) and get (p, q, N , G1, G2, e),
where p, q are two primes with κ-bit length, N = p · q and
e : G1×G1 → G2 is a bilinear pairing [30] with the following
three properties:
• Bilinearity: e(δa

1 , δb
2) = e(δ1, δ2)

ab for ∀δ1, δ2 ∈ G1 and
∀a, b ∈ ZN .

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4702 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
IMPORTANT NOTATIONS

• Non-degeneracy: e(g, g) is a generator of G2 if g is a
generator of G1.

• Computability: For ∀δ1, δ2 ∈ G1, there exists an
algorithm to compute e(δ1, δ2) ∈ G2.

Definition 1 (The Bilinear Diffie-Hellman (BDH) Assump-
tion [31]): Given g, ga, gb, gc

∈ G1 (for unknown a, b, c ∈
ZN ), there is no probabilistic polynomial-time algorithm that
can compute e(g, g)a·b·c with non-negligible advantage.

Definition 2 (The Computational Diffie-Hellman (CDH)
Assumption [32]): Given g, ga, gb

∈ G1 (for unknown a, b ∈
ZN ), there is no probabilistic polynomial-time algorithm that
can compute ga·b with non-negligible advantage.

B. Secure Sketch and Fuzzy Extractor

Let M, m, t , θ , and ϵ be a metric space (i.e., input space)
with the distance function dis, min-entropy of input data,
maximum distance between two inputs, bit length of a random
string, and entropy loss of secure sketch, respectively.

Definition 3 (Secure Sketch [29]): An (M, t, m, θ, ϵ)-
secure sketch consists of a sketch procedure (SS) and a recover
procedure (Rec), and has the following properties:
• SS(w, r) → {s}. The sketch procedure takes inputs as

w ∈ M and random string r ∈ {0, 1}θ , and returns a
string s ∈ {0, 1}θ .

• Rec(w′, s)→ {w}. The recover procedure takes inputs as
w′ ∈M and s. The output w is correct if dis(w, w′) ≤ t .
Otherwise, the output is incorrect.

Any adversary owning s can recover w with a probability
smaller than 2−(m−ϵ).

To obtain a secure sketch, a practical way is to utilize a
(σ, θ, 2t + 1)-error correcting code algorithm C, where σ is
the code length, θ is the codeword number, and 2t + 1 is
the minimum distance. On input r and w, the secure sketch
computes the encoded c = C(r) and sets s = w − c.

Fig. 1. Depiction of fuzzy extractor.

To compute Rec(w′, s), one can extract c′ = w′ − s, and
then decode c′. Because dis(w, w′) ≤ t , so is dis(c, c′) ≤ t ,
and the correct r can be recovered. Finally, we can obtain
w = s + C(r).

The fuzzy extractor constructed based on the above secure
sketch defined as the Definition 3 enables the generation of
the same string k from two similar messages w and w′. Fig. 1
depicts the syntax of fuzzy extractor.

Definition 4 (Fuzzy Extractor [29]): An (M, t, θ, σ, ϵ, m)-
fuzzy extractor consists of a key generate algorithm (KG) and
a reproduce algorithm (REP), with the following properties:
• KG(w, r, u)→ {k, P P}: It takes inputs as w ∈M and

two random strings r, u ∈ {0, 1}θ , and outputs public
parameters P P = {u, s = SS(w, r)} and an extracted
string k = Ext(w, u).

• REP(w′, P P) → {k}: It first takes inputs as w′ ∈ M
and the string s, and recovers w = Rec(w′, s). Then it
outputs the same string k = Ext(w, u).

The fuzzy extractor has the following properties: (1) It can
guarantee that REP(w′, P P) → {k} if dis(w, w′) ≤ t and
KG(w, r, u) → {k, P P}; (2) For the w with min-entropy m,
any adversary can only obtain k with a probability smaller
than 2−(m−ϵ) even knowing P P; (3) It can execute KG and
REP in polynomial time.

C. Similarity-Preserving Hash

The similarity-preserving hash function h̃ is a special hash
function. The similarity of two files can be preserved in their
hash values [23]. The similarity-preserving hash function has
the following properties:
• Digest similarity: The generated digests are similar if the

input data are similar.
• One-wayness: It is difficult to recover the preimage using

the digest.
The similarity-preserving hash function can be used to

identify two similar files. To implement a similarity-preserving
hash function, one can first extract some features of the input
data, and then aggregate these features to a binary string. The
binary string can be used as the similarity-preserving hash
value.

D. Linear Secret Sharing Scheme

We give the formal definition of the linear secret sharing
scheme (LSSS) as follows.

Definition 5 (Linear Secret Sharing Schemes [33]): A secret
sharing scheme over a set of parties is called LSSS over ZN
if it satisfies the following conditions.
• The shares are over ZN .

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4703

• The operation of sharing the secret µ into γ shares is
performed as

λ =M · v,

where λ = (λ1, λ2, · · · , λγ ) are γ generated shares, v =

(µ, v2, · · · , vι) and v2, · · · , vι are random integers over
ZN , and M is the generation matrix of size γ × ι. A party
ρ(i) holds the share (i, λi ).

LSSS is usually used in CP-ABE, in which the secret
is shared over a set of attributes. An LSSS has the linear
reconstruction property. We assume that S is an authorized
attribute set and I is the indices set of the attributes in S,
namely I = {i |ρ(i) ∈ S}. Then, for the valid shares {λi }i∈I ,
there exist constants {wi ∈ ZN }i∈I to recover the secret as
µ =

∑
i∈I wiλi [33]. Furthermore, the constants {wi }i∈I can

be found in polynomial time corresponding to the size of the
matrix M.

The access structures of CP-ABE can be represented as
access trees, where the interior nodes are AND and OR gates,
and the leaf nodes are the attributes [27]. An access tree
structure can also be described as a generation matrix of LSSS
and a function ρ mapping a row index i to attribute ρ(i).
This kind of representation is named as LSSS access structure.
Some standard techniques have been developed to convert an
access tree into its corresponding LSSS access structure such
as the method in [34]. The number of rows in the generation
matrix of LSSS equals to the number of leaf nodes in the
access tree.

III. PROBLEM STATEMENT

A. System Model and Definitions

Fig. 2 shows the system model of our SimLESS, which
consists of four types of entities: media distributor, media
consumer, attribute authority, and cloud.
• Media distributor: A media distributor shares media

files with his/her authorized media consumers through
the cloud. To protect data confidentiality, the media
distributor encrypts his/her media files before uploading.
Different distributors may share similar media files under
different access policies. A distributor can set a distance
threshold for each file. If the distance between a shared
file and a similar media file stored on the cloud is smaller
than the threshold, the distributor can replace his/her
file with the stored file to reduce his/her communication
bandwidth and storage cost. The distributor who uploads
a new file is referred to as the initial distributor, while the
one who uploads a similar file is called the subsequent
distributor.

• Media consumer: A media consumer can access and
restore the media data that is authorized to him/her from
the cloud.

• Attribute authority: The attribute authority is respon-
sible for authorizing attributes to media consumers.
It generates an attribute secret key for consumers with the
corresponding attribute. The attribute authority generates
the public parameters of the system.

• Cloud: The cloud receives encrypted media data from
media distributors and distributes them to authorized

media consumers. It also performs deduplication over
encrypted similar media data to reduce storage costs.

We can formally define our SimLESS over the aforemen-
tioned system model.

Definition 6: SimLESS is a nine-tuple of polynomial-time
algorithms (Setup, TagGen, FDupDet, Encrypt, Decrypt,
RelVerify, FPoW.AuxGen, FPoW.Proof), which are defined
as follows:

• Setup(κ, U )→ {P K , msk, {SKati }ati∈U }. The algorithm
takes a security parameter κ and the universe set U
of attributes as inputs, and outputs the set of public
parameters P K , the master secret key msk, and the
attribute secret keys {SKati }ati∈U .

• TagGen(F, P K ) → {tagF }. The algorithm takes the
media file F and public parameters P K as inputs, and
outputs a tag tagF of the media file.

• FDupDet(T1, T2, tagF ) → {(1/0,⊥)/(1, tagF ′)}. The
algorithm takes the file tag tagF , the distance threshold
T1, and the reliability threshold T2 set by the media
distributor as inputs. It outputs (1,⊥) if the cloud stores
a similar file F ′ with a reliability score exceeding T2.
It outputs (1, tagF ′) if the similar file F ′ has a reliability
score lower than or equal to T2. If there is no similar file
stored on the cloud, the algorithm outputs (0,⊥).

• Encrypt(F, P K , T )→ {CF , CTF , P P0}. The algorithm
takes the media file F, the public parameters P K and
an access policy tree T as inputs, and outputs the media
data ciphertext CF , its encryption key’s ciphertext CTF
encrypted under the access policy T , and the output
parameters P P0 of fuzzy extractor.

• Decrypt(CF , CTF , P K , {SKρ(i)}i∈I ) → {F}. The
algorithm takes the secret keys {SKρ(i)}i∈I of attributes
{ρ(i)}i∈I that satisfy the access policy T , the ciphertexts
{CF , CTF }, and the public parameters P K as inputs, and
outputs the plaintext media file F.

• RelVerify(F, P P0, CF ′ , CTF ′) → {dis}. The algorithm
takes the media file F, the output parameters P P0 of
fuzzy extractor, and the ciphertexts CF ′ , CTF ′ as inputs,
and outputs the real distance dis between F and F ′.

• FPoW.AuxGen(F, P K )→ {P AF }. The algorithm takes
the media file F and the public parameters P K as inputs,
and outputs the auxiliary data P AF for fuzzy PoW.

• FPoW.Proof(F, P K , P AF ′) → {1/0}. The algorithm
takes media file F, the public parameters P K , and the
auxiliary data P AF ′ of PoW as inputs. The algorithm
outputs the ownership checking result.

• Dec.AuxGen(F, T , P K , P P0) → {K AF }. The
algorithm takes media file F, an access policy tree
T , the public parameters P K , and the output parameter
P P0 of fuzzy extractor as inputs. The algorithm outputs
the auxiliary data K AF for key recovery.

B. Threat Model and Security Definitions

The threats of our model are from the cloud, media distrib-
utors, and media consumers. We discuss these possible threats
in our system as follows:

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4704 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. System model.

• Cloud: The cloud is expected to execute the protocols
honestly. However, it may attempt to access the private
contents of its stored encrypted media files using its
background knowledge.

• Media distributor: An initial media distributor may
launch the duplicate-faking attack (DFA) to disrupt the
consistency between the media file and its file tag, aiming
to deceive subsequent distributors owning similar files
to obtain a falsified copy. A subsequent distributor may
launch the hash-only attack [35], which involves the
distributor claiming ownership of a media file stored on
the cloud using only the tag of a similar media file.

• Media consumer: A media consumer may attempt to
gain unauthorized access to the private contents of the
encrypted media files. The media consumer may do
so by first intercepting the communication channel and
obtaining the media data ciphertexts, and then recovering
the contents of the ciphertexts using his/her background
knowledge.

Our SimLESS aims to achieve: (1) PRV-CDA security [15]
(data privacy under chosen distribution attacks) with the
assumption that the plaintext space is unpredictable; (2) media
date ownership security under the hash-only attack; (3) tag
consistency under DFA.

Definition 7: The PRV-CDA security of SimLESS can
be modeled by a game between a challenger C and an
adversary A.

• Setup: The challenger C runs Setup(κ, U ) with the inputs
κ, U, and sends the output P K to the adversary A. The
adversary A chooses several sets of attributes {Ai }1≤i≤ℓ

and sends them to the challenger. Then C sends attribute
secret keys {SKat }at∈Ai , (1 ≤ i ≤ ℓ) to A.

• Challenge: The adversary A chooses an access policy
tree T such that none of the sets {Ai }1≤i≤ℓ satisfying
the access policy. The challenger C randomly picks a
bit η ∈ {0, 1} and chooses two media files m0 and
m1. C executes Encrypt(mη, P K , T ) to generate Cmη

and CTmη under the access policy T , and computes

tagmη using the TagGen(mη, P K ) function. Then C
sends (Cmη , CTmη , tagmη ) to A.

• Guess: The adversary A outputs a guess η̂ of η.
The advantage of the adversary A in the above game can

be defined as Eq. (1). The media content is secure if A has a
negligible advantage in this game.

AdvPRV−CDA
A (κ) = 2 · Pr[A(η̂ = η)] − 1 (1)

Definition 8: SimLESS can achieve media data ownership
security if any probabilistic polynomial-time adversary A has
negligible advantage AdvOS

A (κ) to win the game GameOS
A

defined in Fig. 3, where the message space M(κ) is sufficiently
large such that plaintexts are unpredictable.

AdvOS
A (κ) = Pr[GameOS

A (κ) = 1] (2)

Definition 9: SimLESS is tag consistent under DFA if for
any probabilistic polynomial-time adversary A, the advantage
AdvTC

A (κ) of the adversary winning the game GameTC
A defined

in Fig. 3 is negligible.

AdvTC
A (κ) = Pr[GameTC

A (κ) = 1] (3)

We will theoretically prove the security of our SimLESS in
Section V-B.

C. Design Goals

In this study, we aim to achieve fuzzy deduplication over
encrypted similar media data in cloud media sharing, which
achieves the following specific goals.
• Functionality: Our SimLESS aims to provide secure

deduplication over similar media data. The cloud is able
to perform deduplication over encrypted similar media
data shared by different media distributors. Furthermore,
a media distributor can set a distance threshold for each
of his/her files to determine the maximum allowable
deduplication distance between the file with the files
stored on the cloud.

• Security: The security goals of SimLESS include achiev-
ing PRV-CDA security, ownership security, and resistance

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4705

Fig. 3. Security games for ownership security and tag consistency.

to DFA. (1) PRV-CDA security indicates that neither
the cloud nor unauthorized consumers can access the
private media content using their background knowledge.
(2) Data ownership security guarantees that a distributor
cannot claim the ownership of a media file using only
the tag of a similar media file. (3) The resistance to DFA
means that the scheme can safeguard subsequent media
distributors from losing their media files under DFA.

IV. THE DESIGN OF SIMLESS

A. Design Overview

Considering the design goals in Section III-C, three main
issues should be carefully designed in SimLESS, includ-
ing fuzzy duplication detection over encrypted similar data,
encryption key sharing, and media data ownership verification.

To achieve fuzzy duplication detection, the cloud needs
to detect the similarity between a new media file and the
encrypted media file stored on the cloud utilizing their tags.
Therefore, we use the similarity-preserving hash value of the
media file as the file tag. When the cloud receives a tag and
a distance threshold of a media file from a distributor, it can
obtain the distance between the new media file and each of its
stored encrypted media files by comparing their tags. Then,
it can detect duplication by checking whether the distance is
less than the threshold. If the threshold is smaller than all the
distances, the cloud can determine that there is no similar file
stored on the cloud. Otherwise, the cloud finds the media file
that has the smallest distance with the new file and regards it
as the similar file of the new file.

Sharing the encryption key with authorized consumers
can be challenging for a distributor. For similar media
files, the cloud stores only the encrypted media file uploaded
by the initial distributor, and subsequent distributors need
to share the encryption key used by the initial distributor
with their authorized consumers. However, the subsequent
distributors do not know the encryption key of the initial dis-
tributor. To address this issue, our design includes a trapdoor
implemented by the initial distributor when encrypting the
encryption key. This allows more authorized access policies to
be efficiently and securely included. In order for subsequent
distributors to add their authorized access policies, we utilize a

fuzzy extractor to enable the initial distributor and subsequent
distributors to extract the same trapdoor key from their similar
media files. Subsequent distributors can then use this trapdoor
key to generate some auxiliary data, which can be used by their
authorized consumers to recover the encryption key from the
ciphertext of encryption key.

To ensure the security of media date ownership, it is
important for the cloud to verify that a subsequent distributor
actually owns a similar media file that matches the claimed file
stored on the cloud. Previous PoW techniques were mainly
designed for verifying the ownership of identical files by
checking if a user owns the same ciphertext with the one
stored on the cloud. However, for similar files, a subsequent
distributor with a similar media file cannot generate the same
ciphertext as the one stored on the cloud, which makes
previous PoW methods ineffective. To address this issue, the
initial distributor uses a fuzzy extractor to generate a secret
seed from his/her media file, and then uses the seed to generate
some auxiliary data that can be used by the cloud to verify
subsequent distributor ownership. If a subsequent distributor
does own a similar media file, he/she can use the same fuzzy
extractor to generate the same secret seed from his/her file and
computes a correct ownership proof using the seed. However,
if the subsequent distributor does not have a similar media
file, he/she cannot obtain the same secret seed and will fail
the cloud’s ownership verification.

The most direct way to resist DFA is to verify the consis-
tency between the file tag and ciphertext uploaded by the initial
media distributor. However, this bcomes challenging in the
context of fuzzy deduplication, because it requires preserving
the similarity of plaintexts in both file tags and ciphertexts.
As a result, our scheme achieves DFA resistance indirectly by
assigning a reliability score to each file stored on the cloud.
When a media distributor uploads a file for the first time, this
file’s reliability score is set to 0. When a subsequent media
distributor uploads a file, he/she can set a reliability threshold
based on the importance of the file, and deduplication occurs if
the cloud stores a similar file with a reliability score exceeding
this threshold. If the cloud’s similar file has a reliability score
lower than or equal to the threshold, the subsequent media
distributor downloads and decrypts its ciphertext, and then
verifies its similarity with the file to be uploaded. If the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4706 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 4. System workflow of SimLESS.

verification passes, deduplication is allowed and the reliability
score of the similar file is increased by 1. Otherwise, the cloud
treats the file to be uploaded as a new file and set its reliability
score to 0.

B. System Workflow

Fig. 4 demonstrates the system workflow of our SimLESS
and we present each of the steps as follows.
• The attribute authority executes Setup and generates

public parameters, its master secret key and secret keys
of attributes. We do not show this process in Fig. 4, as it
is executed only once at the beginning of the system.

• When a media distributor shares a media file to his/her
authorized consumers, he/she first executes TagGen to
generate a tag of the file, and then executes FDupDet to
perform fuzzy duplication detection by interacting with
the cloud.

• If the media file to be uploaded is similar to a file stored
on the cloud, but the cloud’s similar file has a reliability
score lower than or equal to the threshold set by the media
distributor, the cloud and the media distributor executes
RelVerify to check the reliability of the similar file. If the
verification fails, the cloud treats the file to be uploaded
as a new file and sets its reliability score to 0. The
media distributor executes the data uploading process as
an initial media distributor. Otherwise, if the verification
passes, the media distributor executes the interaction
process with the cloud, behaving as a subsequent media
distributor.

• If the media file to be uploaded is similar to a media
file stored on the cloud and the similar media file has
a reliability score exceeding the threshold set by the
media distributor, deduplication is permitted and the
media distributor is regarded as a subsequent media
distributor. The cloud executes FPoW.Proof to verify
the ownership of the distributor using the auxiliary
data generated and uploaded by the initial distributor.
If the ownership verification is valid, the distributor
also generates some auxiliary data for his/her authorized
consumers to recover the encryption key by performing
the Dec.AuxGen algorithm with the cloud.

• If the media file to be uploaded is not similar to any media
file stored on the cloud, the media distributor is regarded
as an initial media distributor. The distributor performs
Encrypt to encrypt the encryption key and media file.

The distributor also performs FPoW.AuxGen to generate
some auxiliary data that can be used by the cloud to verify
the ownership of other subsequent distributors.

• The authorized consumers can download the ciphertexts
of the encryption key and media file. They execute
Decrypt to recover the encryption key and decrypt the
ciphertext of media file using the key.

C. Detailed Design

We present the design of each algorithm shown in the
Definition 6 in detail.

1) System Setup: In this process, the attribute authority runs
Setup(κ, U ) → {P K , msk, {SKati }ati∈U } to generate public
parameters, its master secret key and attribute secret key of
each attribute ati ∈ U .
• The attribute authority runs the composite bilinear param-

eter generator Gen(κ) and obtains (p, q, N , G1, G2, e),
where κ is a randomly selected security parameter.

• It randomly selects a generator g ∈ G1 and three
exponents α, β, τ ∈ ZN , and then randomly chooses a
generator gati ∈ G1 for each attribute ati ∈ U .

• It computes its master secret key msk = gα , pub-
lic parameters e(g, g)α , gβ , and secret keys sk(1)

attr =

gαgτβ , sk(2)
attr = gτ and skati = gτ

ati for each ati ∈
U . For each attribute ati ∈ U , it sends the secret
key SKati = {sk(1)

attr , sk(2)
attr , skati } to its correspond-

ing media consumers through secret channels. It also
chooses an integer ω as the degree of polynomials
in fuzzy PoW. The public parameters are P K =

{N , g, e(g, g)α, gβ , {gati }ati∈U , ω}.
• It chooses a fuzzy extractor (KG, REP), a similarity-

preserving hash function h̃ : {0, 1}∗ → {0, 1}ℓ, two hash
function H1 : {0, 1}∗→ {0, 1}η, H2 : {0, 1}∗→ ZN and a
pseudo-random function π : {1, · · · , N }×{0, 1}∗→ ZN ,
where ℓ is the bit length of media file tag and η is the bit
length of encryption key. The (KG, REP,h̃,H1, H2, π, e)
are public functions.

Algorithm 1 describes the system setup process for the
attribute authority.

2) Tag Generation: When sharing a media file F , a media
distributor first executes TagGen(F, P K ) → {tagF } to gen-
erate a tag for fuzzy duplication detection as follows.
• For an image file F , the distributor can compute its

similarity-preserving hash value h = h̃(F) as the media
file tag tagF .

• For a video file F , the media distributor extracts its
keyframes F̃ = {k fi }1≤i≤n (e.g., n keyframes), and
computes the similarity-preserving hash value h = h̃(F̃)

as the media file tag tagF .
3) Fuzzy Duplication Detection: After generating the tag

tagF , a media distributor and the cloud execute the fuzzy
duplication detection FDupDet(T1, T2, tagF ) → {(1/0,⊥

)/(1, tagF ′)} as follows.
• The media distributor sets a maximum allowable Ham-

ming distance T1 and a reliability threshold T2 based on
the importance of the file, and sends (T1, T2, tagF ) to the
cloud.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4707

Algorithm 1 System Setup
Input: κ: security parameter.

U : the universe set of attributes.
Output: P K : public parameters.

msk: master secret key.
{SKati }ati∈U : attribute secret keys.

Attribute authority:
1: Gen(κ)→ (p, q, N , G1, G2, e).
2: Choose an integer ω.
3: Randomly choose a generator g ∈ G1.
4: Randomly choose three exponents α, β, τ ∈ ZN .
5: msk = gα , sk(1)

attr = gαgτβ , sk(2)
attr = gτ .

6: for each ati ∈ U do
7: Randomly choose gati ∈ G1.
8: skati = gτ

ati .
9: SKati = {sk(1)

attr , sk(2)
attr , skati }.

10: Send SKati to its corresponding media consumers.
11: P K = {N , g, e(g, g)α, gβ , {gati }ati∈U , ω}.

• The cloud compares tagF with its stored tags and
identifies the media file F ′ whose tag tagF ′ has the
smallest Hamming distance (denoted as Tmin) with tagF .
If Tmin ≤ T1 and the reliability score of the file F ′

exceeds the threshold T2, the cloud regards the media
distributor as a subsequent distributor and returns (1,⊥).
If Tmin ≤ T1 and the reliability score of the file F ′ is
lower than or equal to T2, the cloud sends (1, tagF ′) to
the media distributor. If Tmin > T1, the cloud classifies
the media distributor as an initial distributor and returns
(0,⊥).

An initial distributor needs to upload the ciphertext CF of
the media file, the ciphertext CTF of the encryption key, and
auxiliary data P AF for fuzzy PoW. A subsequent distributor
needs to prove his/her media data ownership to the cloud.
Receiving (1, tagF ′) means that the media distributor needs
to further verify the reliability of the similar file F ′.

4) Encryption: An initial distributor encrypts the media file
and the encryption key using a standard symmetric encryp-
tion and CP-ABE, respectively. The Encrypt(F, P K , T ) →

{CF , CTF , P P0} function is described as follows.

• The initial distributor randomly selects an encryption key
ek ∈ G1 and encrypts the media file using a standard
symmetric encryption as CF = SE.Enc(H1(ek), F).

• The initial distributor generates a trapdoor key tkF by
firstly executing KG(F/F̃, r0, u0) → {k, P P0} and then
obtaining tkF = H2(k), where r0, u0 ∈ {0, 1}θ are
randomly selected.

• The initial distributor generates an LSSS access structure
(M, ρ) from his/her access policy tree T using the
method in [34], where M is a γ × ι generation matrix and
ρ is a function that associates the row indices of M and
the attributes in T . Then the initial distributor generates
a vector v = (tkF , v2, · · · , vι), where v2, · · · , vι are cho-
sen from ZN randomly. The initial distributor computes
(λ1, λ2, · · · , λγ ) =M · v.

Algorithm 2 Encryption
Input: F : outsourced file.

P K = {N , g, e(g, g)α, gβ , {gati }ati∈U , ω}: public
parameters.
T : access policy tree.

Output: CF : ciphertext of F .
CTF : ciphertext of encryption key.
P P0: output parameter of fuzzy extractor.

Media distributor:
1: Randomly choose ek ∈ G1.
2: CF = SE.Enc(H1(ek), F). //SE.Enc: Symmetric encryp-

tion function; H1: Hash function.
3: Randomly choose r0, u0 ∈ {0, 1}θ .
4: Generate LSSS access structure (M, ρ) from T .
5: {k, P P0} = KG(F/F̃, r0, u0). //KG: Key generation func-

tion of fuzzy extractor.
6: tkF = H2(k). //H2: Hash function.
7: Randomly choose v2, · · · , vι ∈ ZN .
8: (λ1, λ2, · · · , λγ ) =M · (tkF , v2, · · · , vι).
9: cm1 = ek · e(g, g)α·tkF , cm2 = gtkF .

10: for i = 1→ γ do
11: Randomly choose zi ∈ ZN .
12: cai = gβλi · g−zi

ρ(i), cbi = gzi .

13: CTF = {cm1, cm2, {cai , cbi }1≤i≤γ }.
14: Send {CF , CTF , P P0} to the cloud.

• The initial distributor computes cm1 = ek · e(g, g)α·tkF

and cm2 = gtkF . Then for each i ∈ {1, · · · , γ },
the initial distributor randomly chooses zi ∈ ZN and
computes cai = gβλi · g−zi

ρ(i) and cbi = gzi . Finally,
the initial distributor sends the P P0, CF and CTF =

{cm1, cm2, {cai , cbi }1≤i≤γ } to the cloud.
Algorithm 2 presents the encryption process for the initial

distributor. Note that the initial distributor can also recover
the encryption key from the CTF stored on the cloud if he/she
adds his/her own attributes when constructing the access policy
tree T .

5) Decryption: An authorized consumer can recover the
plaintext media content from CF and CTF if his/her attributes
{ρ(i)}i∈I (I is the index set of his/her attributes) satisfy
the access policy tree T . The detailed decryption function
Decrypt(CF , CTF , P K , {SKρ(i)}i∈I ) → {F} is described as
follows.
• The media consumer computes Eq. (4) and obtains

e(g, g)α·tkF .

e(g, g)α·tkF =
e(cm2, sk(1)

attr )∏
i∈I (e(cai , sk(2)

attr ) · e(cbi , skρ(i)))wi

(4)

• The media consumer computes Eq. (5) and obtains the
encryption key ek.

ek =
cm1

e(g, g)α·tkF
(5)

• The media consumer decrypts CF and obtains the plain-
text media file F using the decryption process of the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4708 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 3 Auxiliary Data Generation
Input: F : outsourced file.

P K = {N , g, e(g, g)α, gβ , {gati }ati∈U , ω}: public
parameters.

Output: P AF : Auxiliary data.
Media distributor:

1: Randomly choose r1, u1 ∈ {0, 1}θ .
2: {seed, P P1} = KG(F/F̃, r1, u1). //KG: Key generation

function of fuzzy extractor.
3: for i = 1→ ω do
4: ai = π(i, seed). //π : Pseudo-random function.
5: Compute gai .
6: P AF = {P P1, {gai }0≤i≤ω}.
7: Send P AF to the cloud.

used standard symmetric encryption algorithm, namely
F = SE.Dec(H1(ek), CF )

6) Reliability Verification: If the cloud stores a similar file
and its reliability score is lower than or equal to the threshold
T2 set by the media distributor, the media distributor needs
to verify the ciphertext CF ′ of the similar file. The process
of RelVerify(F, P P0, CF ′ , CTF ′) → {dis} is presented as
follows.
• The cloud retrieves cm1 from CTF ′ , and sends the param-

eter P P0, the ciphertext CF ′ corresponding to F ′, and
cm1 to the media distributor.

• The media distributor obtains tkF by executing
REP(F/F̃, P P0) → {k} and tkF = H2(k). Then the
media distributor obtains the encryption key ek using
Eq. (5), and decrypts CF ′ as F ′ = SE.Dec(H1(ek), CF ′).

• The media distributor computes the Hamming distance
dis = DisHam(h̃(F), h̃(F ′)), and sends it to the cloud.

If dis ≤ T1, the cloud increases the reliability score of F ′

by 1, and checks the data ownership of the media distributor
using FPoW.Proof algorithm. Otherwise, the cloud treats the
media file to be uploaded as a new file.

7) Auxiliary Data Generation: SimLESS requires the initial
distributor to generate and upload auxiliary data for the cloud
to verify the ownership of subsequent distributors. The process
of FPoW.AuxGen(F, P K )→ {P AF } is described as follows.
• The initial distributor generates two random strings

r1, u1 ∈ {0, 1}θ , and generates a seed seed by executing
KG(F/F̃, r1, u1)→ {seed, P P1}.

• The initial distributor generates a polynomial ϕ(x) as
Eq. (6), where {ai = π(i, seed)}0≤i≤ω.

ϕ(x) = a0 + a1x + · · · + aωxω (6)

• The initial distributor computes {gai }0≤i≤ω and sends the
PoW auxiliary data P AF = {P P1, {gai }0≤i≤ω} to the
cloud.

Algorithm 3 shows the auxiliary data generation process for
the initial distributor.

8) Fuzzy Ownership Proof: A subsequent distributor needs
to prove the ownership of media data to the cloud as
Algorithm 4. The process of FPoW.Proof(F, P K , P AF ′)→

{1/0} is described as follows.

Algorithm 4 Fuzzy Ownership Proof
Input: F : outsourced file.

P K = {N , g, e(g, g)α, gβ , {gati }ati∈U , ω}: public
parameters.
P AF ′ = {P P1, {gai }0≤i≤ω}: Auxiliary data.

Output: {1/0}: ownership verification result.
Cloud server:

1: Randomly choose ξ1, ξ2 ∈ ZN .
2: Compute y1 and y2 using Eq. (7).
3: Send {P P1, ξ1, ξ2} to the media distributor.

Media distributor:
4: {seed ′} = REP(F/F̃, P P1). //REP: Reproduce function

of fuzzy extractor.
5: {a′i = π(i, seed ′)}0≤i≤ω. //π : Pseudo-random function.
6: Generate a polynomial ϕ′(x) using Eq. (8).
7: proof = gϕ′(ξ1)·ϕ

′(ξ1).
8: Send proof to the cloud.

Cloud server:
9: if e(proof, g)

?
= e(y1, y2) then

10: Return 1.
11: else
12: Return 0.

• The cloud chooses ξ1, ξ2 ∈ ZN randomly, and computes
y1 and y2 using the following equation.

y1 =

ω∏
i=0

(gai )ξ
i
1

y2 =

ω∏
i=0

(gai )ξ
i
2

(7)

It then sends {P P1, ξ1, ξ2} to the subsequent distributor
for challenging.

• The subsequent distributor generates a seed seed ′ by
executing REP(F/F̃, P P1)→ {seed ′}. It then generates
a polynomial ϕ′(x) as,

ϕ′(x) = a′0 + a′1x + · · · + a′ωxω (8)

where {a′i = π(i, seed ′)}0≤i≤ω.
• The subsequent distributor computes the proof proof =

gϕ′(ξ1)·ϕ
′(ξ2) and sends it back to the cloud.

• The cloud checks the proof by verifying

e(proof, g)
?
= e(y1, y2). (9)

If the verification is valid, the distributor also generates
some auxiliary data for his/her authorized consumers to
recover the encryption key by performing the Dec.AuxGen
algorithm with the cloud.
• The cloud sends P P0 to the subsequent distributor.
• The subsequent distributor generates an LSSS access

structure (M, ρ) using his/her access policy tree T .
He/she then obtains the trapdoor key tkF by executing
REP(F/F̃, P P0)→ {k} and tkF = H2(k).

• The subsequent distributor generates a vector v =

(tkF , v2, · · · , vι) where v2, · · · , vι are randomly selected,
and computes (λ1, λ2, · · · , λγ ) = M · v. For each

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4709

i ∈ {1, · · · , γ }, he/she randomly chooses zi ∈ ZN and
computes cai = gβλi · g−zi

ρ(i) and cbi = gzi . Then he/she
sends the auxiliary data K AF = {cai , cbi }1≤i≤γ of key
recovery to the cloud for storage.

The authorized consumers of the subsequent distributor can
recover the encryption key from {cm1, cm2} using K AF . Note
that the subsequent distributor can also recover the encryption
key from {cm1, cm2} if he/she adds his/her own attributes
when constructing the access policy tree T .

V. SCHEME ANALYSIS

A. Correctness

We prove the correctness of the fuzzy ownership proof and
media recovery in our scheme. The fuzzy duplication detec-
tion is implemented using similarity-preserving hash function,
whose correctness has been proved in [23].

1) Correctness of Fuzzy Ownership Proof: Suppose
that the initial distributor of F has uploaded P AF =

{P P1, {gai }0≤i≤ω} to the cloud. When the subsequent distrib-
utor with a similar F ′ receives the challenging information
{P P1, ξ1, ξ2} from the cloud, he/she computes the ownership
proof proof and sends it back to the cloud. Then the cloud
verifies the proof using Eq. (9), the two sides of the equation
are shown as,

e(proof, g) = e(gϕ′(ξ1)·ϕ
′(ξ1), g)

= e
(

g
∑ω

i=o π(i,seed ′)·ξ i
1 , g

∑ω
i=o π(i,seed ′)·ξ i

2

)
e(y1, y2) = e

(
g

∑ω
i=o π(i,seed)·ξ i

1 , g
∑ω

i=o π(i,seed)·ξ i
2

)
where {seed, P P1} = KG(F, r1, u1) and {seed ′} =
REP(F ′, P P1). According to Definition 4, when F and F ′

are similar, the extracted seed ′ = seed. Then e(proof, g) =

e(y1, y2), which verifies the correctness of the fuzzy PoW
method. Besides, we prove that the fuzzy PoW method can
protect the security of media data ownership in the following
Section V-B.2.

2) Correctness of Media Recovery: Suppose that the initial
distributor has uploaded the ciphertext CF of a media file and
the ciphertext CTF of encryption key under the LSSS access
structure (M, ρ) to the cloud. An authorized consumer whose
attributes {ρ(i)}i∈I satisfying the access policy can recover the
encryption key as

ek =
cm1

e(g, g)α·tkF
=

ek · e(g, g)α·tkF

e(g, g)α·tkF

where

e(g, g)α·tkF =
e(cm2, sk(1)

attr )∏
i∈I (e(cai , sk(2)

attr ) · e(cbi , skρ(i)))wi

=
e(g, g)α·tkF e(g, g)τ ·β·tkF∏

i∈I e(g, g)τ ·β·λi ·wi
.

After recovering the encryption key ek, the authorized con-
sumer can recover the plaintext media file F by decrypting
CF as F = SE.Dec(H1(ek), CF ).

For an authorized consumer of a valid subsequent distribu-
tor, if his/her attributes {ρ′(i)}i∈I ′ satisfy the access structure

(M′, ρ′) of the subsequent distributor, he/she can recover the
encryption key from {cm1, cm2} and K AF = {ca′i , cb′i }1≤i≤γ ′

as

ek =
cm1

e(g, g)α·tkF
=

ek · e(g, g)α·tkF

e(g, g)α·tkF

where

e(g, g)α·tkF =
e(cm2, sk(1)

attr )∏
i∈I ′ (e(ca′i , sk(2)

attr ) · e(cb′i , skρ′(i)))
w′i

=
e(g, g)α·tkF e(g, g)τ ·β·tkF∏

i∈I ′ e(g, g)τ ·β·λ
′
i ·w
′
i

.

Since the authorized consumer of the subsequent distributor
can get the encryption key ek, he/she can decrypt CF correctly.
As a result, the authorized consumers of the initial distributor
and subsequent distributors can correctly recover the plaintext
media content.

B. Security

1) Security of Media Content: According to the threat
model in Section III-B, both the cloud and unauthorized
consumers attempt to obtain the private media content.

We prove that even a collusion between the cloud and unau-
thorized consumers cannot obtain the private media content
if the BDH assumption holds. Let C be a challenger, A be
an adversary that can obtain the private media content with
advantage ϵ(κ).
• Setup: According to Definition 7, A can get the public

parameters P K = {N , g, e(g, g), gβ , {gati }ati∈U } and
attribute secret keys {SKat }at∈Ai , (1 ≤ i ≤ ℓ) corre-
sponding to its chosen sets of attributes {Ai }1≤i≤ℓ.

• Challenge: The adversary chooses an access policy tree T
such that none of the sets {Ai }1≤i≤ℓ satisfying the access
policy. The challenger C flips a fair binary coin η ∈ {0, 1}
and chooses two media files m0 and m1. The challenger
C returns the ciphertexts Cmη and CTmη under the access
policy T and the file tag tagmη to A.

• Guess: A outputs a guess η̂ of η. If η = η̂, C outputs 1.
Otherwise, C outputs 0.

Since C outputs 1 only when the output η equals to η̂,
we have

Pr[A(η = η̂)] =
1
2
+ ϵ(κ)

The advantage ϵ(κ) of A is from ciphertexts Cmη , CTmη , file
tag tagmη , public parameters P K , and attribute secret keys
{SKat }at∈Ai , (1 ≤ i ≤ ℓ). Since the encryption key ek of
standard symmetric encryption is randomly selected, and the
two files m0, m1 are unpredictable messages for the adversary,
neither file tag tagmη nor the ciphertext Cmη can be used by
A to test data equality (similarity), providing no advantage to
A.

Below we prove that the adversary A cannot obtain any
advantage from CTmη , P K , and {SKat }at∈Ai , (1 ≤ i ≤ ℓ) if
the BDH assumption holds.

Since the encryption key ek is encrypted under the access
policy T using CP-ABE and none of the sets of attributes

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4710 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

{Ai }1≤i≤ℓ satisfies the access policy, A cannot obtain ek
from CTmη through standard decryption process, which is
guaranteed by the security of CP-ABE. Suppose that the
adversary A can obtain encryption key ek from CTmη , P K ,
and {SKat }at∈Ai , (1 ≤ i ≤ ℓ) through other processes, we can
construct a simulator that can solve the BDH problem using
the ek.

Given gτ , gβ , and gtkF , the simulator is required to output
e(g, g)τ ·β·tkF . The simulator can solve the BDH problem as
follows.

If the adversary A can obtain correct encryption key ek,
we have

e(gα, gtkF ) =
cm1

ek
, (10)

where cm1 = ek · e(g, g)α·tkF is a part of CTmη . Using the
Eq. (10), we can obtain

e(sk(1)
attr , cm2) = e(gα, gtkF ) · e(gτ ·β , gtkF )

=
cm1

ek
· e(g, g)τ ·β·tkF ,

where sk(1)
attr = gα

· gτ ·β is a part of attribute secret key, and
cm2 = gtkF is a part of CTmη . Then it is clear that

e(g, g)τ ·β·tkF = e(sk(1)
attr , cm2) ·

ek
cm1

.

This indicates that we have discovered a solution to the
BDH problem. However, according to Definition 1, there is
no probability polynomial-time algorithm to solve the BDH
problem. Consequently, the advantage ϵ(κ) of A can be
ignored in polynomial time and we have

AdvPRV−CDA
A (κ) = 2 · Pr[A(̂η = η)] − 1 = 0.

As a result, our SimLESS satisfies the security Definition 7
and achieves the PRV-CDA security of media content.

2) Security of Media Data Ownership: According to the
Definition 8, the adversary A can break the ownership security,
only when the two conditions k ̸= REP(F ′, P P) and 1 ←
FPoW.Rroof(F ′, P K , P AF ) hold simultaneously.

Since an identical message can be extracted from two
similar files through the fuzzy extractor, the first condition
k ̸= REP(F ′, P P) holds for (k, P P) ← KG(F, r, u), where
r ← {0, 1}θ and u ← {0, 1}θ are the random input parameters
of fuzzy extractor, indicating that the adversary does not have
a file similar to the claimed file F . The second condition
1 ← FPoW.Rroof(F ′, P K , P AF ) holds, meaning that the
adversary should use the non-similar file F ′ to pass the own-
ership verification of the FPoW.Rroof algorithm, where P K
is the public parameters and P AF ← FPoW.AuxGen(F, P K )

is the PoW auxiliary data generated using file F .
Since F ′ is not similar to F , it is infeasible for A to generate

correct proof = gϕ′(ξ1)·ϕ
′(ξ2) using F ′ by honestly following

the procedure of the FPoW.Proof algorithm. Because the
security of fuzzy extractor can prevent the adversary from
generating the correct polynomial ϕ′(x) using non-similar file
F ′, thereby the adversary cannot obtain the correct values
ϕ′(ξ1) and ϕ′(ξ2).

In this case, suppose that the adversary can generate the
correct proof , we can discover a solution to the CDH problem
using the proof .

Given g, y1 = gϕ′(ξ1), y2 = gϕ′(ξ2), the CDH problem
requires the output of gϕ′(ξ1)·ϕ

′(ξ2) for unknown ϕ′(ξ1) and
ϕ′(ξ2). If the proof generated by the adversary is correct,
we have

e(proof, g) = e(y1, y2)

= e(gϕ′(ξ1)·ϕ
′(ξ2), g). (11)

This indicates that we have discovered a solution proof =
gϕ′(ξ1)·ϕ

′(ξ2) to the CDH problem.
However, according to Definition 2, there is no probability

polynomial-time algorithm to solve the CDH problem. Con-
sequently, we have

AdvOS
A (κ) = Pr[GameOS

A (κ) = 1] = 0.

As a result, our SimLESS satisfies the security Definition 8
and achieves ownership security.

3) Resistance to DFA: According to the Definition 9, the
adversary A can break the tag consistency, only when the two
conditions T ′ > T and T ≥ RelVerify(F, P P0, CF ′ , CTF ′)

hold simultaneously, indicating{
DisHam(h̃(F), h̃(F ′)) > DisHam(tagF ′ , tagF )

DisHam(tagF ′ , tagF ) ≥ DisHam(h̃(F), h̃(F̂ ′)),
(12)

where F̂ ′ is the recovered plaintext using the RelVerify
algorithm. Obviously, when the adversary A holds the con-
sistency between CTF ′ , CF ′ , P P0 with F ′, the RelVerify
algorithm can obtain correct F̂ ′ = F ′, failing to make the
Eq. (12) hold. In this case, we have Pr[GameTC

A (κ) = 1] = 0.
When the adversary A breaks the consistency between

CTF ′ , CF ′ , P P0 with F ′, the RelVerify algorithm can only
obtain incorrect F̂ ′ ̸= F ′, potentially making the Eq. (12) hold.
However, if DisHam(tagF ′ , tagF ) ≥ DisHam(h̃(F), h̃(F̂ ′))
holds, subsequent media distributors would obtain F̂ ′, and its
similarity to F is higher than the similarity indicated by tagF
and tagF ′ , which contradicts the goal of DFA.

As a result, the SimLESS satisfies the security Definition 9
and achieves tag consistency under DFA.

C. Functionality Analysis

Our SimLESS allows the cloud to perform deduplication
over encrypted similar media data, as well as protects the
confidentiality of the media data. It allows a media distributor
to set a distance threshold between his/her media file with
the file stored on the cloud, which provides the distributor
with a great feasibility to determine the similar deduplication
degree according to the importance of the file. SimLESS also
achieves fine-grained access control for media distributors,
which can ensure that only the authorized media consumers
can access the private media content. Besides, we delicately
design a fuzzy PoW protocol to protect media data ownership
security, which can prevent any media distributor claiming the
ownership of a media file using only the tag of a similar file.

While some secure deduplication schemes have been devel-
oped to date, they are tailored for classical cloud storage

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4711

TABLE II
FUNCTIONALITY AND SECURITY COMPARISONS

model, where the data uploader and downloader are the same
entity. However, these schemes cannot be directly applied to
the cloud media sharing model, in which the data uploader
(i.e., media distributor) and the downloader (i.e., media con-
sumer) are different entities. Since our SimLESS is specifically
designed for the cloud media sharing model, the secure
deduplication schemes tailored for the classical cloud storage
model do not meet the requirements of our work. The recently
proposed SMACD [11] is the only prior scheme that addresses
secure deduplication in the cloud media sharing model, align-
ing with the focus of our work. Thus, we compare our scheme
with the only similar work SMACD [11] from the functionality
and security and list the results in Table II.

SMACD achieves secure deduplication over identical media
data and fine-grained access control for media distributors.
Due to the high information redundancy in media data, sim-
ilar media data can present the same visual effect. Thus,
deduplicating similar media is crucial for enhancing cloud
storage efficiency in cloud media sharing. However, SMACD
cannot support similar media data deduplication. Compared to
deduplication over identical data, it is more difficult to achieve
deduplication over encrypted similar data as slightly different
plaintexts will be encrypted to completely different ciphertexts.
By eliminating similar media data, our SimLESS not only
benefits storage efficiency, but also reduces communication
cost for users since they no longer need to upload similar
media files. Besides, our scheme can ensure media data
ownership security, which is not considered in SMACD.

D. Discussion

Note that a deduplication scheme may produce false posi-
tives, where files are detected as duplicates even though they
are not the same. This can be caused by hash collisions.
Previous secure deduplication schemes did not consider this
issue, as it is considered to be a low probability event.

Our solution does not explicitly address the problem of
false positives, where files detected as near-duplicate may
actually not be similar. However, we can address this problem
from two aspects. Firstly, if a media distributor does not
delete the local file after sharing, he/she can re-upload the
shared media file and mark it as a new file if a false positive
is encountered. Secondly, if a distributor intends to delete
the local file after sharing, we require the initial distributor
of a media file to encrypt additional information (e.g., the
thumbnail of an image and the keyframes of a video) using
the same key as the shared file. The distributor can then restore
the encryption key and decrypt the additional information to
determine whether his/her file is similar to the file stored on
the cloud.

Fig. 5. Implementation of a prototype of SimLESS using AlibabaCloud OSS.

VI. IMPLEMENTATION AND EVALUATION

A. Experimental Settings

We implement a prototype of SimLESS using C++
programming language. Our implementation relies on the
OpenSSL Library [36], OpenCV Library [37], Pairing Based
Cryptography (PBC) Library [38], and GNU Multiple Preci-
sion Arithmetic (GMP) Library [39]. We use Alibaba cloud
object storage service (AlibabaCloud OSS) [7] as the cloud
backend storage. Note that the proposed SimLESS can also
be applied to other CSPs such as Dropbox [6] and Google
Drive [5]. These CSPs provide similar APIs with Alibaba
cloud, allowing us to deploy our SimLESS using the same
flow as on Alibaba cloud.

Fig. 5 shows the prototype structure. The cloud server
consists of the cloud plugin and AlibabaCloud OSS. The cloud
plugin is developed to interact with other entities, manage
the data index database implemented using MySQL [40], and
call the APIs of AlibabaCloud OSS for storing and retrieving
ciphertexts. We use a windows laptop with 4 cores Intel Core
i7-7560U processor and 8GB of memory to perform the cloud
plugin program. The programs of media distributor and con-
sumer are deployed in a same MacOS laptop with 4 cores Intel
Core i5-1038NG7 processor and 16GB of memory. Besides,
the attribute authority program is deployed in a windows
laptop with 4 cores Intel Core i5-6200 processor and 8GB
of memory, and it is only executed once in the setup process,
which is not included in Fig. 5. All the laptops are deployed
in a same wireless LAN and their maximum communication
bandwidth is limited to 20Mbps.

We set the bit length κ of the secure parameter as 256, the
bit length η of encryption key as 256, and the bit length ℓ

of tag as 256. We use the standard AES-256 to encrypt the
media files. We evaluate the performance of SimLESS using
the Columbia University Object Image Library (COIL) [41]
and Image of LEGO Bricks dataset [42] that contain many
similar images. Besides, we only use the gray feature in the
similarity-preserving hash function and fixed five attributes
in the access policy tree to simplify the efficiency analysis.
We simulate five media distributors and evenly assign each
dataset among them, allocating one-fifth of the dataset to
each media distributor. We set the reliability threshold as 2 in
the experiments.

B. Overall Time Cost

Since the cloud server usually has a large computation
ability and the attribute authority can be offline after executing

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4712 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 6. Actual computation and communication time cost of media distributor.
(a) The average time cost in LEGO Bricks dataset; (b) the average time cost
in COIL dataset.

Fig. 7. Actual computation and communication time cost of media consumer.
(a) The average time cost in LEGO Bricks dataset; (b) the average time cost
in COIL dataset.

the setup program once, we evaluate the time costs of the
media distributor and media consumer. We set the distance
threshold T1 as 8 in the overall time cost experiments.

We first measure the computation and communication time
cost of the media distributor, and show the results in Fig. 6.
As can be seen, the computation and communication cost
grows with the increase of the number of the uploaded
files. The results show that our SimLESS increases a slightly
higher total time cost than SMACD. This is due to the
fact that SimLESS has the features of DFA resistance, data
ownership security, and fuzzy duplication. Operations such
as similarity-preserving hash computation, fuzzy extraction
operations, and encryption key sharing contribute to the addi-
tional computational overhead to the media distributor. Despite
this, SimLESS demonstrates a lower communication time
cost in comparison to SMACD. This is because SimLESS
supports fuzzy deduplication over similar images, resulting in
the reduced necessity to upload many similar images.

We then test the computation and communication cost
of the media consumer, and Fig. 7 shows the results. The
computation and communication cost grows with the increase
of the number of the downloaded files. The computation and
communication time cost of the media consumer in SimLESS
is very similar to that of the media consumer in SMACD,
because both of them require the media consumer to recover
the encryption keys and decrypt the media data ciphertexts.

C. Storage Cost

We analyze the cloud storage overhead from the perspec-
tives of deduplication ratio and storage cost. As can be seen

Fig. 8. Comparisons of cloud deduplication ratio. (a) The deduplication ratio
in LEGO Bricks dataset; (b) the deduplication ratio in COIL dataset.

Fig. 9. Comparisons of cloud storage overhead of media data ciphertexts.
(a) The cloud storage cost in LEGO Bricks dataset; (b) the cloud storage cost
in COIL dataset.

Fig. 10. Comparisons of cloud storage overhead of encryption key cipher-
texts. (a) The cloud storage cost in LEGO Bricks dataset; (b) the cloud storage
cost in COIL dataset.

in Fig. 8, SimLESS achieves obviously higher deduplication
ratios than SMACD in both two datasets, because SimLESS
supports similar data deduplication that is not considered in
SMACD. Thus, as can be seen in Fig. 9, SimLESS has a
significantly lower cloud storage overhead for media data than
SMACD.

Besides, we also measure the cloud storage overhead for
storing the ciphertexts of encryption keys. As shown in Fig. 10,
our SimLESS has a lower cloud storage overhead. This is
because for a duplicate image in SimLESS, a subsequent
distributor only uploads some auxiliary data that are used
by his/her authorized consumers to decrypt the ciphertext of
the encryption key uploaded by the initial distributor. As a
contrast, a subsequent distributor in SMACD should upload
and store a new ciphertext of encryption key.

D. Visual Effect of Fuzzy Deduplication

A distributor can set a distance threshold between his/her
media file with the file stored on the cloud, which provides

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4713

Fig. 11. Duplicate samples within different Hamming distances in COIL
dataset.

Fig. 12. Duplicate samples within different Hamming distances in LEGO
Bricks dataset.

the distributor with a great feasibility to determine the similar
deduplication degree according to the importance of the file.
To show that fuzzy deduplication cannot affect the image
visual effect, we show some image samples with different
distances. For an image stored on the cloud, we find its
similar images within different distances. As shown in Figs. 11
and 12, a smaller distance will result in a higher matching
similar image. For example, the similar image with T = 2 is
almost visually indistinguishable from the original image.
Though there exist some differences between the original
image and the similar image with T = 6, they are acceptable
in visual. Moreover, a larger distance threshold causes a higher
deduplication ratio and storage efficiency.

VII. RELATED WORK

Secure deduplication technology can improve cloud storage
efficiency while also protecting data privacy. It has been
extensively studied on classical cloud storage. Convergent
encryption (CE) [43] was the first secure deduplication solu-
tion, in which a user derives the encryption key from the
plaintext itself. This way, identical plaintexts will be deter-
ministically encrypted to the same ciphertexts by different
users. Bellare et al. [15] formalized this encryption strategy
as MLE. However, the deterministic MLE is vulnerable to
brute-force attacks [44]. To enhance the security of MLE,
server-aided MLE has been developed by using either a single
key server [44] or a group of key servers [45], [46] to
participate in key generation. Dave et al. [47] proposed a
pseudorandom key-based encryption mechanism, which can

improve data security against brute-force attacks. Nowadays,
most existing secure deduplication schemes [48], [49], [50]
are designed for client-side deduplication, since this kind of
deduplication can achieve a lower communication bandwidth
overhead than server-side deduplication. However, client-side
deduplication schemes usually suffer from some security
threats, such as hash-only attack [35]. Halevi et al. [25] pointed
out that an adversary owing only the tag of a file can convince
the cloud that he/she owns the file. To tackle this threat, the
authors developed a Merkle tree-based PoW scheme to verify
that the user indeed owns the claimed file. Later, some PoW
schemes were developed for improving the efficiency [24],
[51] and security [52], [53].

All the aforementioned secure deduplication schemes are
designed for encrypted identical data and cannot work over
encrypted similar data. Compared to identical data deduplica-
tion, to achieve deduplication over encrypted similar data is
more complex as it is difficult to encrypt two similar files to
the same or similar ciphertexts. Recently, some schemes [21],
[22], [23] were developed to perform secure deduplication
over similar data. Li et al. [21] proposed a secure fuzzy
deduplication scheme for group users with the same group
keys. However, it cannot work across different groups of users.
Takeshita et al. [22] proposed another fuzzy deduplication
scheme based on PAKE. An initial uploader should stay
online and securely share his/her encryption key to subsequent
uploaders using PAKE, which is impractical. Jiang et al. [23]
proposed a secure fuzzy deduplication scheme FuzzyDedup
using oblivious transfer. FuzzyDedup is more practical as it
does not require online user to assist the uploading of subse-
quent uploaders. However, users are required to encrypt their
files using only XOR operation such that two similar plaintexts
can be encrypted to two similar ciphertexts for deduplication.
Since a same key is used to encrypt all the blocks of a file,
the XOR operation cannot provide high-security protection for
the file content.

Recently, Huang et al. [11] proposed the first deduplica-
tion scheme SMACD for encrypted identical media data in
cloud media sharing. They designed a key sharing mechanism
between media distributors and media consumers using CP-
ABE, which achieves fine-grained access control to media
consumers. However, SMACD still focuses on the dedu-
plication of encrypted identical media data. Our SimLESS
achieves deduplication over encrypted similar media data. It is
also designed to allow the cloud to verify the ownership
of subsequent distributors and thus can protect media data
ownership security, which is not considered in SMACD.

VIII. CONCLUSION

In this paper, we propose SimLESS as a deduplication sys-
tem for encrypted similar media data in cloud media sharing.
SimLESS allows the cloud server to deduplicate encrypted
similar media uploaded by different media distributors while
also protecting media data privacy against the cloud server.
Media distributors can achieve fine-grained access control to
their media consumers, ensuring that only authorized con-
sumers can access the private media content. SimLESS enables
a media distributor to determine the threshold of distance

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 



4714 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

between his/her file and the file stored on the cloud. The cloud
performs deduplication only when the distance between the file
and the stored file is smaller than the threshold. Additionally,
SimLESS achieves fuzzy PoW to prevent a media distributor
from claiming the ownership of a media file using only the
tag of a similar file, ensuring media data ownership security.
We theoretically prove the security of SimLESS and imple-
ment a prototype using AlibabaCloud OSS as backend cloud
storage. The comprehensive evaluation results demonstrate the
efficiency of our design.

REFERENCES

[1] Y. Meng, C. Jiang, T. Q. S. Quek, Z. Han, and Y. Ren, “Social learning
based inference for crowdsensing in mobile social networks,” IEEE
Trans. Mobile Comput., vol. 17, no. 8, pp. 1966–1979, Aug. 2018.

[2] T. Taleb, A. Ksentini, M. Chen, and R. Jantti, “Coping with
emerging mobile social media applications through dynamic service
function chaining,” IEEE Trans. Wireless Commun., vol. 15, no. 4,
pp. 2859–2871, Apr. 2016.

[3] K. Yang, J. Shu, and R. Xie, “Efficient and provably secure data
selective sharing and acquisition in cloud-based systems,” IEEE Trans.
Inf. Forensics Security, vol. 18, pp. 71–84, 2023.

[4] Z. Zhu and R. Jiang, “A secure anti-collusion data sharing scheme
for dynamic groups in the cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 1, pp. 40–50, Jan. 2016.

[5] Google. (2012). Google Drive. [Online]. Available: https://cloud.
google.com/storage?hl=zh-cn#media-content-storage-and-delivery

[6] Dropbox. (2018). Dropbox. [Online]. Available: https://
www.dropbox.com/dropbox

[7] Alibaba. (2022). Alibaba Cloud. [Online]. Available: https://help.
aliyun.com/product/31815.html

[8] M. Fröbe et al., “CopyCat: Near-duplicates within and between the
ClueWeb and the common crawl,” in Proc. 44th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., Jul. 2021, pp. 2398–2404.

[9] W. Yang and Y. Zhu, “A verifiable semantic searching scheme by
optimal matching over encrypted data in public cloud,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 100–115, 2021.

[10] J. Shen, P. Zeng, K. R. Choo, and C. Li, “A certificateless provable data
possession scheme for cloud-based EHRs,” IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 1156–1168, 2023.

[11] Q. Huang, Z. Zhang, and Y. Yang, “Privacy-preserving media shar-
ing with scalable access control and secure deduplication in mobile
cloud computing,” IEEE Trans. Mobile Comput., vol. 20, no. 5,
pp. 1951–1964, May 2021.

[12] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “HealthDep:
An efficient and secure deduplication scheme for cloud-assisted eHealth
systems,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4101–4112,
Sep. 2018.

[13] S. Zhang, S. Ray, R. Lu, Y. Guan, Y. Zheng, and J. Shao, “Toward
privacy-preserving aggregate reverse skyline query with strong security,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 2538–2552, 2022.

[14] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient and
privacy-preserving computing in big data era,” IEEE Netw., vol. 28,
no. 4, pp. 46–50, Jul. 2014.

[15] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryp-
tion and secure deduplication,” in Proc. 32nd Int. Conf. Theory Appl.
Cryptograph. Techn. (EUROCRYPT), 2013, pp. 296–312.

[16] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure and
efficient cloud data deduplication with randomized tag,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 3, pp. 532–543, Mar. 2017.

[17] Z. Yan, L. Zhang, W. DING, and Q. Zheng, “Heterogeneous data storage
management with deduplication in cloud computing,” IEEE Trans. Big
Data, vol. 5, no. 3, pp. 393–407, Sep. 2019.

[18] Y. Fu, N. Xiao, T. Chen, and J. Wang, “Fog-to-multicloud cooperative
eHealth data management with application-aware secure deduplication,”
IEEE Trans. Depend. Secure Comput., vol. 19, no. 5, pp. 3136–3148,
Oct. 2022.

[19] M. Song, Z. Hua, Y. Zheng, H. Huang, and X. Jia, “Blockchain-
based deduplication and integrity auditing over encrypted cloud storage,”
IEEE Trans. Depend. Secure Comput., vol. 20, no. 6, pp. 4928–4945,
Nov. 2023, doi: 10.1109/TDSC.2023.3237221.

[20] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-aided
encryption for secure deduplication in cloud storage,” IEEE Trans.
Services Comput., vol. 13, no. 6, pp. 1021–1033, Nov. 2020.

[21] X. Li, J. Li, and F. Huang, “A secure cloud storage system supporting
privacy-preserving fuzzy deduplication,” Soft Comput., vol. 20, no. 4,
pp. 1437–1448, Apr. 2016.

[22] J. Takeshita, R. Karl, and T. Jung, “Secure single-server nearly-identical
image deduplication,” in Proc. 29th Int. Conf. Comput. Commun. Netw.
(ICCCN), Honolulu, HI, USA, Aug. 2020, pp. 1–6.

[23] T. Jiang et al., “FuzzyDedup: Secure fuzzy deduplication for cloud
storage,” IEEE Trans. Depend. Secure Comput., vol. 20, no. 3,
pp. 2466–2483, May 2023, doi: 10.1109/TDSC.2022.3185313.

[24] J. Dave, A. Dutta, P. Faruki, V. Laxmi, and M. S. Gaur, “Secure proof of
ownership using Merkle tree for deduplicated storage,” Autom. Control
Comput. Sci., vol. 54, no. 4, pp. 358–370, Jul. 2020.

[25] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. 18th ACM Conf. Comput.
Commun. Secur., Oct. 2011, pp. 491–500.

[26] K. Huang, X. Zhang, Y. Mu, F. Rezaeibagha, and X. Du, “Bidirectional
and malleable proof-of-ownership for large file in cloud storage,” IEEE
Trans. Cloud Comput., vol. 10, no. 4, pp. 2351–2365, Oct. 2022.

[27] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conf. Comput. Commun. Secur., Oct. 2006, pp. 89–98.

[28] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[29] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM J. Comput., vol. 38, no. 1, pp. 97–139, Jan. 2008.

[30] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proc. Theory Cryptogr. Conf., 2007, pp. 535–554.

[31] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Proc. Annu. Int. Cryptol. Conf., 2001, pp. 213–229.

[32] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” J. Cryptol., vol. 17, no. 4, pp. 297–319, Sep. 2004.

[33] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proc. 14th Int. Conf. Pract.
Theory Public Key Cryptogr., 2011, pp. 53–70.

[34] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
in Proc. 30th Annu. Int. Conf. Theory Appl. Cryptograph. Techn., 2011,
pp. 568–588.

[35] V. Rabotka and M. Mannan, “An evaluation of recent secure deduplica-
tion proposals,” J. Inf. Security Appl., vol. 27, pp. 3–18, Apr. 2016.

[36] OpenSSL. (2015). Open Source Socket Layer. [Online]. Available:
https://www.openssl.org/

[37] OpenCV. (2012). Open Source Computer Vision Library. [Online].
Available: https://opencv.rog/

[38] B. Lynn. (2010). The Pairing-based Cryptography (PBC) Library.
[Online]. Available: https://crypto.stanford.edu/pbc/

[39] T. Granlund. (2010). GNU Multiple Precision Arithmetic Library.
[Online]. Available: http://gmplib.org/

[40] Oracle. (2008). MySQL. [Online]. Available: https://dev.
mysql.com/doc/refman/5.6/en/

[41] S. Nene, S. Nayar, and H. Murase. (1988). Columbia Object Image
Library (CIOL-100). [Online]. Available: https://www.kaggle.com/
datasets/jessicali9530/coil100

[42] Graviti Open Datasets. (2018). Image of LEGO Bricks. [Online]. Avail-
able: https://www.kaggle.com/datasets/joosthazelzet/lego-brick-images

[43] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file sys-
tem,” in Proc. 22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 617–624.

[44] S. Keelveedhi, M. Bellare, and T. Ristenpart, “DupLESS: Server-aided
encryption for deduplicated storage,” in Proc. USENIX Secur., 2013,
pp. 179–194.

[45] Y. Duan, “Distributed key generation for encrypted deduplication:
Achieving the strongest privacy,” in Proc. 6th, Ed., ACM Workshop
Cloud Comput. Secur., Nov. 2014, pp. 57–68.

[46] Y. Zhang, C. Xu, N. Cheng, and X. Shen, “Secure password-protected
encryption key for deduplicated cloud storage systems,” IEEE Trans.
Depend. Secure Comput., vol. 19, no. 4, pp. 2789–2806, Jul. 2022.

[47] J. Dave, P. Faruki, V. Laxmi, A. Zemmari, M. Gaur, and M. Conti,
“SPARK: Secure pseudorandom key-based encryption for deduplicated
storage,” Comput. Commun., vol. 154, pp. 148–159, Mar. 2020.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TDSC.2023.3237221
http://dx.doi.org/10.1109/TDSC.2022.3185313


SONG et al.: SimLESS: A SECURE DEDUPLICATION SYSTEM OVER SIMILAR DATA IN CLOUD MEDIA SHARING 4715

[48] G. Tian et al., “Blockchain-based secure deduplication and shared
auditing in decentralized storage,” IEEE Trans. Depend. Secure Comput.,
vol. 19, no. 6, pp. 3941–3954, Nov. 2022.

[49] X. Liu, W. Sun, W. Lou, Q. Pei, and Y. Zhang, “One-tag checker:
Message-locked integrity auditing on encrypted cloud deduplication
storage,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Atlanta,
GA, USA, May 2017, pp. 1–9.

[50] S. Li, C. Xu, Y. Zhang, Y. Du, and K. Chen, “Blockchain-based
transparent integrity auditing and encrypted deduplication for cloud
storage,” IEEE Trans. Services Comput., vol. 16, no. 1, pp. 134–146,
Jan. 2023.

[51] J. Blasco, R. Di Pietro, A. Orfila, and A. Sorniotti, “A tunable proof
of ownership scheme for deduplication using Bloom filters,” in Proc.
IEEE Conf. Commun. Netw. Secur., San Francisco, CA, USA, Oct. 2014,
pp. 481–489.

[52] R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in proof
of ownership for deduplication,” in Proc. 7th ACM Symp. Inf., Comput.
Commun. Secur., May 2012, pp. 81–82.

[53] D. Pancholi, J. A. Y. Dave, and M. Bhatt, “Secure proof of ownership for
deduplicated cloud storage system,” Int. J. Inf. Comput. Secur., vol. 21,
nos. 1–2, pp. 205–228, 2023.

Mingyang Song received the B.E. and M.E. degrees
in software engineering from Sun Yat-sen University,
Guangzhou, China, in 2019 and 2021, respectively.
He is currently pursuing the Eng.D. degree with
the Department of Electronic Information, Harbin
Institute of Technology, Shenzhen. His research
interests include security and privacy related to cloud
computing, applied cryptography, and blockchain.

Zhongyun Hua (Senior Member, IEEE) received
the B.S. degree in software engineering from
Chongqing University, Chongqing, China, in 2011,
and the M.S. and Ph.D. degrees in software engineer-
ing from the University of Macau, Macau, China, in
2013 and 2016, respectively.

He is currently an Associate Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China.
His works have appeared in prestigious venues,
such as IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, IEEE TRANSACTIONS ON IMAGE PROCESSING,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE TRANSACTIONS
ON INFORMATION FORENSICS AND SECURITY, CVPR, AAAI, and ACM
MM. He has published about 90 articles on the subject, receiving more
than 6500 citations. His current research interests include chaotic systems,
multimedia security, and secure cloud computing. He has been recognized as
the “Highly Cited Researcher 2022” and “Highly Cited Researcher 2023.”

Yifeng Zheng (Member, IEEE) received the Ph.D.
degree in computer science from the City University
of Hong Kong, Hong Kong, in 2019. He was a
Post-Doctoral Researcher with the Commonwealth
Scientific and Industrial Research Organization
(CSIRO), Australia, and City University of Hong
Kong. He is currently an Assistant Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China.
His work has appeared in prestigious venues, such
as ESORICS, DSN, ACM AsiaCCS, IEEE INFO-

COM, IEEE ICDCS, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND
SECURITY, and IEEE TRANSACTIONS ON SERVICES COMPUTING. His cur-
rent research interests include security and privacy related to cloud computing,
the IoT, machine learning, and multimedia. He received the Best Paper Award
in the European Symposium on Research in Computer Security (ESORICS)
2021.

Tao Xiang (Senior Member, IEEE) received the
B.Eng., M.S., and Ph.D. degrees in computer science
from Chongqing University, China, in 2003, 2005,
and 2008, respectively. He is currently a Professor
with the College of Computer Science, Chongqing
University. He has published over 150 papers on
international journals and conferences. His research
interests include multimedia security, cloud secu-
rity, data privacy, and cryptography. He served as
a referee for numerous international journals and
conferences.

Xiaohua Jia (Fellow, IEEE) received the B.Sc. and
M.Eng. degrees from the University of Science and
Technology of China in 1984 and 1987, respectively,
and the D.Sc. degree in information science from
The University of Tokyo, in 1991.

He is currently the Chair Professor with the
Department of Computer Science, City University
of Hong Kong. He is an Adjunct Professor with
Harbin Institute of Technology, Shenzhen, while
performing this work. His research interests include
cloud computing and distributed systems, computer

networks, and mobile wireless networks. He is a fellow of the IEEE Computer
Society. He is the General Chair of ACM MobiHoc 2008, the Area-Chair
of IEEE INFOCOM 2010, the TPC Co-Chair of IEEE GlobeCom 2010-Ad
Hoc and Sensor Networking Symposium, and the Panel Co-Chair of IEEE
INFOCOM 2011. He is an editor of the World Wide Web Journal and IEEE
TRANSACTIONS ON COMPUTERS.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 26,2024 at 01:59:57 UTC from IEEE Xplore.  Restrictions apply. 


