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Abstract The Hindmarsh–Rose (HR) neuron model

is built to describe the neuron electrical activities. Due

to the polynomial nonlinearities, multipliers are

required to implement the HR neuron model in analog.

In order to avoid the multipliers, this brief presents a

novel smooth nonlinear fitting scheme. We first

construct two nonlinear fitting functions using the

composite hyperbolic tangent functions and then

implement an analog multiplierless circuit for the

two-dimensional (2D) and three-dimensional (3D) HR

neuron models. To exhibit the nonlinear fitting effects,

numerical simulations and hardware experiments for

the fitted HR neuron model are provided successively.

The results show that the fitted HR neuron model with

analog multiplierless circuit can display different

operation patterns of resting, periodic spiking, and

periodic/chaotic bursting, entirely behaving like the

original HR neuron model. The analog multiplierless

circuit has the advantage of low implementation cost

and thereby it is suitable for hardware implementation

of large-scale neural networks.

Keywords Circuit implementation � Hindmarsh–

Rose (HR) neuron model � Multiplier � Nonlinear

fitting � Nonlinearity

1 Introduction

Neuron, as an essential element of neural network, can

exhibit diverse electrical activities in response to the

externally imposed stimuli [1–3]. To imitate the

biological neuronal dynamics, different mathematical

neuron models were presented, including the Hodg-

kin-Huxley model [4–6], two-dimensional (2D) and

three-dimensional (3D) Hindmarsh–Rose (HR) mod-

els [7, 8], memristive HR model with threshold

electromagnetic induction [9] or quadratic electro-

magnetic induction [10], fractional-order HR model

[11], modified Izhikevich model [12], Morris-Lecar

model [13, 14], FitzHugh-Nagumo photosensitive

model [15], and excitable map-based model [16].

Besides, to develop brain-like hardware devices,

different electronic neurons were also developed

[17–19]. These neuron models and electronic neurons

are extremely useful for keeping the intrinsic mech-

anisms and bifurcation behaviors of neurons [20], and

thus can effectively promote the applications in

artificial neural networks [21].

The well-known Hodgkin-Huxley model is com-

posed of four groups of first-order nonlinear ordinary
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differential equations, which involves several com-

plex nonlinearities and at least 20 physical parameters

[4, 5]. Thus, it is quite difficult to analyze the Hodgkin-

Huxley model theoretically and obtain its analytical

solution. To address this issue, some effectively

simplified neuron models are presented. Among these

neuron models, the 3D HR model is one of the

simplified neuron models and truly displays various

firing patterns observed in biological neuron [8, 9]. As

a result, the generating mechanisms of various firing

patterns can be theoretically deduced based on the 3D

HR model.

Circuit implementations of mathematical neuron

models and large-scale neural networks on a hardware

level have received much attention recently [22].

Based on the off-the-shelf analog components and on-

chip digital devices, numerous analog and digital

neuromorphic circuits were developed to simulate

standalone neurons and coupled neural networks

[23, 24]. Due to the power-efficiency and compactness

of analog circuits, mathematical neuron models were

widely implemented in analog [25–27]. Based on

numerous off-the-shelf discrete components, Bao et al.

optimized an analog circuit design to implement an

adapting synapse-based neuron model [25], Behdad

et al. presented an experimental electronic neuron to

achieve a complete Morris-Lecar model [26], and

Arthur and Boahen developed a silicon-based inte-

grate-and-fire neuron using a dynamical system

approach [27]. Furthermore, analog circuit implemen-

tations of the HR neuron model with electromagnetic

induction and the HR neuron network coupled by

asymmetric electric synapse have been explored, upon

which the circuit simulations are effectively executed

using Pspice software tool [28–30].

However, when complex nonlinearities are

involved, hardware circuit implementations for math-

ematical neuron models become extremely difficult.

To solve this issue, a large number of digitally FPGA-

based piecewise liner approximation approaches were

proposed to implement neuromorphic circuits without

multipliers [31–37]. Using the digital multiplierless

implementation method, Jokar and Soleimani aimed at

a calcium-based plasticity model [31], Gomar and

Ahmadi focused on a biological adaptive-exponential

neuron model [32], and Hayati et al. sighted a two-

coupled biological HR neuron model [33]. Mean-

while, Rahimian et al. implemented a two-compart-

mental Pinsky-Rinzel pyramidal neuron model in

digital [34], Imani et al. investigated the multiplierless

realization of a coupled Wilson neuron model in

digital [36], and Haghiri et al. employed a low-cost

digital design to implement the noisy Izhikevich

neuron model without multipliers [37].

These electronic neurons with analog and digital

circuit implementations are capable to reproduce lots

of different neuron dynamics and spiking/bursting

behaviors that might appear in biological neurons

[26, 35]. Encouraged by the above piecewise liner

approximation approaches, this paper presents a novel

smooth nonlinear fitting scheme to implement an

analog multiplierless circuit for the 2D/3D HR neuron

model. Certainly, the nonlinear fitting scheme also

benefits from the idea of using a composite hyperbolic

tangent function to fit a complicated nonlinear activa-

tion function reported in [38]. Using this smooth

nonlinear fitting scheme, the polynomial nonlineari-

ties in the 2D/3D HR neuron model can be perfectly

fitted by the composite hyperbolic tangent functions.

Therefore, the presented smooth nonlinear fitting

scheme is suitable for implementing electronic neu-

rons in analog and the designed nonlinear fitting

functions are smooth and continuously differentiable.

By contrast, the piecewise liner approximation

approaches reported in [31–37] are applied by the

digitally FPGA-based electronic neurons and the

utilized piecewise linear functions are non-smooth

and continuously non-differentiable. In addition, with

the advantages of power-efficiency, compactness, and

low-cost, the analog multiplierless electronic neuron is

suitable for hardware implementation of large-scale

neural networks, which can greatly promote applica-

tions in the field of artificial intelligence [38].

The contributions of this paper are summarized as

follows. (1) A novel smooth nonlinear fitting

scheme is presented to multiplierlessly implement

the 2D/3D HR neuron model and different neuron

dynamics and spiking/bursting behaviors are repro-

duced. (2) An analog multiplierless circuit for the 2D/

3D HR neuron model is designed and fabricated on a

printed circuit board (PCB). Hardware experiments

show that the analog multiplierless circuit can per-

fectly generate different operation patterns, such as the

resting pattern, periodic/chaotic bursting patterns, and

periodic spiking patterns with different oscillating

frequencies.

The rest of this paper is organized as follows.

Section 2 presents a smooth nonlinear fitting
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scheme and constructs two nonlinear fitting functions

for the HR neuron model. Section 3 designs the circuit

modules of the smooth nonlinear fitting functions and

develops a hardware device for the analog multipli-

erless circuit. Finally, this paper is briefly concluded in

Sect. 4.

2 Nonlinear fitting scheme for the HR neuron

model

This section presents a smooth nonlinear fitting

scheme to implement the two polynomial nonlinear-

ities in HR neuron model.

2.1 Brief descriptions for the HR neuron model

Simplified from the Hodgkin-Huxley neuron model

[4], the 2D HR neuron model was firstly introduced in

1982 [7], and it is described as

_x ¼ y� ax3 þ bx2 þ I;

_y ¼ c� dx2 � y;

(
ð1Þ

where x, y, and I represent the membrane potential,

spiking variable, and steady current, respectively.

To exhibit the rich electrical activities of neuronal

membrane potential, the 3D HR neuron model was

then introduced [8] and it is expressed as

_x ¼ y� ax3 þ bx2 þ I � z;

_y ¼ c� dx2 � y;

_z ¼ rðsðxþ x1Þ � zÞ;

8><
>: ð2Þ

where z stands for the bursting variable and x1

represents the resting potential. The extra variable

z is coupled into the 2D HR neuron model to regulate

the current I. Generally, the model parameters in (1)

and (2) are selected as a = 1, b = 3, c = 1, d = 5,

x1 = 1.6, s = 4, and r = 0.01 along with an

adjustable current I [9]. Note that the parameter r is

a small value and it is amplified to facilitate the

selection of circuit parameters.

For the sake of simplicity, denote

FðxÞ ¼ x3 � 3x2;

GðxÞ ¼ 5x2 � 1:
ð3Þ

After substituting the aforementioned parameters

and the above equations into (1) and (2), the original

2D HR neuron model in (1) can be rewritten as

_x ¼ �FðxÞ þ yþ I;

_y ¼ �GðxÞ � y;

(
ð4Þ

and the original 3D HR neuron model in (2) can be

rewritten as

_x ¼ �FðxÞ þ y� zþ I;

_y ¼ �GðxÞ � y;

_z ¼ 0:04xþ 0:064 � 0:01z;

8><
>: ð5Þ

Then, the 2D/3D HR neuron model involves two

polynomial nonlinearities: the cubic polynomial

F(x) and the quadratic polynomial G(x).

2.2 Novel smooth nonlinear fitting scheme

To physically implement the 2D/3D HR neuron model

in analog, the multiplier is a basic component for

constructing the quadratic and cubic polynomials.

However, the analog circuit with multiplier has higher

implementation cost than that without multiplier. To

reduce the implementation cost of the 2D/3D HR

neuron model, we present a smooth nonlinear fitting

scheme without any multiplier to implement the

polynomial nonlinearities of the 2D/3D HR neuron

model.

The hyperbolic tangent function tanh(�) in mathe-

matics is smooth differentiable and has the upper and

lower bounds. It can be easily implemented using

some off-the-shelf analog electronic components. In

the presented smooth nonlinear fitting scheme, two

composite hyperbolic tangent functions are utilized to

fit the two polynomial nonlinearities of the 2D/3D HR

neuron model.

Corresponding to the cubic and quadratic polyno-

mials F(x) and G(x) shown in (3), two smooth

nonlinear fitting functions H1(x) and H2(x) are realized

by the composite hyperbolic tangent functions and

described as

H1ðxÞ ¼ m1 tanhðj1xþ d1Þ þ m2 tanhðj2x� d2Þ
� m3 tanhðj3x� d3Þ � do1;

ð6Þ
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H2ðxÞ ¼ m4 tanhðj4x� d4Þ � m5 tanhðj5xþ d5Þ
þ do2;

ð7Þ

where mj, jj, and dj with j = 1, 2, 3, 4, 5, as well as do1

and do2 are the control parameters of the fitting

functions H1(x) and H2(x). Herein, H1(x) consists of

three hyperbolic tangent functions, while H2(x) con-

tains two. For the hyperbolic tangent function, three

control parameters mj, jj, and dj are employed to

determine its amplitude, gradient, and horizontal

offset, respectively. Thus, the smooth nonlinear fitting

functions H1(x) and H2(x) given in (6) and (7) can be

empirically determined by adjusting the control

parameters of the composite hyperbolic tangent func-

tions to seamlessly fit the cubic and quadratic poly-

nomials F(x) and G(x) given in (3). The control

parameters of the respective hyperbolic tangent func-

tions in H1(x) and H2(x) are listed in Table 1. Note that

the control parameters do1 and do2 are used to adjust

the global offsets of H1(x) and H2(x), respectively.

Figure 1 shows the matching accuracy between the

original functions F(x) and G(x) in the 2D/3D HR

neuron model and their smooth nonlinear fitting

versions H1(x) and H2(x). The dashed curves show

the original functions F(x) and G(x) and the solid

curves depict the smooth nonlinear fitting functions

H1(x) and H2(x). As can be seen, the nonlinear fitting

functions are basically consistent with the original

functions.

It should be stressed that the nonlinear fitting

functions H1(x) and H2(x) using the presented nonlin-

ear fitting scheme are smooth and continuously

differentiable, whereas the piecewise linear

approximation functions appeared in [28–34] are

non-smooth and continuously non-differentiable.

2.3 Spiking and bursting in the fitted HR neuron

model

The classical HR neuron model can only show two

operation patterns, namely the spiking and bursting. In

the spiking pattern, the bursting variable z is set as zero

and the corresponding system is reduced to a 2D HR

neuron model. In this way, the oscillating frequency is

closely related to the steady current I. By contrast, in

the bursting pattern, the bursting variable z is what

generates the bursting patterns. Correspondingly, the

system is described by a 3D HR neuron model and its

operation patterns have the mode transitions from

resting to periodic bursting, to chaotic bursting, and

finally to spiking patterns as the steady current

I increases successively.

To demonstrate the feasibility of the presented

smooth nonlinear fitting scheme, we introduce the two

fitting functions H1(x) and H2(x) into the 2D/3D HR

neuron model to replace the original nonlinear func-

tions F(x) and G(x). Thus, the fitted 2D/3D HR neuron

model is coined. To exhibit the nonlinear fitting

effects, several representative values of the steady

current I are selected for the original and fitted 2D/3D

HR neuron models. Herein, MATLAB ODE45 algo-

rithm with fixed time-step 0.01 and initial conditions

(0, 0, 0) are employed to execute the numerical

simulations of time-domain waveforms.

When the steady current is set as I = 0.5 and 2,

respectively, the original and fitted 2D HR neuron

models operate in the spiking patterns with different

oscillating frequencies, and their membrane potentials

are shown in Fig. 2a, b. As can be observed, the

Table 1 Parameters of the two smooth nonlinear fitting

functions

Functions Parameters Values

H1(x) (m1, j1, d1) (38.7, 0.7, 1.8)

(m2, j2, d2) (38.7, 0.7, 3.2)

(m3, j3, d3) (6, 0.8, 0.8)

do1 2

H2(x) (m4, j4, d4) (18, 0.98, 1.74)

(m5, j5, d5) (18, 0.98, 1.74)

do2 32.9

H
1(
x)

,F
(x

)

x

H1(x)
F(x)

x

H
2(
x)

,G
(x

)

H2(x)
G(x)

Fig. 1 Two smooth nonlinear fitting functions H1(x) and

H2(x) for the HR neuron model. The dashed curves represent the

original functions F(x) and G(x), and the solid curves represent

the nonlinear fitting functions
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oscillating frequency increases as the steady current

increases. Meanwhile, the two spiking patterns gen-

erated by the original and fitted 2D HR neuron models

are basically consistent.

For different values of the steady current I, the 3D

HR neuron model shows different operation patterns.

The four representative values of the steady current are

considered as I = 0.1, 2, 3.3, and 5, respectively.

When imposing these steady currents on the original

and fitted 3D HR neuron models, the membrane

potentials can be induced and illustrated in Fig. 3. As

can be seen, with the increasement of the steady

current, the operation patterns undergo the resting,

periodic bursting, chaotic bursting, and periodic

spiking patterns sequentially. In the bursting patterns,

the busters of the original and fitted 3D HR neuron

models have slight difference but their dynamical

behaviors are the same. As a result, the fitted 3D HR

neuron model can be used to simulate the rich

electrical activities of the original 3D HR neuron

model, indicating the feasibility of the presented

smooth nonlinear fitting scheme.

Since the original and fitted 2D HR neuron models

only have the simple periodic spiking dynamics, we

take the original and fitted 3D HR neuron models as

examples for comparing their bursting dynamics and

pattern transitions. Based on the inter-spike interval

(ISI), we study the bifurcation diagrams of neuronal

membrane potential x with the increment of steady

current I. The bifurcation diagrams are plotted by

computing the ISI of action spike value of membrane

potential x [39] and the corresponding finite-time

Lyapunov exponents are figured out by Wolf’s Jacobi

method, as shown in Fig. 4. Note that MATLAB

ODE45 algorithm with fixed time-step 0.01 and initial

conditions (0, 0, 0) are utilized in these numerical

simulations. When the steady current I increases

within the interval [0, 5], both the original and fitted

3D HR neuron models have similar bursting dynam-

ics, and their firing patterns undergo complex mode

transitions from the resting, first to periodic bursting,

then to chaotic bursting, and finally to periodic spiking

patterns. The numerical results manifest that the fitted

3D HR neuron model can perfectly reproduce the

complex bursting dynamics and pattern transitions

appearing in the original 3D HR neuron model, but

their parameter-dependent bifurcation structures are

somewhat different. Nevertheless, the numerical

results in Fig. 4 further show that the presented

smooth nonlinear fitting scheme is feasible.

3 Analog multiplierless circuit design

and hardware experiment

This section designs an analog multiplierless circuit of

the fitted 2D/3D HR neuron model using the circuit

modules of composite hyperbolic tangent functions.

τ

x
I = 0.5

x

I = 2

xoriginal xfitted

xoriginal xfitted

(a)

(b)

Fig. 2 Operation patterns in the original and fitted 2D HR

neuron models for two representative values of I. a I = 0.5.

b I = 2. The dashed and solid trajectories represent the

membrane potentials of the original and fitted 2D HR neuron

models, respectively

τ

x

I = 3.3

x

I = 5

xoriginal xfitted

xoriginal xfitted

I = 2

x

xoriginal xfitted

I = 0.1

x

xoriginal xfitted (a)

(b)

(c)

(d)

Fig. 3 Operation patterns in the original and fitted 3D HR

neuron models for four representative values of I. a Resting at

I = 0.1. b Periodic bursting at I = 2. c Chaotic bursting at

I = 3.3. d Periodic spiking at I = 5. The dashed and solid

trajectories represent the membrane potentials of the original

and fitted 3D HR neuron model, respectively
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Thereafter, a hardware device is developed for the

analog multiplierless circuit.

3.1 Analog Multiplierless circuit design

The circuit modules for positive and negative hyper-

bolic tangent functions were designed in [25, 40], as

shown in Fig. 5a, b. They are designed using some off-

the-shelf analog components, including operational

amplifiers, voltage sources, transistors, and resistors.

Note that the current source I0 is implemented using

two transistors, three resistors, and one voltage source

[40], and its value is achieved by adjusting a

resistance.

For the circuit modules of positive and negative

hyperbolic tangent functions in Fig. 5a, b, their

transfer characteristics of input voltage vi and output

voltage vo are described as

vo ¼ tanhðjvi � lEÞ;
vo ¼ � tanhðjvi � lEÞ;

ð8Þ

respectively, where E is a fixed offset voltage, lE = dj,
j = RF/(2RVT), and l = RF/(2REVT) = jR/RE. In our

design, the offset voltage is connected to the inverting

I

IS
I

LE
s LE1

LE2

(a)

I

IS
I

LE
s LE1

LE2

(b)

Fig. 4 With the increment of steady current I, the ISI-based bifurcation diagrams of neuronal membrane potential x (bottom) and

corresponding finite-time Lyapuonv exponents (top). a The original 3D HR neuron model. b The fitted 3D HR neuron model

(a)

(c)

(b)

(d)

Fig. 5 Circuit implementations for the two nonlinear fitting functions H1(x) and H2(x). a Circuit module for tanh(•) with an offset

voltage. b Circuit module for - tanh(•) with an offset voltage. c Circuit module for H1(x). d Circuit module for H2(x)
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input terminal of the operational amplifier via an

adjustable resistor. The intent is to easily achieve

different offset values of the hyperbolic tangent

function by adjusting the resistance RE. However,

when realizing the offset values of the hyperbolic

tangent function, the offset voltage connection method

reported in the literature [25, 40] should adjust the

offset voltage. This requires the power supply to

provide multiple and high precision DC voltage

outputs, and thus greatly increases the difficulty of

hardware circuit experiment. In short, the circuit

modules of positive and negative hyperbolic tangent

functions in Fig. 5a, b are designed optimally in this

paper.

With these circuit modules of hyperbolic tangent

functions shown in Fig. 5a, b, two nonlinear fitting

functions H1(x) and H2(x) given in (6) and (7) can be

directly designed and their circuit modules are shown

in Fig. 5c, d, respectively. When applying an input vi,

the outputs of the two circuit modules in Fig. 5c, d can

be represented as

H1ðviÞ ¼ m1 tanhðj1viþl1EÞ þ m2 tanhðj2vi � l2EÞ
� m3 tanhðj3vi � l3EÞ � V1;

ð9Þ

H2ðviÞ ¼ m4 tanhðj4vi � l4EÞ � m5 tanhðj5vi
þ l5EÞ þ V2; ð10Þ

where mj = R/Rmj with j = 1, 2, 3, 4, 5,V1 = do1 = RE/

Ro1, and V2 = do2 = RE/Ro2.

The circuit parameters R = 10 kX, RC = 1 kX,

E = 15 V, I0 = 1.3 mA, and VT = 26 mV are deter-

mined. Using the parameter settings of the nonlinear

fitting functions H1(x) and H2(x) shown in Table 1, the

desired resistances of all circuit modules in Fig. 5 can

be calculated and listed in Table 2. Thus, the cubic and

quadratic polynomials F(x) and G(x) given in (3) can

be approximately achieved using relatively cheap

commercial electronic components.

Using the two circuit modules shown in Fig. 5c, d,

the analog multiplierless implementation circuit of the

fitted 2D/3D HR neuron model can be designed and

drawn in Fig. 6. The upper part is two integral

channels with the circuit modules of H1(vx) and

H2(vx), and the lower part is an extra integral channel

for implementing the slow variable vz. Based on three

capacitor voltages vx, vy, and vz in Fig. 6, the circuit

state equations under the physical time t = RCs are

established as

RC
dvx
dt

¼ �H1ðvxÞ þ vy � vz þ
R

RI
E;

RC
dvy
dt

¼ �H2ðvxÞ � vy;

RC
dvz
dt

¼ 0:04vx þ 0:0043E � 0:01vz;

ð11Þ

where RI is a resistance to adjust the value of steady

current.

Compared (11) with (5), the resistance RI for

adjusting the value of steady current I can be expressed

as

RI ¼
RE

VI
: ð12Þ

where VI equals to the value of steady current I. Thus,

different spiking and bursting patterns can be dis-

played from the designed analog multiplierless circuit

by adjusting the resistance RI achieved by a precise

potentiometer.

Table 2 Desired resistances for the two nonlinear fitting

functions

Functions Resistances Values (kX)

vo = H1(vi) (Rm1, RF1, RE1) (0.258, 0.364, 58.333)

(Rm2, RF2, RE2) (0.258, 0.364, 32.813)

(Rm3, RF3, RE3) (1.667, 0.416, 150.00)

Ro1 75.000

vo = H2(vi) (Rm4, RF4, RE4) (0.556, 0.510, 84.483)

(Rm5, RF5, RE5) (0.556, 0.510, 84.483)

Ro2 4.559

–
U1

C

vx

RI

–
U2

C

vy

R

R
H2(vx)

R

H1(vx)

R
–R
U3

R

–
U5

C

vz

RR

–E

vz R

100R

–
234.38R U4

vx 25R

2D
 H

R
 n

eu
ro

n 
m

od
el

3D
 H

R
 n

eu
ro

n 
m

od
el

E

Fig. 6 Analog multiplierless implementation of the fitted 2D/

3D HR neuron model
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3.2 PCB-based hardware experiments

Based on the circuit schematics shown in Fig. 5 and 6,

a hardware device for the analog multiplierless circuit

of the fitted 2D/3D HR neuron model is welded on a

PCB level. Figure 7 shows a picture of the hardware

device. Here, the resistors, capacitors, precise poten-

tiometers, MPS2222 transistors, and TL082CP oper-

ational amplifiers are employed. The off-the-

peg ± 15 V DC power module is used to provide

the supply voltages of the operational amplifiers and

offset voltages of the circuit modules. The experi-

mental outputs are captured by the WaveSurfer 510

oscilloscope. Due to the limitation of saturation output

level, it is necessary to ensure that the operational

amplifier supplied by ± 15 V DC power module

operates within a linear operating range about ± 13

V. In addition, I0 can be adjusted by a specific

potentiometer and one can refer to [40] for more

details.

Figure 8 shows the screenshots of the hardware

experimental prototype with the captured transfer

characteristic curve for the circuit module H1(vi) and

periodic bursting pattern for the fitted 3D HR neuron

model.

When taking the scanning AC voltage

vi = 6sin(200pt) V as the inputs of the two circuit

modules H1(vi) and H2(vi), the transfer characteristic

curves in the vi–vo voltage plane are measured and

shown in Fig. 9. The experimental measurements are

consistent with the numerical simulations given in

Fig. 1, manifesting the feasibility of the presented

smooth nonlinear fitting scheme in the analog circuit

implementation.

Following the relation in (12), the resistance RI is

employed for adjusting the values of VI. First,

disconnect the jumper and select the implementation

circuit of the fitted 2D HR neuron model.

Corresponding to Fig. 2, the spiking patterns for two

representative values of RI are measured and shown in

Fig. 10. Next, connect the jumper and select the

analog implementation circuit of the fitted 3D HR

neuron model. Corresponding to Fig. 3, the resting,

periodic/chaotic bursting, and periodic spiking pat-

terns for the four representative values of I are

measured, as shown in Fig. 11. Consequently, various

electrical activities can also be acquired from the

analog multiplierless circuit of the fitted 2D/3D HR

neuron model as well. The hardware experiments

show that the presented smooth nonlinear fitting

scheme can implement the 2D/3D HR neuron model

without any multiplier.

In the hardware experiments, only the resistances in

the circuit modules H1(vi) and H2(vi) need to be fine-

tuned. Corresponding to the desired resistances listed

in Table 2, the measured resistances are determined by

Precision LCR Meter and listed in Table 3. By

comparing the values in Tables 2 and 3, one can see

that the measured and desired resistances have some

slight deviations. These slight deviations are caused by

the model idealizations, parasitic parameters, mea-

surement errors, and so on.

The Mean Absolute Percentage Error (MAPE)

introduced in [41] can be used to evaluate the

deviations between the measured and desired resis-

tances. Denote Rdesiredk as the desired value in Table 2

and Rmeasuredk as the measured value in Table 3. The

MAPE in the hardware experiments is described by

MAPE ¼ 1

N

XN
k¼1

Rdesiredk � Rmeasuredkj j
Rdesiredk

� 100%;

ð13Þ

where N represents the number of resistance samples.

According to the values listed in Tables 2 and 3, we

can obtain that N = 17 and MAPE = 2.4% and this

evaluation result is an acceptable precision for the

PCB-based hardware experiments.

4 Conclusions

In this paper, we presented a smooth nonlinear fitting

scheme for the 2D/3D HR neuron model. When

implementing an analog circuit, the presented smooth

nonlinear fitting scheme can avoid multipliers by

employing two nonlinear fitting functions. Therefore,

H1(vi) H2(vi)

Fig. 7 The PCB-based hardware device for the analog

multiplierless circuit of the fitted 2D/3D HR neuron model.

The two circuit modules of H1(vi) and H2(vi) are located in the

left and right line boxes respectively
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without any multiplier, the analog circuit has low

implementation cost and thus is suitable for the

hardware implementation of large-scale neural net-

works. Numerical simulations of the fitted 2D/3D HR

neuron model and hardware experiments of the analog

multiplierless circuit can reproduce various neuronal

electrical activities with an acceptable error. Certainly,

the presented smooth nonlinear fitting scheme can also

be applied in other neuron models or neural networks,

such as the Morris-Lecar neuron model [26] and

Fig. 8 Hardware experimental prototype with the captured transfer characteristic curve for the circuit module H1(vi) (left) and periodic

bursting pattern for the fitted 3D HR neuron model (right)

H
2(
v i)

, 3
.5

 V
/d

iv

vi, 380 mV/divH
1(
v i)

, 2
 V

/d
iv

vi, 1 V/div

Fig. 9 The experimentally measured transfer characteristic

curves in the vi – vo voltage plane for the two circuit modules

H1(vi) and H2(vi)

RI = 300 kΩ

(a)

(b)t, 5 ms/div

v x
, 1

 V
/d

iv

t, 5 ms/div

v x
, 1

 V
/d

iv

RI = 75 kΩ

Fig. 10 The experimentally measured spiking patterns in the

fitted 2D HR neuron model for two representative values of RI.

a RI = 300 kX and b RI = 75 kX

RI = 75 kΩ

(b)

(c)t, 50 ms/div

v x
, 1

 V
/d

iv

t, 50 ms/div

v x
, 1

 V
/d

iv

RI = 45.46 kΩ

RI = 1.5 MΩ

(a)v x
, 1

 V
/d

iv

t, 50 ms/div

t, 20 ms/divv x
, 1

 V
/d

iv

RI = 30 kΩ

(d)

Fig. 11 The experimentally measured operation patterns in the

fitted 3D HR neuron model for four representative values of RI.

a Resting at RI = 1.5 MX, b periodic bursting at RI = 75 kX,

c chaotic bursting at RI = 45.46 kX, and d periodic spiking at

RI = 30 kX
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coupled Hindmarsh–Rose neuron model [33], which

deserve our future study.
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