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Abstract—When used in engineering applications, most exist-
ing chaotic systems may have many disadvantages, including
discontinuous chaotic parameter ranges, lack of robust chaos, and
easy occurrence of chaos degradation. In this article, we propose
a two-dimensional (2-D) parametric polynomial chaotic system
(2D-PPCS) as a general system that can yield many 2-D chaotic
maps with different exponent coefficient settings. The 2D-PPCS
initializes two parametric polynomials and then applies modular
chaotification to the polynomials. Setting different control param-
eters allows the 2D-PPCS to customize its Lyapunov exponents
in order to obtain robust chaos and behaviors with desired com-
plexity. Our theoretical analysis demonstrates the robust chaotic
behavior of the 2D-PPCS. Two illustrative examples are provided
and tested based on numeral experiments to verify the effec-
tiveness of the 2D-PPCS. A chaos-based pseudorandom number
generator is also developed to illustrate the applications of the
2D-PPCS. The experimental results demonstrate that these exam-
ples of the 2D-PPCS can achieve robust and desired chaos, have
better performance, and generate higher randomness pseudo-
random numbers than some representative 2-D chaotic maps.

Index Terms—Chaotic system, discrete-time system, nonlinear
system, pseudorandom number generator (PNG), robust chaos.

I. INTRODUCTION

ONLINEAR dynamical systems have been attracting
Nincreasing attention in many research fields [1]-[3].
A chaotic system is a typical type of nonlinear system
and it has many unique characteristic properties, including
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the initial condition sensitivity, unpredictability, and peri-
odic orbits density [4], [5]. Because of these significant
properties, chaotic systems are suitable for many practical
applications [4], [6], [7]. In particular, chaotic systems are
used widely in secure communications [8]-[10] and as pseu-
dorandom number generators (PNGs) [11], [12] because the
synchronization of a chaotic system is suitable for carrying
secret data [13], [14], and the chaotic systems and PNGs have
similar properties in terms of the unpredictability and initial
condition sensitivity [6], [15].

Essentially, chaotic systems are mathematical models for
describing natural or unnatural phenomena that exhibit chaotic
behaviors [16]. The Lorenz system was first built by the mete-
orologist E. N. Lorenz to simulate the unpredictability of
long-term weather changes [17] and many chaotic systems
were designed subsequently [18], [19]. The Hénon map and
logistic map are two classical chaotic systems [20], where the
former is a minimal normal form for describing stretching
and folding chaos dynamics, and the latter simulates popu-
lation growth. These classical chaotic systems have obvious
dynamic properties and have been studied widely in many
applications [21], [22].

However, due to the rapid increment of computational
capacity and the development of technology for discern-
ing chaos, many researchers have shown that some classical
chaotic systems have performance shortcomings in practi-
cal applications [23]. First, the chaotic behaviors of some
chaotic systems can be estimated using various methods, espe-
cially artificial intelligence techniques [24], [25]. These chaos
estimation techniques predict chaotic behaviors by directly
predicting their chaotic time series [24], estimating their con-
trol parameters [26], or identifying their initial conditions [27].
Second, these chaotic systems exhibit frail chaos. The phrase
frail chaos denotes that the chaotic dynamics are not robust
and tiny changes in the system parameters may result in the
disappearance of chaos [28]. For example, the chaotic range of
the logistic map is discontinuous and many periodic windows
exists [29]. The control parameter may fall into the peri-
odic windows when it undergoes a small disturbance, which
leads to the disappearance of the logistic map’s chaos. Finally,
many classical chaotic systems have serious security flaws due
to the problem of dynamical degradation [30], [31]. This is
because their structures and behaviors are very simple [18].
When simulated on finite-precision platforms, chaos degrada-
tion readily occurs [32]. These shortcomings cause defects in
many chaos-based applications [33].
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Many new chaotic systems have been designed to accom-
modate chaos-based applications [34], [35]. These new chaotic
systems can be divided into two categories. The first cate-
gory is designed on the basis of existing chaotic systems [34],
[35]. For example, Hua and Zhou [36] designed a chaotic
framework that generates new chaotic maps with much better
performance by using two chaotic maps to be control and
seed maps. The other category of new chaotic systems is
constructed from linear or nonlinear equations [2], [37]. For
example, Wang et al. [37] designed a high-dimensional digital
chaotic system based on m iteration functions. The complex
dynamic behavior of the system was demonstrated based on
theoretical and experimental results. Compared with classi-
cal chaotic systems, these newly obtained chaotic systems
result in more complex dynamic properties and better chaos
performance, and thus they may be more suitable for some
engineering applications. However, these new chaotic systems
also have various shortcomings and they cannot satisfy some
requirements of many chaos-based applications. In particular,
the chaotic behaviors of these systems do not exhibit robust
chaos. The phrase robust chaos indicates the nonexistence of
periodic windows for the space of system parameter [28].
Thus, the chaotic ranges of these new chaotic systems have
periodic windows [36] and small changes to the parameters
may make them fall into the periodic windows when used in
certain applications. In addition, these new chaotic systems
exhibit behaviors with different complexities when different
parameter values are used and their chaotic dynamics can-
not be controlled, so users cannot obtain the desired chaotic
dynamics by specifying their parameters [2]. Thus, design-
ing new chaotic systems with robust chaos and the desired
dynamic complexity is attractive and meaningful.

In this study, we present a two-dimensional (2-D) paramet-
ric polynomial chaotic system (2D-PPCS), which is directly
constructed from general polynomials. The 2D-PPCS is a new
2-D system and totally different from existing ones. It is a gen-
eral system that can yield many new 2-D chaotic maps with
robust chaos and desired complexity of behaviors. Theoretical
analysis, experiment results, and application show the superi-
ority of the 2D-PPCS. The main novelty and contributions of
this work are summarized as follows.

1) We propose a new 2-D chaotic system, the 2D-PPCS.

It is a general system that can yield a large number of
2-D chaotic maps using different exponent coefficient
settings. To the best of our knowledge, this is the first
time that 2-D chaotic maps are directly generated from
general polynomials.

2) Theoretical analysis results demonstrate that the
2D-PPCS can generate robust chaos and behaviors with
desired complexity, and has late chaos degradation,
and it is able to overcome the disadvantages of exist-
ing chaotic systems in discontinuous chaotic parameter
ranges.

3) To demonstrate the effectiveness of the 2D-PPCS, we
generate two illustrative examples of the 2D-PPCS
called 2-D Quadric and 2-D Cubic maps. The property
analysis and numeral experiments demonstrate that the
2-D Quadric and 2-D Cubic maps can exhibit robust and
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desired chaotic behaviors, and they perform better than
representative 2-D chaotic maps, such as the Lorenz,
Hénon, 2D-LSMCL, and 2D-SLM maps.

4) We apply the 2-D Quadric and 2-D Cubic maps to
a PNG to investigate the potential applications of the
2D-PPCS. The simulation results show that they outper-
form most existing 2-D chaotic maps in this application.

The remainder of this article is organized as follows. In

Section II, we review several representative 2-D chaotic maps,
as well as discussing their properties. In Section III, we pro-
pose the 2D-PPCS and prove its robust chaotic behavior. We
provide two illustrative examples of 2D-PPCS in Section IV,
and numerical analyses and performance comparisons are
presented in Section V. In Section VI, we investigate the
application of the 2D-PPCS in a PNG. Finally, we give our
conclusions in Section VII.

II. EXISTING 2-D CHAOTIC MAPS

In this section, we introduce four existing 2-D chaotic maps
comprising two classical and two recently developed ones.

A. Four 2-D Chaotic Maps

The discrete Lorenz map is the 2-D discrete-time form of the
Lorenz system, which is a widely studied three-dimensional
(3-D) chaotic systems [38]. The mathematical equation for the
discrete Lorenz map is written as

{Xm = (1 + ab)x; — bx;y;
yir1 = (1 = b)y; + bx?
where a and b are two system parameters. The discrete Lorenz
map exhibits obvious chaotic behavior when its parameters
a=1.05 and b = 0.75.

The Hénon map is named after M. Hénon [18] and its
mathematical definition is written as

{xi+1 =1—ax+y 2)
Yi+1 = bx;

(D

where a and b are two system parameters. The Hénon map
is also a commonly studied prototype for 2-D chaotic system
and it exhibits obvious chaotic behavior when a = 1.4 and
b=0.3.

The 2-D-logistic-modulated-sine-coupling-logistic chaotic
(2D-LSMCL) map is a new chaotic map which is developed
from the classical logistic and sine maps [39]. The 2D-LSMCL
map was generated by first modulating the sine map using the
logistic map, and then coupling the outputs from the logistic
and sine maps, and finally extending the phase plane of tra-
jectory from one-dimensional (1-D) to 2-D. Mathematically,
the 2D-LSMCL map is defined as

{XH_] = (sin(4may;(1 —y;)) + b)x;(1 — x;)

Virt = (sin@maxiei (1 — xi0) + Byl —y) &

where a and b are system parameters. The 2D-LSMCL map
exhibits obvious chaotic behavior when a = 0.75 and b = 3.

A 2-D chaotic system called 2D-SLM map is also developed
on the basis of the logistic and sine maps [40]. First, the sine
map is combined with a parameter b. Then, the output from
the logistic map is then modulated by using this combination
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Fig. 1. Bifurcation diagrams and trajectories obtained for existing types of
2-D chaotic maps. From top to bottom, the four plots show the (a) bifurcation
diagrams for variable x;, (b) bifurcation diagrams for variable y;, and (c) tra-
jectories of (x;, y;) for the discrete Lorenz map, Hénon map, 2D-LSMCL map,
and 2D-SLM map, respectively.

to improve its nonlinearity. Finally, the outputs are extended
to 2-D from 1-D. The 2D-SLM map is mathematically written
as

{xm = a(sin(ry;) + b)x;(1 — x;) @)

Yit1 = a(sin(@xip1) + b)yi(1 — yi)
where a and b are system parameters. The 2D-SLM map
exhibits obvious chaotic behavior when @ = 1 and b = 3.

B. Analysis of Dynamics

For a 2-D dynamical system, a bifurcation diagram plots
its variable x; or y; as the control parameters change, and
the trajectory represents the variables (x;,y;) by setting its
parameters as fixed values. Fig. 1 demonstrates these bifurca-
tion diagrams and trajectories for the discrete Lorenz, Hénon,
2D-LSMCL, and 2D-SLM maps. To illustrate the dynamics
properties for these 2-D chaotic maps in a straightforward
manner, the bifurcation diagrams were plotted while chang-
ing one parameter b and keeping the other parameter a as a
fixed value, thereby making the related chaotic system exhibit
obvious chaotic behavior. In particular, the parameter a was
set as 1.05, 1.4, 0.75, and 1 in the discrete Lorenz, Hénon, 2D-
LSMCL, and 2D-SLM maps, respectively. The trajectories of
these 2-D chaotic maps were plotted by setting their parame-
ters as fixed values. In particular, the parameters (a, b) were set
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as (1.05,0.75), (1.4,0.3), (0.75, 3), and (1, 3) in the discrete
Lorenz, Hénon, 2D-LSMCL, and 2D-SLM maps, respectively.
Clearly, these 2-D chaotic maps have some obvious properties.
First, their chaotic behaviors occur only in very narrow data
ranges and their chaotic parameter ranges exist many periodic
windows and thus are discontinuous. Small disturbances to the
parameters may make them fall into the periodic windows and
thus cause disappearance of chaos. Second, the outputs of the
chaotic maps are distributed over a quite small data range and
they have obvious patterns, thereby indicating that the outputs
do not exhibit high randomness. Additionally, the complexity
of the chaotic dynamics cannot be controlled. Thus, users can-
not obtain desired and stable chaotic dynamics by predefining
the control parameters. These properties cause defects in many
chaos-based applications [23], [41].

III. 2D-PPCS AND ITS CHAOTIC BEHAVIOR
A. 2D-PPCS

We present the 2D-PPCS for generating chaotic maps
with robust chaos and behaviors with the desired complexity.
Modular operation can fold any value into a fixed range, so
modular chaotification is employed to generate the 2D-PPCS
from nonlinear polynomials. First, we initialize two paramet-
ric polynomials F(x, y) = ax+cy? and G(x, y) = by. Modular
chaotification is then applied to F(x,y) and G(x,y) to obtain
two 2-D equations. After writing the 2-D equations in discrete
time forms, we can obtain the 2D-PPCS as

{xm = (axi +cy/) mod B )
Yi+1 =by; mod B
where x; and y; are two variables at the ith observation time,
a, b, and ¢ are control parameters, y indicates the exponent
coefficient, and B is the modular coefficient.

It is well known that linear equations cannot generate
chaos, whereas nonlinear polynomials contain sufficient non-
linear operations to exhibit complex nonlinear properties.
Thus, many chaotic systems are built from nonlinear polyno-
mials, including the logistic map and Lorenz system family.
However, these chaotic systems exist some obvious shortcom-
ings. First, they can achieve chaotic behaviors with only a
small number of parameter settings. For example, the logistic
map produces chaotic behavior only in the parameter range
of [3.57, 4] [36]. Second, many periodic windows occur in
their parameter space, which leads to frail chaotic behav-
iors that readily disappear when the parameters are disturbed.
Finally, the complexity of the chaotic dynamics cannot be con-
trolled, and thus we may not obtain desired and stable chaotic
dynamics by predefining the control parameters. These hap-
pen because these chaotic systems are all built from nonlinear
polynomials with special structures and their control param-
eters can only have some small values. When the control
parameters are specified as some large values, the phase planes
become uncompacted and their trajectories diverge to infinity.

The modular operation can always fold the phase plane for
any input and it is a bounded nonlinear transform. When it
is employed to generate chaos from nonlinear polynomials,
the control parameters can be any large value and the system
structures can be specified. Thus, the proposed 2D-PPCS can

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 13:59:56 UTC from IEEE Xplore. Restrictions apply.



HUA et al.: 2-D PARAMETRIC POLYNOMIAL CHAOTIC SYSTEM

exhibit the following properties: 1) the exponent coefficient y
determines the complexity of the nonlinear polynomials in the
2D-PPCS. Thus, setting y to different values can obtain dif-
ferent chaotic maps; 2) the control parameters can be very
large values for the 2D-PPCS; and 3) the 2D-PPCS can
exhibit robust chaos and behaviors with desired complexity by
predefining its control parameters. These properties are theo-
retically proved in Section III-B and experimental verifications
are presented in Section V.

B. Proof of Chaotic Behavior

The 2D-PPCS constructed according to (5) can achieve
robust chaos and dynamical behaviors with desired complexity.
We use the Lyapunov exponent (LE) to prove this prop-
erty. The LE is a commonly used measurement for indicating
whether the chaos exist or not [42]. The LE metric defines
chaos by characterizing the separation rate of two extremely
close trajectories of a nonlinear system. A multidimensional
dynamical system has several LEs that describe the separation
of close phase plane trajectories from different directions. The
LE number for a multidimensional dynamical system equals
to the dimensionality of its phase plane. Thus, the 2D-PPCS
has two LEs for describing the separation rate of the system
in two directions.

1) Definition of Chaos: Let the 2-D discrete-time differen-
tiable dynamical system be

Xiy1 = C1(xi, yi)
C , . i+ 1
(x.3) {yi+1 = Ca(xi, yi)
and the two LEs can be calculated as [42]

1

where j = 1 or 2, A1(J) and A>(J) are the two eigenvalues for
the 2-D matrix J, and J = J(xo, yo)J(x1, y1) - - - J (=1, y1—1).
J(xi, y;) is the Jacobian matrix for the dynamical system
C(x, y) at the iteration i and

€1 (x,y) C (x,y)
ax (i) ay |(xi,yi)
J(xi, yi) =
G (x,y) G (x,y) |
ox (xi,yi) dy (xi,yi)

If a dynamical system has a positive LE, then its close tra-
jectories will diverge with each unit time. If a nonlinear system
can achieve two or more positive LEs, then its close trajecto-
ries diverge in multi dimensions. A larger positive LE denotes
that the extremely close phase plane trajectories of the system
diverge more quickly. The definition of chaos can be described
according to Definition 1 [42].

Definition 1: A nonlinear system has chaotic behavior in
the sense of LE if: 1) it has at least one positive LE and 2) it
has the globally bounded phase plane.

Using Definition 1, we can decide whether a 2-D dynamical
system exhibits chaotic behavior.

2) Chaos of the 2D-PPCS: First, we give Proposition 1 to
show the chaotic behaviors of the constructed 2D-PPCS.

Proposition 1: The 2D-PPCS in (5) has chaotic behavior if
its two system parameters a and b satisfy that |a - b| > 1.
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Proof: The Jacobian matrix of the 2D-PPCS in (5) at the

observation i is
-1
a cy-y
J(xi, yi) =
0 b

Then, the multiplications of the Jacobian matrices from obser-
vation 0 to observation ¢ — 1 is calculated as

J = Jxo, yo)J i, y1) - JGo—1, ye—1)

—1 —1
a c-y~yg a c-y-yi’_l
— X -+ X
0 b 0 b
a  Ala,b,c, Y. Y0, V15 Vi—1)
0 b

where A(a, b, ¢, ¥, Y0, ¥1,--.,Yr—1) 1s a certain value repre-
sented by a, b, c, ¥, Y0, Y1, ..., ¥V—1. Let A1(J) and A2(J) be
the two eigenvalues of J. It is obvious that the 1 (J) and A, (J)
are independent from A(a, b, ¢, ¥, yo, Y1, - - -, y1—1) and can be
obtained as A1 (J) = @' and A2(J) = b'. According to the LE
definition shown in (6), the two LEs of the 2D-PPCS are

LEq

1
Iim —InA;(J)
t—0o0 t
. 1 l‘
= Jim, 7 1n(#)
= In(a) )

and

LE,

1
lim —InA(J)
=00 t

= lim lln(b[)

—00 t

= In(h). (8)

Since |a - b| > 1, at least one of |a| and |b| is larger than
1. Then one can deduce that at least one of LE| and LE, is
larger than 0. Then the condition 1) in Definition 1 has been
satisfied.

Additionally, because the modular operation can always fold
any input to a fixed range, the 2D-PPCS in (5) has a globally
bounded phase plane. Then the condition 2) in Definition 1 has
also been satisfied and thus the 2D-PPCS has chaotic behavior.
This does the proof. |

Proposition 1 states that the 2D-PPCS always exhibits chaotic
behavior when its two parameters a and b have |a - b| > 1.
Table I lists the two LEs for the 2D-PPCS with several settings
for a and b. The 2D-PPCS has two positive LEs with these
settings of parameters, thereby indicating that it can achieve
hyperchaotic behavior. From (7) and (8), the two LEs for the
2D-PPCS are totally determined by its parameters, a and b.

C. Discussions

Because the two LEs of the 2D-PPCS are directly deter-
mined by its parameters, a and b. Users can customize the
LEs for the 2D-PPCS by setting the two parameters a and b to
specific values. Thus, the 2D-PPCS can achieve the following
advantages.
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TABLE I

Two LES OF THE 2D-PPCS WITH VARIOUS PARAMETERS a AND b
a LFE, b LE,

2 | LE; =1n(a) = 0.6931 | 2 | LE; = In(b) = 0.6931
3 | LE; =1n(a) =1.0986 | 3 | LE; = In(b) = 1.0986
4 | LE; =In(a) =1.3863 | 4 | LE; = In(b) = 1.3863
5 | LE; =1n(a) =1.6094 | 5 | LE; = In(b) = 1.6094
6 | LB, = ln(a) =1.7918 | 6 | LE; = ln(b) =1.7918
7 | LEy =1n(a) =1.9459 | 7 | LEy = In(b) = 1.9459
8 | LB, = ln(a) =2.0794 | 8 | LE; = In(b) = 2.0794
9 | LE; =In(a) =2.1972 | 9 | LE; = In(b) = 2.1972
10 | LE; = 1n(a) = 2.3026 | 10 | LE5 = In(b) = 2.3026

1) Because the state space in digital platforms cannot have
infinite states, all self-evolved systems without external
disturbance will finally result in periodic behaviors [30].
Thus, all chaotic systems unavoidably have chaos degra-
dation if the evolution time is long enough. However, the
2D-PPCS has late chaos degradation for the two reasons:
1) it has continuous chaotic ranges, which is proved by
Proposition 1 and experiments in Fig. 5(e) and 2) its
output states cannot overlap in a long iteration, which
is verified by the experiment results in Table VI.

2) The proposed 2D-PPCS has robust chaos. However,
most existing chaotic systems do not have this property.
The robust chaos is defined as the inexistence of periodic
windows in the neighborhood of parameter space and
it is a strongly desired property for many chaos-based
applications [28].

3) The 2D-PPCS has more complex dynamics properties
than some representative 2-D chaotic maps, which can
be seen from the comparisons in Section V.

4) The 2D-PPCS is more suitable for many chaos-based
applications than representative 2-D chaotic maps. For
example, the PNG application. This will be verified by
the test results in Table VI. This is because the 2D-PPCS
generates robust behaviors with desired complexity by
setting its two parameters as specific values. However,
other 2-D chaotic maps do not have this property.

Using the same construction method, 3-D or even higher-

dimensional polynomial chaotic systems can be generated.
However, high-dimensional chaotic systems have more con-
trol parameters. To obtain robust chaos and behaviors with
desired complexity, the relationship between these parameters
should be reconsidered.

IV. TWO ILLUSTRATIVE EXAMPLES

The exponent coefficient y in (5) determines the complex-
ity of the nonlinear polynomials in the 2D-PPCS. Setting y
at various values can obtain different 2-D chaotic maps with
diverse levels of complexity. In the following, we consider two
illustrative examples of the 2D-PPCS where y is set as two
and three. The modular coefficient 8 is set to one but users
can set it to other values.
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Fig. 2. Top row shows the bifurcation diagrams for the variable x; in the 2-D
Quadric map with the parameter pairs: (a) a, b € (1, 100), (b) a, ¢ € (1, 100),
and (c) b, ¢ € (1, 100); and bottom row shows the corresponding bifurcation
diagrams for the variable y;.
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Fig. 3. Trajectories of the (a) 2-D Quadric map and (b) 2-D Cubic map with
control parameters comprising (a, b, ¢) = (49, 49, 49).

0

A. 2-D Quadric Map

1) Definition: When the exponent coefficient y is set at
two, the 2D-PPCS in (5) becomes a 2-D Quadric map and its
definition is

{x,-_H = (ax; + cy%) mod 1 )

Yi+1 =by; mod 1

where a, b, and ¢ are system parameters for the 2-D Quadric
map. According to Proposition 1, the 2-D Quadric map
exhibits chaotic behavior when its control parameters |a-b| >
1. Thus, we investigated the behavior of the 2-D Quadric map
when its parameters comprised a, b, ¢ € (1, 100).

2) Bifurcation Diagram and Trajectory: The bifurcation
diagram and phase plane trajectory of the 2-D Quadric map
are investigated to understand its dynamical behavior with dif-
ferent parameters. Fig. 2 plots the bifurcation diagrams for
the 2-D Quadric map from a 3-D viewpoint. According to
these diagrams, the variables x; and y; are uniformly distributed
throughout the whole data range with different parameter set-
tings. Fig. 3(a) shows the trajectory for the 2-D Quadric map
under a fixed parameter setting. The trajectory could also ran-
domly visit or approach all the areas of the data range, which
indicates that the 2-D Quadric map can output uniform states
and exhibit robust chaotic behavior.
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3) Equilibrium Point and Stability: An equilibrium point
describes that a dynamical system’s domain exists an ele-
ment that allows the system map to the element. In particular,
x demonstrates an equilibrium point of f if it satisfies that
fC..f(x)...) = x. All the equilibrium points of the 2-D
Quadric map are the solutions of the equation as follows:

{x = (ax+¢y*) mod 1 (10)

y=by mod 1.

By solving the equation above, we can find that the 2-D
Quadric map owns various numbers of equilibrium points with
different control parameters. An equilibrium point can indi-
cate an unstable or stable state. An unstable equilibrium point
repels the neighboring states and makes the system unstable,
whereas a stable equilibrium point attracts the neighboring
states of the trajectories in the phase plane and the system
will become stable as the time increases. Thus, a system will
remain locally stable over a long period if its equilibrium point
is stable. The system is locally unstable if all the equilibrium
points are unstable. Furthermore, a locally unstable system is
considered to exhibit chaotic behavior if it is also globally sta-
ble. The stability can be indicated by the eigenvalues of the
system’s Jacobian matrix. Let the two eigenvalues of a 2-D
dynamical system’s Jacobian matrix be A; and A,. Then, the
system is locally stable if |A;] < 1 and |A2| < 1, whereas it
is locally unstable if |A;]| > 1 or (and) |A2| > 1. The Jacobian
matrix for the 2-D Quadric map is calculated as

a 2-c-yj

0 b

Clearly, the two eigenvalues of the 2-D Quadric map’s
Jacobian matrix are A1 = a and A = b, and they are indepen-
dent of the observation state of the 2-D Quadric map. Thus,
when a, b € (1, 100), the two eigenvalues always satisfy that
[A1] > 1 and |Az| > 1, which denotes that all these equilibrium
points have unstable state. According to (10), the 2-D Quadric
map has an equilibrium point at (0, 0) for any parameter setting.
It also has many nonzero equilibrium points on I € [0, 1) with
different parameter settings. Table II lists the nonzero equilib-
rium points and their eigenvalues for the Jacobian matrix under
two parameter settings. All the eigenvalues are larger than one,
thereby indicating the unstable state of the 2-D Quadric map.

B. 2-D Cubic Map

1) Definition: When we set the exponent coefficient y to
three, the 2D-PPCS in (5) yields a 2-D Cubic map, which is
defined by

{x,-+1 = (ax; +cy;) mod 1 (11

Yit1 =by; mod 1

where a, b, and c are also system parameters. The 2-D
Cubic map can also exhibit chaotic behavior when its param-
eters satisfy |a - b| > 1. We set the control parameters in
the same ranges as those for the 2-D Quadric map, i.e.,
a,b,c e (1,100).

2) Bifurcation Diagram and Trajectory: Fig. 4 depicts the
bifurcation diagrams for the 2-D Cubic map from a 3-D
viewpoint. Each diagram plots the states visited by the variable
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TABLE II
NONZERO EQUILIBRIUM POINTS OF THE 2-D QUADRIC MAP AND
EIGENVALUES OF THE JACOBIAN MATRIX UNDER TWO PARAMETER

SETTINGS
(a,b,c) Equilibrium points (Z, ) Eigenvalues
(0.185,0.333), (0.519, 0.333)
AL =4
(4,4,4) | (0.852,0333), (0.073,0.667) | '
(0.407,0.667), (0.740,0.667) T
(0.137,0.250), (0.422, 0.250)
(0.538,0.250), (0.738,0.250)
(0.937,0.250), (0.938,0.250)
(0.150, 0.500), (0.350,0.500)
A1 =6
(6,5,5) | (0.550,0.500), (0.750,0.500) N5
(0.950,0.500), (0.038, 0.750) 2
(0.237,0.750), (0.437, 0.750)
(0.438,0.750), (0.637.0.750)
(0.838,0.750)

1

w705

so L s0 so = s0

100 100
b a e 100 a ¢ 100 b

< 4l 50
100 100

P L
100 100 100 100

() (b) (b)

Fig. 4. Top row shows the bifurcation diagrams for the variable x; in the 2-D
Cubic map with the parameter pairs: (a) a, b € (1, 100), (b) a,c € (1, 100),
and (c) b, ¢ € (1, 100); and bottom row shows the corresponding bifurcation
diagrams for the variable y;.

x; or y; when the parameter pairs are (a, b), (a, ¢), or (b, c).
Clearly, under different parameter settings, the results show
that the variables x; and y; are always uniformly distributed
throughout the whole data range. This indicates that the 2-D
Cubic map can exhibit complex chaotic behaviors in the whole
parameter space and its chaotic range is continuous. However,
observed from Fig. 1, the four existing 2-D chaotic maps show
chaotic behaviors only in small parameter spaces and their out-
puts cannot distribute uniformly. Besides, their chaotic ranges
are discontinuous. With uniformly distributed outputs, the 2-D
Cubic map is more suitable for many applications. This will
be verified by the PNG application in Section VI.

Fig. 3(b) plots the phase plane trajectory of the 2-D Cubic
map for the parameter settings of (a, b,c) = (49,49,49). It
is obvious that the variable pair (x;, y;) of the 2-D Cubic map
can also randomly visit all the areas of the 2-D phase plane,
which is similar with that of the 2-D Quadric map in Fig. 3(a).
This is because both the 2-D Quadric and 2-D Cubic maps
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Fig. 5. Two LEs for the (a) discrete Lorenz map, (b) Hénon map, (c) 2D-LSMCL map, (d) 2D-SLM map, and (e) 2-D Quadric and 2-D Cubic maps.

have complex behaviors and their trajectories can randomly
visit all the areas of the phase plane. However, even the two
chaotic maps have similar trajectories in the global view, their
trajectories are completely different in the local view.

3) Equilibrium Points and Stability: The equilibrium points
for the 2-D Cubic map are the solutions of the equation

{x: (ax+cy’) mod 1 (12)

y=by mod 1.

Clearly, the point (0, 0) is a solution of the equation above.
The 2-D Cubic map has many nonzero equilibrium points for
different settings of parameters. The Jacobian matrix for the
2-D Cubic map can be obtained as

a 3-C~yi2

0 b

The two eigenvalues for the Jacobian matrix are also A} = a
and A, = b, and they are independent of the observation
states, x; and y;. When a,b € (1, 100), the two eigenvalues
always have |A1] > 1 and |X2| > 1, and all these equilibrium
points show unstable for the 2-D Cubic map. Table III lists
the nonzero equilibrium points for the 2-D Cubic map and the
eigenvalues of the Jacobian matrix with two-parameter set-
tings. All the eigenvalues are larger than one, which indicates
the locally unstable property of the 2-D Cubic map.

V. NUMERAL EXPERIMENTS

To demonstrate the robust chaotic behaviors and desired
dynamics properties of the 2-D Quadric and 2-D Cubic maps,
we numerically analyzed the chaotic behaviors of the two 2-D
chaotic maps based on the LE, Kolmogorov entropy (KE),
correlation dimension (CD), and initial state sensitivity. The
chaotic behaviors and dynamic properties of the 2-D Quadric
and 2-D Cubic maps are determined by their parameters a and
b, and we set the parameter ¢ = 49 in our experiments.

TABLE III
NONZERO EQUILIBRIUM POINTS FOR THE 2-D CUBIC MAP AND
EIGENVALUES OF THE JACOBIAN MATRIX UNDER TWO PARAMETER

SETTINGS
(a,b,c) Equilibrium points (Z, §) Eigenvalues
(0.284,0.333), (0.617, 0.333)
)\1 =4
(4,4,4) | (0.951,0.333), (0.271,0.667) N — 4
(0.604,0.667), (0.938,0.667) 2
(0.184,0.250), (0.384, 0.250)
(0.584,0.250), (0.784,0.250)
(0.984,0.250), (0.075,0.500) N6
(0.275,0.500), (0.475,0.500) /\1 B 5
(6,5,5) | (0.675,0.500), (0.875,0.500) ?
(0.178,0.750), (0.378, 0.750)
(0.578,0.750), (0.778,0.750)
(0.978,0.750)
A LE

As described in Section III-B, the LE is an indicator of
chaotic behavior and a larger positive LE value indicates more
rapid divergence of the neighboring trajectories of a system. A
dynamical system exhibits chaotic behavior if it has positive
LE(s) and its phase plane is globally stable.

To demonstrate the superior performance of the constructed
2-D Quadric and 2-D Cubic maps, we compared their LEs with
those for the four 2-D chaotic maps presented in Section II,
comprising two classical maps, i.e., the discrete Lorenz map [38]
and Hénon map [18], and two recently developed chaotic maps,
i.e., the 2-D LSMCL map [39] and 2-D SLM map [40]. In
our experiments, we used the LE calculation toolbox LET! to
calculate the LEs of different chaotic maps. Fig. 5 compares

1 https://ww2.mathworks.cn/matlabcentral/fileexchange/233-
let?requestedDomain=zh
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the LE values for these 2-D chaotic maps. The two LEs for
the 2-D Quadric and 2-D Cubic maps are shown in the same
figures because their LEs are the same when they have same
parameters, as shown by (7) and (8). The results demonstrate that
the discrete Lorenz, Hénon, 2-D LSMCL, and 2-D SLM maps
can achieve positive LEs only with a few parameter values, and
they have discontinuous chaotic ranges. Small changes to the
control parameters can cause the disappearance of their chaos.
By contrast, the 2-D Quadric and 2-D Cubic maps can achieve
two positive LEs over the whole parameter range, where their
LEs are much larger and the chaotic ranges are continuous
and much wider compared with those for the four other 2-D
chaotic maps. These findings indicate that the 2-D Quadric
and 2-D Cubic maps exhibit robust hyperchaotic behavior and
they can obtain better performance compared with these other
2-D chaotic maps.

B. KE

The KE is a type of entropy metric that provides a the-
oretical explanation for the distribution of finite states. This
entropy can describe the required information to forecast the
current output of a chaotic system from its previous ¢ outputs.
The KE is defined according to Definition 2 [43].

Definition 2: The phase plane is divided into
D-dimensional hypercubes with content eP and P(io, ..., in)
is the probability that a phase plane trajectory is in hypercube

ipatt=0,ipatt =T, ..., i, at t = nT. Then, the KE is
defined as
=
K = lim Ilim (13)

lim — K - K
Ay A NLmoo NT 2_(:)( n+1 n)

where K41 — K, is the required information to forecast that
the phase plane trajectory of the hypercube at (n+ 1)T given
the trajectories up to nT, and K, can be calculated as

K, = — Z P(ig, ..., i) InP(o, ..., ip).

i0y.esin

(14)

A positive KE indicates that extra information is required to
forecast the trajectory of a nonlinear system and a larger KE
denotes that more information is required. Thus, a nonlinear
system owning a positive KE is considered to own unpre-
dictability and a larger KE the denotes better performance of
unpredictability.

In our experiments, we used the 12000 states of a system’s
trajectory to calculate the KEs for different 2-D chaotic maps
and Fig. 6 demonstrates the results obtained. The parameters
for these 2-D chaotic maps are the same as those employed in
the LE experiments. Clearly, the 2-D Quadric and 2-D Cubic
maps yielded from the 2D-PPCS have positive KEs within
all the parameters, and they have much larger KEs than the
other four 2-D chaotic maps. These results are the same as
the results in LE experiment and they demonstrate the robust
chaotic behavior of the 2-D Quadric and 2-D Cubic maps.

C. CD

As a kind of fractal dimension, the CD measures the occu-
pied space dimensionality of a time series [44]. The time series
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Fig. 6. KE:s of the (a) discrete Lorenz map, (b) Hénon map, (c) 2-D-LSMCL
map, (d) 2DSLM map, (e) 2-D Quadric map, and (f) 2-D Cubic map.

of a nonlinear system is regarded to own chaotic dynamics if
its CD obtained is larger than O and a larger CD denotes a
higher space dimensionality occupied by the time series. The
CD is defined according to Definition 3.

Definition 3: The CD of a time series {sy, 52, ...
with a given embedding dimension m is defined by

log Cpy (1)
logr

asn’---a}

d = lim lim
r—>0N—o00

where C,,(r) indicates the correlation integral calculated as

. 1
Cn() = 0 IN = = DIV — m = D¢ — 1]

N—(m—1)¢ N—(n—1)¢

x Z Z 0(r— 15 — 5l

j=it1

where 0 (w) indicates a step function, with 8 (w) = 0 forw <0
and 6 (w) = 1 for w > 0; ¢ is the time delay, which is typically
set to 1; and {s1,52,..., Sy, ..., } is a new data sequence

5t = (St Sttcs St42¢ -+ -+ Sekm=1)¢)
t=1,2,....N—(m—1)yx.

In our experiments, we used the nonlinear time series analy-
sis tool TISEAN 3.0.1 to test the CDs for various 2-D chaotic
maps and Fig. 7 shows the results obtained. The parameter
ranges for these 2-D chaotic maps were the same as those
employed in the LE and KE experiments, ensuring that the

2https://Www.pks.rnpg.de/ tisean/archive_3.0.0.html
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Fig. 7. CDs of the (a) discrete Lorenz map, (b) Hénon map, (c) 2D-LSMCL
map, (d) 2D-SLM map, (e) 2-D Quadric map, and (f) 2-D Cubic map.

experiments are consistent. The results demonstrate that the
2-D Quadric and 2-D Cubic maps have positive CDs within all
the settings of parameters, whereas the other four 2-D chaotic
maps could only produce positive CDs in narrow parameter
ranges. Additionally, the 2-D Quadric and 2-D Cubic maps
could produce much larger CDs than the other 2-D chaotic
maps. These findings demonstrate that the 2-D Quadric and
2-D Cubic maps is able to generate time series owning a higher
space dimensionality than the other four 2-D chaotic maps.

D. Initial State Sensitivity

The initial state sensitivity is the most important and
straightforward characteristic of chaos, where it indicates that
a chaotic system shows extremely sensitive to the change of its
initial state. A small change to its initial state can eventually
lead to completely different chaotic signals.

The joint entropy here is used to test the correlation between
two chaotic signals of a 2-D chaotic system generated by
extremely similar initial states. We divided the values of two
chaotic signals comprising S; and S into K states. Their joint
entropy can be calculated as

K K

H($182) = Y Y P(bibiy) log, P(bi, biy)

i1=1i=1

where b; and b;, are the ijth and irth states in S; and
S», respectively, and P(b; b;,) denotes the joint probability.
Clearly, the joint entropy H(S1S2) is always positive. The
maximum value of joint entropy could be obtained when the
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Fig. 8.  First and second rows show the chaotic trajectories of (X1, Xp)

and (Y7, Y), where (X1,Y1) and (Xp,Y,) are generated using the ini-
tial states of (xg,yp,a,b) = (0.1,0.1,49,49) and (xg,y0,a,b) =
(0.100001, 0.100001, 49, 49), respectively. The third row shows the differ-
ences between X and X3, and between Y and Y3, where (X3, Y3) are gener-
ated using the initial state of (xq, g, a, b) = (0.1, 0.1,49.00001, 49.00001).
(a) 2-D Quadric map and (b) 2-D Cubic map.

two chaotic signals S; and Sy are completely independent
and uniformly distributed, i.e., P(b; b;,) = P(b;;) x P(b;,)
and P(b;;) = P(b;,) = 1/K. The maximum joint entropy is
calculated as

K K

H(S182)max = Z ZP(bilbiz) 10g2 P(bilbi2)

i1=1i=1

K K
=Y > (1/K)logy(1/K)?

i1=1i=1

= 2log, K.

For each of the 2-D Quadric and 2-D Cubic maps, our
experiments were conducted as follows: 1) set the initial state
as (xo, yo,a,b) = (0.1,0.1,49, 49) and generate the chaotic
trajectories X; and Yp; 2) slightly change the initial state to
(x0, Y0, a, b) = (0.100001, 0.100001, 49, 49) and generate the
chaotic trajectories X> and Y»; and 3) slightly change the ini-
tial state to (xo, yo, @, b) = (0.1, 0.1, 49.00001, 49.00001) and
generate the chaotic trajectories X3 and Y3. Fig. 8 shows the
first 40 states for the trajectories Xj, X2 and Y1, Y», as well
as the differences between X; and X3, and between Y; and
Y;. As can be seen, with the incasement of iteration num-
ber, slightly changing the initial values or parameters could
lead to completely different trajectories. Table IV shows the
joint entropies for these trajectories starting from slightly
different initial values or parameters with the signal state
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TABLE IV
JOINT ENTROPIES OF TRAJECTORIES STARTING FROM SLIGHTLY DIFFERENT INITIAL VALUES (TRAJECTORIES (X1, Y1) AND (X2, ¥3))
AND CONTROL PARAMETERS (TRAJECTORIES (X1, Y1) AND (X3, ¥3))

Number of signal states K

2! 22 24 2° 26 27 28
H(X1X2) | 1.9959 39764 59909 7.9949 9.9973 11.9986 13.9993  15.9996
2-D Quadric map H(Y1Y3) 1.9904 39765 59922 79938 99973 11.9986 13.9993  15.9996
H(X1X3) | 1.9959 3.9826 59913 7.9948 9.9973 11.9986 13.9993 15.9996
H(Y1Y3) 1.9943 39847 5.9885 7.9950 9.9971 11.9986 13.9993  15.9996
H(X1X92) | 19621 39719 59905 7.9942 9.9972 11.9986 13.9993 15.9996
2-D Cubic map H(Y1Y3) 1.9904 39765 59922 79938 99973 11.9986 13.9993  15.9996
H(X:X3) | 1.9362 3.9881 59917 7.9946 9.9973 11.9986 13.9993  15.9996
H(Y1Y3) 1.9943  3.9847 5.9885 7.9950 9.9971 11.9986 13.9993 15.9996

H(S5152)max 2 4 8 10 12 14 16

K e {2',...,2",...,28). For each signal state, the first CONTROL PARAMETI;ZTRASBIIEEIE]\)/FOR DIFFERENT 2-D

23%(+1) gtates are used to calculate the joint entropy. The
results show that all the joint entropies approach to the max-
imum values, and thus the trajectories obtained starting from
slightly different initial states exhibit high uncertainty.

VI. PNG

Pseudorandom numbers are employed widely in many prac-
tical applications such as industrial applications [12]. Chaotic
systems own many unique characteristics, including the ini-
tial condition sensitivity, aperiodicity, and unpredictability, and
thus they are suitable for designing PNGs.

A. PNG Design

When using a chaotic system to generate pseudorandom
numbers, two strategies are commonly employed. The first
strategy generates random numbers based on a threshold. A
bit 1 is generated when the current chaotic output is bigger
than the threshold, whereas a bit 0 is generated for the oppo-
site situation. The second strategy involves directly generating
random numbers from the chaotic outputs. It is clear that the
performance of a chaos-based PNG is completely determined
by the chaotic sequence employed. If a chaotic system easily
happens chaos degradation, it cannot generate a long sequence
of pseudorandom numbers.

If we assume that S = {s;,s2,...,s;,...,} is a chaotic
sequence generated by a chaotic system, then a simple chaos-
based PNG can be constructed as

P=ls;xa| mod§p (15)

where « is a large number to scale up the chaotic outputs, 8
is an integer, the function [x] is to get the largest integer that
equals to or is smaller than x. Our experiment sets o = 10°
and B = 256. Clearly, eight bits of random numbers can be
obtained from each output state.

B. Randomness Test

An effective PNG should generate a large number of ran-
dom numbers with aperiodicity and high randomness. The
TestUO1 is a widely used test standard for measuring the

CHAOTIC MAPS IN TESTUO1 TEST

’Chaotic maps ‘Control parameters

Discrete Lorenz
map [38]
Hénon map [18] a = 1.3954, b = 0.3135

2-D LSMCL map [39]ja = 0.7515, b = 2.9691

2-D SLM map [40] |a = 0.9494, b = 2.9247

2-D Quadric map a = 28.9705, b = 1.0221, ¢ = 60.1613
2-D Cubic map o = 49.1742, b = 39.3341, ¢ = 8.8290

a = 1.0462, b = 0.7481

random numbers [45]. It contains many statistical tests and
can test a long sequence of random numbers. The TestUO1 test
standard comprises a set of predefined batteries and each bat-
tery is a set of many empirical statistical tests. It includes six
widely used batteries, namely Rabbit, Alphabit, BlockAlphabit,
SmallCrush, Crush, and BigCrush test suits. These test suits
take different lengths of pseudorandom numbers as input. The
Rabbit, Alphabit, and BlockAlphabit test suites can take 232
bits as input and contain 17, 102, and 40 statistical tests,
respectively. The SmallCrush test suite takes about 6 Gb as
input and contains 15 statistical tests. The Crush test suite
takes about 1 Tb as input and contains 144 statistical tests. The
BigCrush test suite is the most stringent statistical test suit. It
uses 160 statistical tests and can test a sequence with about
10 Tb, which is larger than 2*3 bits. Thus, the TestU01 is an
all-sided test standard that aims to determine the nonrandom-
ness and defective areas from various viewpoints. To the best
of our knowledge, it contains the most statistical tests and its
tested random numbers are the longest, compared with other
test standards. The maximum tested bit length can reach to
10 Tb. In our experiments, we used the open-source software
TestUO1? to ensure that neutral test results were obtained.
To demonstrate the superior performance of our proposed
2-D Quadric and 2-D Cubic maps, we separately used the
discrete Lorenz, Hénon, 2D-LSMCL, 2D-SLM, and 2-D

3http://simul.iro.umontreal.ca/testuOl/tu()l html
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TABLE VI
RESULTS OF TESTUOI TEST STANDARD FOR DIFFERENT LENGTHS OF PSEUDORANDOM NUMBERS PRODUCED BY 2-D CHAOTIC MAPS. p/q SHOWS
THAT p OF g STATISTICAL TESTS ARE PASSED. THE DETAILED TEST REPORTED ARE GIVE ON
HTTP://WWW.HUAZHONGYUN.CN/EXPRES/TESTUO1.HTM

Test suites ‘ Rabbit | Alphabit | BlockAlphabit | SmallCrush Crush BigCrush
232 bits about 6 Gb | about 1 Tb | about 10 Tb
Discrete Lorenz map [38] | 39/40 1717 101/102 15/15 140/144 157/160
Hénon map [18] 38/40 17/17 102/102 15/15 133/144 133/160
2-D LSMCL map [39] 40/40 1717 102/102 15/15 144/144 160/160
2-D SLM map [40] 40/40 1717 101/102 15/15 144/144 159/160
2-D Quadric map 40/40 17/17 102/102 15/15 144/144 160/160
2-D Cubic map 40/40 1717 102/102 15/15 144/144 160/160

Quadric and 2-D Cubic maps as chaotic generators for the
PNG, and tested the generated pseudorandom numbers using
TestUO1. The initial states for all the tested chaotic maps were
set to xo = 0.1 and yp = 0.1. The iteration states x; and y;
are set as the IEEE 754 double-precision. As discussed in
Section II, these existing chaotic maps show classical chaotic
behaviors under fixed parameter settings. To keep a same
precision for different chaotic maps, their control parameters
are randomly selected around these fixed settings. The control
parameters of the 2-D Quadric and 2-D Cubic maps are ran-
domly selected from a continuous chaotic range (1, 100). All
the control parameters are take four decimal places. Table V
shows the utilized control parameters of all the tested chaotic
maps.

Table VI demonstrates the test results of the pseudoran-
dom numbers generated by using different 2-D chaotic maps
as the chaotic generator. For the discrete Lorenz and Hénon
maps, when the bit length is 232, they fall to pass one or
two statistical tests in the Rabbit or BlockAlphabit test suite.
When the bit length increases to 1 Tb and 10 Tb, they fall
to pass more statistical tests in the Crush and BigCrush test
suites. The 2-D SLM map fall to pass one statistical test in the
BlockAlphabit and BigCrush test suites, respectively. On the
constat, the 2-D LSMCL, 2-D Quadric, and 2-D Cubic maps
can pass all the statistical tests of all the six test suites. This
means that they do not occur chaos degradation when gener-
ating 10 Tb of random numbers. However, the proposed 2-D
Quadric and 2-D Cubic maps have much simpler structure than
the existing 2-D LSMCL map, which can be seen from their
definitions. Besides, the 2-D Quadric and 2-D Cubic maps
have continuous chaotic ranges but the 2-D LSMCL map do
not have, which can be observed from Proposition 1 and Fig. 5.
Then the 2-D LSMCL map cannot overcome the chaos degra-
dation caused by the discontinuous chaotic ranges. Since the
maximum bit length that can be measured by the TestUO1 is
about 10 Tb, the bitstream larger than 10 Tb cannot be directly
tested. In our future work, we will investigate how to test the
randomness properties of much longer random numbers.

VII. CONCLUSION

Many engineering applications demand chaotic systems to
have robust chaos, continuous chaotic parameter ranges, and
late chaos degradation. Nevertheless, many existing chaotic

systems do not have these properties. To address these short-
comings, we proposed a 2D-PPCS that can yield 2-D chaotic
maps with robust chaos and desired dynamic properties. The
2D-PPCS is constructed from nonlinear polynomials and a
modular chaotification is performed to compact the phase
plane. Our theoretical analysis demonstrated that the 2D-PPCS
can achieve chaotic behavior and its two LEs are deter-
mined completely by its two control parameters. Thus, we
can customize the LEs by specifying the control parameters
of the 2D-PPCS in order to obtain robust chaos and desired
dynamic properties. We provided two illustrative examples of
the 2D-PPCS by setting the highest exponent of the poly-
nomial as two and three. Numeral experiments demonstrated
that these two examples of the 2D-PPCS exhibit robust and
desired chaotic behaviors, and they also perform much bet-
ter than some representative 2-D chaotic maps. We applied
these two examples of the 2D-PPCS to a PNG to demonstrate
the utility of the 2D-PPCS and the experimental results ver-
ified the superior performance of the 2D-PPCS. Our future
work will investigate how to test the randomness properties
of random numbers with much longer and the generation
of high-dimensional polynomial chaotic systems with robust
chaos.
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