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A B S T R A C T

When applied to practical applications, existing chaotic systems exhibit many weaknesses, including discon-
tinuous chaotic intervals and easily predicted chaotic signals. This study proposes an 𝑛-dimensional chaotic
model (𝑛D-CM) to resolve the weaknesses of existing chaotic systems. 𝑛D-CM can produce chaotic maps with
any desired dimension utilizing existing 1D chaotic maps as seed chaotic maps. To demonstrate the effect of
𝑛D-CM, we generate three 2D and one 3D chaotic map as examples, utilizing three 1D chaotic maps as the
seed maps. The evaluation and experiment results show that these newly generated chaotic maps can obtain
continuous and wider chaotic intervals and better performance using the indicators of the Lyapunov exponent,
sample entropy and correlation dimension, compared to existing maps. To further show the practicality of 𝑛D-
CM, the generated maps are additionally applied to secure communication. The experimental results show that
these chaotic maps exhibit much better performance in resisting transmission noise in this application than
existing chaotic maps.
1. Introduction

Recently, nonlinear theories have attracted increasing attention [1,
2]. As a typical branch of non-linear theory, the chaos theory demon-
strates nonlinear behaviors that are extremely sensitive to their initial
states [3,4]. Based on Devaney’s definition, a nonlinear system with
chaotic behavior should exhibit initial state sensitivity, topological
mixing, and dense periodic orbits [5]. Due to these significant prop-
erties, chaos theory has been widely applied into various scientific and
engineering fields [6–9]. For example, chaotic systems are commonly
used in secure communication and random number generators [10–12],
because the outputs of chaotic systems can carry confidential data [13];
moreover, chaotic systems have similar properties to pseudo-random
number generators [14].

Recently, many research reports have indicated that existing chaotic
systems have many weaknesses when applied to real engineering ap-
plications [15,16]. First, many chaotic systems exhibit discontinuous
chaotic ranges [17,18], for example, the well-known Hénon map [5].
The continuity of a chaotic range indicates that the chaotic system
exhibits chaotic behavior in a continuous parameter range. All digital
platforms have finite precision. When a chaotic system is implemented
on these platforms, its digitalized parameter(s) can only achieve ap-
proximate values. If the chaotic ranges are discontinuous, a slight
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disturbance to the parameters may result in the parameter(s) with-
out chaotic ranges, leading to chaotic behaviors degrading to regu-
lar behaviors [19]. Thus, the discontinuous chaotic ranges of chaotic
systems have serious adverse effects in many chaos-based practical
applications [20,21].

In addition, many research reports have indicated that the chaotic
signals can be predicted if the structures of the related chaotic maps
are simple [22–24]. These studies estimated chaotic signals by identi-
fying the mathematical models of the chaotic systems generating the
signals [25,26], deducing the initial states’ control parameters [27,28],
or predicting the chaotic signals directly [29,30]. The unpredictability
of chaotic systems is required for many practical applications that use
chaos. When the chaotic signals of a chaotic system are successfully
estimated, the chaotic system in these applications is ineffective [31].
For example, in chaos-based cryptography systems, if the attackers can
successfully predict the chaotic signals, they can determine the emula-
tive keys of the cryptography systems and thus, break the cryptography
systems without secure keys [20,32,33].

To date, researchers have developed many techniques to increase
the complexity of existing chaotic systems [34,35]. These studies can
be divided into two based on the strategies they use. The first strategy
directly enhances the dynamic complexity of the existing chaotic sig-
nals by disturbing the chaotic signals or control parameters [18,36,37].
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This strategy works well in specific applications. However, in [38],
the effectiveness of this strategy for enhancing chaos complexity was
proved to be limited and unsuitable for some applications that require
robust chaos. Another method of strengthening chaotic complexity is
to produce new chaotic systems with more complex behaviors [39,40].
These new chaotic systems are created by either using existing maps as
seed maps or directly from nonlinear equations. This strategy can sig-
nificantly enhance the complexity of existing chaotic maps. However,
they primarily focus on low-dimensional systems. A high-dimensional
system typically has more complex structures and behaviors than a
low-dimensional system and thus computation with this system is
difficult [41]. Few methods for generating high-dimensional chaotic
systems consider the continuity of chaotic ranges, which means that
these chaotic systems do not have continuous chaotic ranges [3,33].
These weaknesses occur in general chaotic systems because most ex-
isting ones do not have continuous chaotic ranges. Thus, developing
high-dimensional chaotic systems with more complex chaotic behaviors
is required.

This study proposes an 𝑛-dimensional chaotic model (𝑛D-CM) to
overcome these drawbacks of the existing chaotic systems. The 𝑛D-CM
can produce chaotic maps of any dimension by utilizing 1D chaotic
maps as seed chaotic maps. Property discussions show the effects of
𝑛D-CM. To experimentally demonstrate the effectiveness of 𝑛D-CM,
three 2D and one 3D chaotic map are produced as examples, utilizing
three 1D chaotic maps as seed chaotic maps. The performance analysis
demonstrates that these new chaotic maps have wide and continuous
chaotic ranges. To illustrate the practicality of the 𝑛D-CM, we applied
these newly produced chaotic maps to secure communication. The ex-
perimental results show that the maps generated by 𝑛D-CM show much
better performance in resisting transmission noise in this application
than the existing maps.

The remainder of this paper is organized as follows. Section 2
presents the three existing 1D chaotic systems and discusses their
properties. Section 3 introduces the proposed 𝑛D-CM and illustrates
everal new 2D and 3D chaotic maps produced by 𝑛D-CM. Section 4
easures the performance indicators of the chaotic maps produced by

D-CM, and Section 5 applies the generated chaotic maps to secure
ommunication application. The final section concludes the paper.

. 1D chaotic maps

We first present three 1D classic chaotic maps as a background
nd discuss their dynamic properties. Our proposed chaotic model uses
hem as seed chaotic maps, as discussed in Section 3.

.1. Definitions of three 1D maps

The logistic map was built to model the growth of popularity, and
ts mathematical equation is defined as

𝑖+1 = 𝐿(𝑥𝑖) = 4𝑎𝑥𝑖(1 − 𝑥𝑖), (1)

where 𝑎 acts as the control parameter with 𝑎 ∈ [0, 1].
A fraction map was developed to model the random behavior of a

enetic algorithm in evolutionary computation [42]. The equation is
escribed as

𝑖+1 = 𝐹 (𝑥𝑖) =
1

𝑥2𝑖 + 0.1
− 𝑏𝑥𝑖. (2)

Its dynamic properties are typically analyzed for its control parameter
𝑏 ∈ [0, 1].

Trigonometric functions exhibit complex nonlinear properties. By
scaling with 𝜋, the sine transform can map input of range (0, 1) to the
same range (0, 1), and thus can derive to the sine map. The sine map is
defined as

𝑥 = 𝑆(𝑥 ) = 𝑐 sin(𝜋𝑥 ). (3)
2

𝑖+1 𝑖 𝑖
The 𝑐 acts as a control parameter, with 𝑐 ∈ [0, 1].
A bifurcation diagram plots the distributions for a dynamic system’s

output states depending on its control parameter(s). In contrast, the
Lyapunov exponent (LE) tests the average exponential separation rate
between two close trajectories beginning from two closed initial val-
ues [43]. A positive LE means that these two trajectories will separate in
every unit of time and thereby is an indicator of chaos if the phase space
of the dynamic system is also bounded. Fig. 1 plots the bifurcation di-
agrams and LEs of the three existing maps. These maps exhibit chaotic
behaviors only in minimal parameter settings, and have discontinuous
chaotic ranges. In addition, their outputs can be distributed over a
restricted area in the phase plane.

2.2. Performance analysis

According to the mathematical definitions, plotted bifurcation dia-
grams, and calculated LEs, the logistic, fraction, and sine maps have
many noticeable properties. Firstly, as shown in Fig. 1, the chaotic
ranges of these chaotic maps are narrow and discontinuous. Minor
changes in their parameters could lead them to fall into the non-chaotic
ranges and lead to chaotic behaviors degrading to regular behaviors.
Secondly, chaotic maps have incomplete output distributions. This
implies that their outputs can visit a restricted region in the phase
plane and cannot be distributed uniformly. Thirdly, their structures
and chaotic behaviors are straightforward. This may lead to chaotic
degradation. These properties can negatively affect the practical appli-
cations of chaos. Thus, it is meaningful to resolve the weaknesses of
these chaotic systems, which can benefit practical applications that use
chaos.

3. 𝒏-Dimensional chaotic model

This section first presents the 𝑛-dimensional chaotic model (𝑛D-CM),
and then generates several 2D and 3D new chaotic maps by 𝑛D-CM
utilizing these 1D chaotic maps introduced in Section 2.

3.1. 𝑛D-CM

𝑛D-CM was developed to resolve the issues associated with existing
chaotic systems. It can produce chaotic maps with any dimension by
performing a sine transformation on the addition results of the seed
chaotic maps. The mathematical structure of 𝑛D-CM is defined as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥1,𝑖+1 = sin(𝜋(𝐹1(𝑥1,𝑖) + 𝐹2(𝑥2,𝑖) +⋯ + 𝐹𝑛(𝑥𝑛,𝑖)))
𝑥2,𝑖+1 = sin(𝜋(𝐹1(𝑥2,𝑖) + 𝐹2(𝑥3,𝑖) +⋯ + 𝐹𝑛(𝑥1,𝑖)))

⋮

𝑥𝑛,𝑖+1 = sin(𝜋(𝐹1(𝑥𝑛,𝑖) + 𝐹2(𝑥1,𝑖) +⋯ + 𝐹𝑛(𝑥𝑛−1,𝑖))),

(4)

where 𝐹1(⋅), 𝐹2(⋅), ⋯, and 𝐹𝑛(⋅) are 𝑛 seed chaotic maps that are all 1D
haotic maps, and 𝐱(𝐢) = {𝑥1,𝑖, 𝑥2,𝑖,… , 𝑥𝑛,𝑖} is an 𝑛-length vector that is
he 𝑖th observation states of the chaotic model. Several 𝑛 seed chaotic
aps are required to produce an 𝑛-D chaotic map. For each dimension,

he 𝑛D-CM combines the outputs of the 𝑛 seed chaotic maps and then
erforms a sine transformation on the addition results of all the seed
haotic maps. The next dimension is generated by shifting the inputs of
he 𝑛 seed chaotic maps from the current dimension. The combinations
f the outputs of the 𝑛 equations are the outputs of 𝑛D-CM, which are
lso for recursive iterations.

The sine transformation is a bounded operation that exhibits com-
lex nonlinearity. This can generate chaos for any parameter setting.
herefore, the proposed 𝑛D-CM has the following properties. (1) The
roposed 𝑛D-CM is an effective but straightforward chaos generation
odel. Users can flexibly produce chaotic maps of any dimension by

ombining various seed chaotic maps. When swapping 𝑛 seed chaotic
aps in the generation, different 𝑛D chaotic systems can be produced.

2) The newly produced 𝑛D chaotic maps can overcome the drawbacks
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Fig. 1. Top and bottom rows depict the bifurcation diagrams and LEs of the (a) logistic, (b) fraction, and (c) sine maps along their control parameters.
of existing maps in discontinuous chaotic intervals and nonuniformly
distributed signals. (3) The generated 𝑛D chaotic maps exhibit chaos
in large parameter ranges in contrast to most existing chaotic systems,
who exhibit chaos only in very narrow parameter ranges.

3.2. Examples of 2D chaotic map

To demonstrate the advantages of 𝑛D-CM in producing chaotic
maps, we applied the 𝑛D-CM to generate three 2D and one 3D chaotic
map utilizing the chaotic maps presented in Section 2 as seed chaotic
maps.

3.2.1. 2D logistic-fraction map
When selecting the logistic and fraction maps as the two seed

chaotic maps in Eq. (4), the seed chaotic maps 𝐹1(⋅) and 𝐹2(⋅) are set as
the logistic and fraction maps, respectively. A new 2D logistic-fraction
(2D-LF) map is generated, and its mathematical equation is written as

⎧

⎪

⎨

⎪

⎩

𝑥𝑖+1 = sin(𝜋(4𝑝1𝑥𝑖(1 − 𝑥𝑖) +
1

𝑦2𝑖 +0.1
− 𝑝2𝑦𝑖))

𝑦𝑖+1 = sin(𝜋(4𝑝1𝑦𝑖(1 − 𝑦𝑖) +
1

𝑥2𝑖 +0.1
− 𝑝2𝑥𝑖)),

(5)

where 𝑝1 and 𝑝2 act as two control parameters inherited from the
logistic and fraction maps, respectively. Because the sine transforma-
tion is a bounded operation, the parameters 𝑝1 and 𝑝2 can have large
values. This study investigates the properties of the 2D-LF map for
𝑝1, 𝑝2 ∈ [1, 100].

3.2.2. 2D logistic-sine map
When changing one seed chaotic map to generate the 2D-LF map,

setting the seed chaotic maps 𝐹1(⋅) and 𝐹2(⋅) as the logistic and sine
maps, respectively, the 2D logistic-sine (2D-LS) map is generated and
given as
{

𝑥𝑖+1 = sin(𝜋(4𝑝1𝑥𝑖(1 − 𝑥𝑖) + 𝑝2 sin(𝜋𝑦𝑖)))
𝑦𝑖+1 = sin(𝜋(4𝑝1𝑦𝑖(1 − 𝑦𝑖) + 𝑝2 sin(𝜋𝑥𝑖))),

(6)

where 𝑝1 and 𝑝2 are two control parameters of the 2D-LS map. We set
the ranges of these parameters to be the same as the two parameters in
the 2D-LF map, namely 𝑝 , 𝑝 ∈ [1, 100].
3

1 2
3.2.3. 2D fraction-sine map
When setting the two seed chaotic maps 𝐹1(⋅) and 𝐹2(⋅) in Eq. (4)

as the fraction and sine maps, respectively, the new chaotic map 2D
fraction-sine (2D-FS) map is obtained and is written as

⎧

⎪

⎨

⎪

⎩

𝑥𝑖+1 = sin(𝜋( 1
𝑥2𝑖 +0.1

− 𝑝1𝑥𝑖 + 𝑝2 sin(𝜋𝑦𝑖)))

𝑦𝑖+1 = sin(𝜋( 1
𝑦2𝑖 +0.1

− 𝑝1𝑦𝑖 + 𝑝2 sin(𝜋𝑥𝑖))).
(7)

Similar to the two parameters in the 2D-LF and 2D-LS maps, the two
parameters 𝑝1 and 𝑝2 can also have large values and we limit their
values within [1, 100] in this study.

The phase space trajectory of a dynamic system plots the visited and
approached points of a 2D dynamic system under a fixed parameter
setting. Fig. 2 plots the bifurcation diagrams of the 2D-LF, 2D-LS and
2D-LS maps for the parameters (𝑝1, 𝑝2) ∈ [1, 100] and their trajectories
when the parameters (𝑝1, 𝑝2) = (50, 50). It is evident that the two
variables 𝑥𝑖 and 𝑦𝑖 are uniformly distributed in the range [−1, 1],
which indicates that these outputs can entry all areas of its 2D phase
plane. These 2D chaotic maps have robust chaotic behaviors. On the
view of this point, the new 2D chaotic maps produced by 𝑛D-CM
exhibit extremely complicated behaviors and large chaotic parameter
ranges. With uniformly distributed outputs and continuous chaotic
ranges, these new chaotic maps have advantages in many practical
applications, such as the chaos-based random number generators.

3.3. Example of 3D chaotic map

The proposed 𝑛D-CM can generate high-dimensional chaotic maps.
To demonstrate this effect, we created a 3D chaotic map as an example,
utilizing the three 1D chaotic maps introduced in Section 2 as seed
chaotic maps.

When setting the logistic, fraction, and sine maps as the three seed
chaotic maps 𝐹1(⋅), 𝐹2(⋅) and 𝐹3(⋅), a 3D logistic-fraction-sine (3D-LFS)
map is generated, and its mathematical equation can be written as

⎧

⎪

⎪

⎨

⎪

⎪

𝑥𝑖+1 = sin(𝜋(4𝑝1𝑥𝑖(1 − 𝑥𝑖) +
1

𝑦2𝑖 +0.1
− 𝑝2𝑦𝑖 + 𝑝3 sin(𝜋𝑧𝑖)))

𝑦𝑖+1 = sin(𝜋(4𝑝1𝑦𝑖(1 − 𝑦𝑖) +
1

𝑧2𝑖 +0.1
− 𝑝2𝑧𝑖 + 𝑝3 sin(𝜋𝑥𝑖)))

𝑧𝑖+1 = sin(𝜋(4𝑝1𝑧𝑖(1 − 𝑧𝑖) +
1

2 − 𝑝2𝑥𝑖 + 𝑝3 sin(𝜋𝑦𝑖))),

(8)
⎩

𝑥𝑖 +0.1
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Fig. 2. 3D bifurcation diagrams and 2D trajectories for (a)–(c) 2D-LF map, (d)–(f) 2D-LS map, and (g)–(i) 2D-FS map.
where 𝑝1, 𝑝2 and 𝑝3 are the three parameters of the 3D-LFS map
inherited from the logistic, faction, and sine maps, respectively. As
the sine transform is a bounded operation, these three parameters can
have large values. This study also investigates the ranges of these three
parameters for 𝑝1, 𝑝2, 𝑝3 ∈ [1, 100].

Fig. 3 plots the bifurcation diagrams of the variable 𝑥𝑖 and its 3D
trajectory under a fixed parameter setting. To better show the dynamic
behaviors of the 3D-LFS map, we plotted the bifurcation diagrams
under the parameter space of the two parameters by setting the other
parameter as a fixed value. Only the bifurcation diagrams of 𝑥𝑖 are
plotted because the bifurcation diagrams of variables 𝑦𝑖 and 𝑧𝑖 have
similar visual effects as the bifurcation diagrams of 𝑥𝑖. The 3D-LFS
map can generate outputs with uniform distributions in a large and
continuous parameter space, which indicates the complex and stable
chaotic behaviors of the 3D-LFS map.

4. Performance evaluations

The proposed 𝑛D-CM method produces chaotic maps with sev-
eral advantages. This section qualitatively measures the performance
indicators of new 2D and 3D chaotic maps to demonstrate this effect.

4.1. Lyapunov exponent

‘‘chaos’’ is a kind of observed behavior with no common standard
to define its existence. Among the various definitions of chaos, LE is
4

regarded as a widely accepted criterion for measuring chaos [43]. The
LE defines chaos by characterizing the separation rate of extremely
close trajectories. Mathematically, the LE of a dynamic system 𝐻(𝑥)
is given by

𝐿𝐸 = lim
𝑛→∞

{

1
𝑛
ln
|

|

|

|

|

𝐻 (𝑛)(𝑥0 + 𝛿) −𝐻 (𝑛)(𝑥0)
𝛿

|

|

|

|

|

}

, (9)

where 𝛿 denotes a small positive value. From the definition of LE,
one can see that the average divergence of the close trajectory rate is
𝑒𝐿𝐸 . Thus, a positive LE means the exponential separation of the close
trajectories, and is thereby taken as an indication of chaos when the
phase plane of the dynamic system is bounded. For a dynamic system,
its LE number equals the dimensionality of its phase plane, and a multi-
dimensional system has several LEs. Two or more positive LEs indicate
that the trajectories diverged from several dimensions. This further
suggests that the dynamic system exhibits hyperchaotic behavior. In
addition, since the LE characterizes the separation rate of extremely
close trajectories of a chaotic system, a larger positive LE indicates more
sensitive to initial conditions [43].

Fig. 4 shows the calculated LEs of the 2D chaotic maps produced
by the 𝑛D-CM with existing 2D chaotic maps containing the Hénon,
Duffing and Zeraoulia–Sprott maps. It is clear that these existing 2D
chaotic maps only have positive LEs in very narrow intervals and
discontinuous ranges. However, the 2D-LF, 2D-LS and 2D-FS maps
produced by the 𝑛D-CM can achieve positive LEs under all parameters
and have continuous chaotic parameter ranges. In addition, the existing
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Fig. 3. Bifurcation diagrams and trajectory of the 3D-LFS map. Bifurcation diagrams of the variables 𝑥𝑖 for the parameters (a) 𝑝3 = 50, (b) 𝑝2 = 50 and 𝑝1 = 50. (d) Trajectory for
the parameters (𝑝1 , 𝑝2 , 𝑝3) = (50, 50, 50).
Fig. 4. Two LEs for different 2D chaotic maps under their control parameters. (a) Hénon map; (b) Duffing map; (c) Zeraoulia–Sprott map; (d) 2D-LF map; (e) 2D-LS map; (f)
2D-FS map.
2D chaotic maps have only one positive LE, whereas these new maps
have two positive LEs and their LEs are much larger than those of
the existing ones. Thus, 2D chaotic maps can exhibit hyperchaotic
behaviors and much more complex behaviors.

Fig. 5 shows the three LEs of the 3D-LFS generated by 𝑛D-CM. To
display the LEs in the entire parameter space (𝑝1, 𝑝2, 𝑝3), we plotted
their LEs in 3D coordinates and used color to represent the LE values. It
can be observed that 3D-LFS has positive LEs for all parameter settings.
In addition, it has three positive LEs except for a few parameter settings.
This indicates the advantages of 3D-LFS.

4.2. Sample entropy

Sample entropy (SE) is a measurement for testing the complex-
ity level within a time-series [44] and is widely utilized to test the
complexity of chaotic sequences. For a sequence {𝑥1, 𝑥2,… , 𝑥𝑁} and
dimension 𝑚, SE can be defined as

𝑆𝐸(𝑚, 𝑟,𝑁) = − log 𝐴 , (10)
5

𝐵

where 𝐴 and 𝐵 are vector numbers that satisfy 𝑑[𝑋𝑚+1(𝑖), 𝑋𝑚+1(𝑗)] < 𝑟
and 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] < 𝑟. The 𝑋𝑚(𝑖) is a vector comprising 𝑋𝑚(𝑖) =
{𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝑖+𝑚−1}. The 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] represents the Chebyshev dis-
tance [45] between the two vectors 𝑋𝑚(𝑖) and 𝑋𝑚(𝑗), where 𝑟 is a
predefined distance. A positive SE indicates that the corresponding
chaotic map can output chaotic sequences with chaotic behavior. A
larger SE demonstrates a smaller regularity of the chaotic sequence and
indicates the higher complexity of the corresponding chaotic map [44].

Fig. 6 shows the calculated SEs of the newly generated and existing
2D chaotic maps. Note that we only plot the SEs of the chaotic signal
𝑋 = {𝑥𝑖|𝑖 = 1, 2,…} of these chaotic maps, because the chaotic signals
from different dimensions have similar SEs. These existing 2D chaotic
maps can have positive SEs in narrow and discontinuous parameter
ranges. Conversely, the 2D-LF, 2D-LS, and 2D-FS maps generated by
the 𝑛D-CM can achieve positive SEs within all parameters, and their SEs
are much larger than those of the existing chaotic maps. These results
demonstrate the consistency of the results of the LE experiments.

Fig. 7 shows the SEs of the chaotic signal 𝑋 = {𝑥𝑖|𝑖 = 1, 2,…} in
the 3D-LFS map. We plot only their SEs with two control parameters
and set the third parameter as a fixed value to clearly demonstrate
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Fig. 5. Three LEs of the 3D-LFS map 2D along the change of its three control parameters. (a) First LE; (b) Second LE; (c) Third LE. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. SEs for different 2D chaotic maps along the change of their parameter values. (a) Hénon map; (b) Duffing map; (c) Zeraoulia–Sprott map; (d) 2D-LF map; (e) 2D-LS map;
(f) 2D-FS map.
𝑠

the experimental effect. One can observe that the 3D-LFS can achieve
positive SEs under all parameter values, and its SEs are the same for
different parameter values. This indicates that the 3D-LFS map can
achieve robust chaotic behavior.

4.3. Correlation dimension

The correlation dimension (CD) is a fractal dimension and devel-
oped to measure the space dimensionality of a time series [46]. When a
system’s chaotic sequence has a CD larger than 0, the dynamic system
exhibits chaotic behavior and a larger CD usually indicates a higher
dimensionality [46]. For a time series {𝑠1, 𝑠2,… , 𝑠𝑛,…} and dimension
𝑚, CD is defined as

𝑑 = lim
𝑟→0

lim
𝑁→∞

log𝐶𝑚(𝑟)
log 𝑟

.

The 𝐶𝑚(𝑟) is the correlation integral, which can be calculated as

𝐶𝑚(𝑟) = lim
𝑁→∞

1
[𝑁 − (𝑚 − 1)𝜁 ][𝑁 − (𝑚 − 1)𝜁 − 1]

×
𝑁−(𝑚−1)𝜁

∑

𝑁−(𝑚−1)𝜁
∑

𝜃(𝑟 − |�̄�𝑖 − �̄�𝑗 |).
6

𝑖=1 𝑗=𝑖+1
The 𝜃(𝜔) acts as a step function, where 𝜃(𝜔) = 0 for 𝜔 ≤ 0 and 𝜃(𝜔) = 1
for 𝜔 > 0. The 𝜁 is the time delay, and is typically set to 1. Sequence
{�̄�1, �̄�2,… �̄�𝑛,…} is a new sequence:

̄𝑡 = (𝑠𝑡, 𝑠𝑡+𝜁 , 𝑠𝑡+2𝜁 ,… , 𝑠𝑡+(𝑚−1)𝜁 ),

𝑡 = 1, 2,… , 𝑁 − (𝑚 − 1)𝜁.

Fig. 8 shows the CDs of the 2D-LF, 2D-LS, and 2D-FS maps along
with those of the existing maps. The parameter settings for all chaotic
maps were the same as those used in the SE experiments. The ex-
perimental results showed that the 2D-LF, 2D-LS, and 2D-FS maps
have positive CDs within all parameter ranges. However, the Hénon,
Duffing, and Zeraoulia–Sprott maps only have positive CDs within a
few parameter values. In addition, the CDs of these new 2D chaotic
maps are much larger than those of the existing ones.

Fig. 9 shows the CDs of the chaotic signal 𝑋 = {𝑥𝑖|𝑖 = 1, 2,…} in
the 3D-LFS map. We plot only their CDs with two control parameters
and set the third parameter as a fixed value to clearly demonstrate
the experimental effect. The 3D-LFS map achieves positive CDs for all
parameter values. This also indicates that the 3D-LFS can achieve stable
and robust chaotic behavior.
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Fig. 7. SEs of the 3D-LFS map in the parameter space of two control parameters by setting the other parameter as a fixed value of 50. (a) 𝑝1 , 𝑝2 ∈ [1, 100] and 𝑝3 = 50; (b)
𝑝1 , 𝑝3 ∈ [1, 100] and 𝑝2 = 50; (c) 𝑝2 , 𝑝3 ∈ [1, 100] and 𝑝1 = 50.

Fig. 8. CDs for different 2D chaotic maps along the change of their parameter values. (a) Hénon map; (b) Duffing map; (c) Zeraoulia–Sprott map; (d) 2D-LF map; (e) 2D-LS map;
(f) 2D-FS map.

Fig. 9. CDs of the 3D-LFS map in the parameter space of two control parameters by setting the other parameter as a fixed value of 50. (a) 𝑝1 , 𝑝2 ∈ [1, 100] and 𝑝3 = 50; (b)
𝑝1 , 𝑝3 ∈ [1, 100] and 𝑝2 = 50; (c) 𝑝2 , 𝑝3 ∈ [1, 100] and 𝑝1 = 50.
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Fig. 10. Transmitted signal structure.
5. Application to secure communication

Because chaotic systems exhibit unpredictability, ergodicity, and
many other properties, they have been widely applied to secure com-
munication [47,48], where the chaotic behavior highly determines the
performance of secure communication in resisting transmission noise.
Because of the complex chaotic behaviors, the maps produced by the
𝑛D-CM are suitable candidates for secure communication. This section
applies these new chaotic maps to a previously developed DCSK [49]
and compares their ability to resist transmission noise with existing
ones.

5.1. Structure of the proposed DCSK

This section introduces the scheme of secure communication, which
contains two main parts: transmitter and receiver.

5.1.1. Structure of transmitter
The transmitter generates a transmitted signal by coding the data to

be transmitted and the chaotic signal. The structure of the transmitted
signal is depicted in Fig. 10, and one of each frame contains two parts:
reference and information-embedding signals. The reference signal is
an 𝑀-length chaotic sequence. The information-embedding signal com-
prises two parts. The first is the multiplication of the reference signal
𝑋 with the first data bit, and the other is multiplication of the modified
signal 𝑋∗ with the second data bit. 𝑋∗ is generated by initializing
the values in the odd positions of 𝑋 using opposite numbers and then
exchanging the adjacent values. The generation of the modified signal
𝑋∗ in each frame is expressed as
{

𝑋∗
2𝑖−1 = 𝑋2𝑖

𝑋∗
2𝑖 = −𝑋2𝑖−1,

𝑖 ∈ {1, 2,… , 𝑀
2
} (11)

The transmitted signal can embed two data bits within one frame,
and the communication scheme can achieve a double transmission rate
compared with the original DCSK. Fig. 11 illustrates this transmitter.
Each frame can embed two data bits. The first data bit is modulated
with the reference signal 𝑋, whereas the second data bit is modulated
by the modified signal 𝑋∗. Because the transmitted data frame is of
length 2𝑀 , a time delay of 𝑀 occurs when producing a transmitted
frame. When the two data bits to be transmitted are 𝑏1 and 𝑏2 and the
reference signal 𝑋 = {𝑥𝑖|𝑖 = 1, 2,… ,𝑀}, a frame 𝑆 in the transmitted
signal is generated as

𝑆 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥𝑖, if 1 < 𝑖 ≤ 𝑀 ;
(𝑏1𝑥𝑖−𝑀 + 𝑏2𝑥𝑖−𝑀+1)∕

√

2, if 𝑀 < 𝑖 ≤ 2𝑀 ∩
𝑖 = 2𝑛 + 1 (𝑛 ∈ N);

(𝑏1𝑥𝑖−𝑀 − 𝑏2𝑥𝑖−𝑀+1)∕
√

2, if 𝑀 < 𝑖 ≤ 2𝑀 ∩
𝑖 = 2𝑛 (𝑛 ∈ N)

(12)
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5.1.2. Structure of receiver
The receiver decodes the data bits when a transmitted signal is

received. Each frame has two data bits, so the receiver has two branches
to recover them separately. The first data bit is recovered by multiply-
ing the information-embedding signal by the reference signal 𝑋. The
second data bit is recovered by multiplying the information-embedding
signal by the modified reference signal 𝑋∗. Fig. 12 shows the receiver
structure. It can be seen that 𝑟 represents the received signal, and signal
𝑟′ is generated from 𝑟.
{

𝑟′2𝑖−1 = 𝑟2𝑖
𝑟′2𝑖 = −𝑟2𝑖−1,

𝑖 ∈ {1, 2,… , 𝑀
2
} (13)

The two correlators for decoding the two embedding data bits in the
𝑘th frame can be described as

𝑍2𝑘−1 =
2𝑘𝑀+𝑀∕2

∑

𝑖=2𝑘𝑀+1
𝑟𝑖𝑟𝑖−𝑀 (14)

and

𝑍2𝑘 =
2𝑘𝑀+𝑀∕2

∑

𝑖=2𝑘𝑀+1
𝑟𝑖𝑟

′
𝑖−𝑀 (15)

When transmitting signals in noisy channels, the signals may be blurred
by different types of noise. Suppose that 𝑟 = 𝑆+𝜉, where 𝜉 indicates the
added noise. The correlator of the first data bit within the 𝑘th frame is
calculated as

𝑍2𝑘−1 =
2𝑘𝑀
∑

𝑖=2𝑘𝑀−𝑀+1
(𝑠𝑖 + 𝜉𝑖)(𝑠𝑖−𝑀 + 𝜉𝑖−𝑀 )

=
(𝑘−1)𝑀+𝑀∕2

∑

𝑖=(𝑘−1)𝑀+1
(𝑥2𝑖 + 𝜉2𝑖)(

𝑏2𝑘−1𝑥2𝑖
√

2
−

𝑏2𝑘𝑥2𝑖−1
√

2
+ 𝜉2𝑖+𝑀 )

+ (𝑥2𝑖−1 + 𝜉2𝑖−1)(
𝑏2𝑘−1𝑥2𝑖−1

√

2
+

𝑏2𝑘𝑥2𝑖
√

2
+ 𝜉2𝑖+𝑀−1)

=
𝑏2𝑘−1
√

2

2(𝑘−1)𝑀+𝑀
∑

𝑖=2(𝑘−1)𝑀+1
(𝑥2𝑖 ) + 𝛾,

(16)

where 𝛾 includes the noise. The correlator of the second data bit within
the 𝑘th frame is

𝑍2𝑘 =
2𝑘𝑀
∑

𝑖=2𝑘𝑀−𝑀+1
(𝑠𝑖 + 𝜉𝑖)(𝑠′𝑖−𝑀 + 𝜉′𝑖−𝑀 )

=
(𝑘−1)𝑀+𝑀∕2

∑

𝑖=(𝑘−1)𝑀+1
(𝑥2𝑖 + 𝜉2𝑖)(

𝑏2𝑘−1𝑥2𝑖−1
√

2
+

𝑏2𝑘𝑥2𝑖
√

2
+ 𝜉2𝑖+𝑀−1)

− (𝑥2𝑖−1 + 𝜉2𝑖−1)(
𝑏2𝑘−1𝑥2𝑖
√

2
−

𝑏2𝑘𝑥2𝑖−1
√

2
+ 𝜉2𝑖+𝑀 )

=
𝑏2𝑘
√

2

2(𝑘−1)𝑀+𝑀
∑

𝑖=2(𝑘−1)𝑀+1
(𝑥2𝑖 ) + 𝜂,

(17)

where 𝜂 includes the noise. The first parts in Eqs. (16) and (17) are
signal components, and the remaining are noise components. This is
because the energies of the signal components are significantly larger
than those of the noise components. The signal components determine
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Fig. 11. Structure of the transmitter.

Fig. 12. Structure of receiver.

Fig. 13. BERs of the proposed DCSK using various chaotic maps when simulating in the (a) ARN transmission channel and (b) AWGN transmission channel (the bottom figure)
for the signal noise rate 𝑆𝑁𝑅 ∈ [0, 18] and spread factor 𝑀 = 40.

Fig. 14. BERs of the proposed DCSK using various chaotic maps when simulating in the (a) ARN transmission channel and (b) AWGN transmission channel for the signal noise
rate 𝑆𝑁𝑅 ∈ [0, 18] and spread factor 𝑀 = 60.
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the signs of Eqs. (16) and (17). Thus, despite the noise components, we
can decode the two data bits according to the signs of the correlators.

𝑏2𝑘−1 =

{

1, for 𝑍2𝑘−1 > 0;
0, for 𝑍2𝑘 < 0.

(18)

𝑏2𝑘 =

{

1, for 𝑍2𝑘−1 > 0;
0, for 𝑍2𝑘 < 0.

(19)

.2. Simulation results

The two most contained transition noises in the transmission chan-
els are the additional random noise (ARN) and additive white Gaus-
ian noise (AWGN). This section simulates the proposed DCSK under
ransmission channels with ARN and AWGN. The three 2D and one
D chaotic maps produced by the 𝑛D-CM and the existing Hénon,
eraoulia–Sprott, and Duffing maps were used separately as the source
haotic map. We tested the bit error rates (BERs) between the recovered
nd the original data bits under different chaotic maps.

The experiments were performed in the following steps: (1) Ran-
omly produce a set of initial states, in which all the control parameters
all into the chaotic ranges. (2) Simulate the proposed DCSK by utilizing
he chaotic sequences of the chaotic map and setting the spread factor

to 40 and 60, respectively. (3) Randomly generate the transmitted
ata as a 100000-bit binary sequence and calculate the BERs under
ifferent signal noise ratios (SNR). (4) The experiment was repeated
en times to calculate the average BERs.

Fig. 13 displays the BERs for the proposed DCSK when utilizing
arious chaotic maps as the source chaotic map under different SNRs
nd setting the spread factor 𝑀 = 40. Fig. 14 shows the average
ERs by setting the spread factor 𝑀 = 60. When using the 2D and

3D chaotic maps generated by our 𝑛D-CM as the source chaotic map,
the proposed DCSK can achieve much smaller average BERs than when
using the existing maps as the source chaotic map; this is because the
2D-LF, 2D-LS, 2D-FS and 3D-LFS maps produced by the 𝑛D-CM have
complex chaotic behaviors. Thus, their generated chaotic sequences
are distribute more uniformly than in these existing maps. Therefore,
the proposed 𝑛D-CM can produce new chaotic maps more suitable for
secure communication.

6. Conclusion

This paper proposes an 𝑛-dimensional chaotic model (𝑛D-CM) to
overcome the drawbacks of the existing chaotic maps comprising dis-
continuous chaotic ranges and small performance indicators. Using 1D
chaotic maps as seed chaotic maps, 𝑛D-CM can produce many new
chaotic maps with any dimension. Three 2D and one 3D chaotic map
were generated using three 1D chaotic maps as seed chaotic maps to
show the effect of 𝑛D-CM. The performance analysis shows that the
newly produced chaotic maps have more extensive and continuous
chaotic ranges than existing ones. These chaotic maps were applied to
secure communication to demonstrate the practicality of 𝑛D-CM. The
simulation results indicate that these maps show a stronger ability to
resist transition noise than the existing maps.
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