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n-Dimensional Polynomial Chaotic
System With Applications

Zhongyun Hua™', Member, IEEE, Yinxing Zhang, Han Bao
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Abstract— Designing high-dimensional chaotic maps with
expected dynamic properties is an attractive but challenging
task. The dynamic properties of a chaotic system can be
reflected by the Lyapunov exponents (LEs). Using the inherent
relationship between the parameters of a chaotic map and its
LEs, this paper proposes an n-dimensional polynomial chaotic
system (nD-PCS) that can generate nD chaotic maps with any
desired LEs. The nD-PCS is constructed from n parametric
polynomials with arbitrary orders, and its parameter matrix is
configured using the preliminaries in linear algebra. Theoretical
analysis proves that the nD-PCS can produce high-dimensional
chaotic maps with any desired LEs. To show the effects of the
nD-PCS, two high-dimensional chaotic maps with hyperchaotic
behaviors were generated. A microcontroller-based hardware
platform was developed to implement the two chaotic maps,
and the test results demonstrated the randomness properties
of their chaotic signals. Performance evaluations indicate that
the high-dimensional chaotic maps generated from nD-PCS
have the desired LEs and more complicated dynamic behaviors
compared with other high-dimensional chaotic maps. In addition,
to demonstrate the applications of nD-PCS, we developed a
chaos-based secure communication scheme. Simulation results
show that nD-PCS has a stronger ability to resist channel noise
than other high-dimensional chaotic maps.

Index Terms— Chaotic system, hardware implementation, ran-
dom number generator, secure communication, nonlinear system.

I. INTRODUCTION

C HAGOS theory is a type of nonlinear theory that describes
the evolution of dynamical systems from ordered states to
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disordered states [1]. Chaos widely exists in many man-made
and natural phenomena [2]-[4]. There are many methods
for defining the existence of chaos. Among these, the Lya-
punov exponent (LE) and Devaney’s definition are two widely
accepted measures [5], [6]. The LE method defines chaos
by quantizing the divergence rate of the close trajectories
of a dynamical system, whereas Devaney’s definition defines
chaos in terms of initial state sensitivity, topological transi-
tivity, and dense periodic orbits [7]. Owing to these prop-
erties, chaos theory has attracted much attention in various
research fields [8]-[11]. For example, the integer-order and
fractional-order chaotic systems [12]-[14] are widely used in
secure communication schemes because the unpredictability
of chaotic outputs can embed secret data [15], [16].

With the rapid development of chaos theory, many studies
have pointed out that existing chaotic systems manifest various
weaknesses when applied to practical applications [17]. First,
many chaotic systems have discontinuous chaotic ranges [18].
Small perturbations may cause the parameters to fall into the
periodic windows if the chaotic ranges are discontinuous [19].
Second, chaos is defined in mathematical domain with infi-
nite precision. When implemented in digital platforms with
finite precision, a chaotic system will inevitably cause chaos
degradation because of precision truncation [19]. However, if a
chaotic system exhibits complex behaviors, chaos degradation
may occur later. In particular, many existing chaotic systems
have simple structures and low complexities, and thus chaos
degradation may easily occur in digitized platforms [20].
In addition, researchers have found that the chaotic signals
of many existing chaotic maps can be estimated using arti-
ficial intelligence technologies [21], [22]. These technologies
include recognizing system prototypes [23], [24], prediction
of chaotic signals [25], [26], and estimation of the control
parameters and initial states [27], [28]. Most chaos-based
applications are developed based on the assumption that
chaotic signals are unpredictable when the exact initial states
and parameters are unknown. If useful information about the
chaotic signals can be predicted without knowing the initial
states and parameters, the chaotic systems lose the property
of being unpredictable, which may lead to the corresponding
applications to become ineffective [29].

To solve the weaknesses of existing chaotic systems in prac-
tical applications, many studies have been devoted to enhanc-
ing the complexity of chaotic systems [30]. These efforts can
be divided into two types: efforts for low-dimensional chaotic
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maps and high-dimensional chaotic maps. One strategy for
low-dimensional chaotic maps is to disturb chaotic signals
or control parameters [31]. This strategy can greatly increase
the period length of digitalized chaotic maps [17]. The other
strategy is to develop new low-dimensional chaotic maps with
better complexity and performance [32]. These newly gener-
ated chaotic maps can overcome the weaknesses of existing
low-dimensional chaotic maps, such as simple structures, dis-
continuous chaotic ranges, and a lack of hyperchaotic behav-
iors [33], [34]. However, these studies on low-dimensional
chaotic maps have certain limitations. The strategy of disturb-
ing existing low-dimensional chaotic maps cannot show stable
performance [35], and the development of new chaotic maps
rely heavily on the experience of researchers and, thus, this
strategy lacks theoretical guarantees [33].

Compared with low-dimensional chaotic maps, high-
dimensional chaotic maps have more complicated structures
and affluent dynamic properties, and as a result, these have
been widely researched in recent years. Because the com-
plexity of a high-dimensional chaotic map can be reflected
by its positive LEs [36], a key concern in developing
high-dimensional chaotic maps is customizing the number
of positive LEs and their values. Many high-dimensional
chaotic maps with multiple positive LEs have been developed
recently [37], [38]. Representative examples are provided
below. Shen et al. developed a systematic method to construct
nD continuous-time chaotic maps with |n — 1]/2 positive
LEs [39]. Wu et al. generated new nD discrete-time Cat maps
using Laplace expansion [40]. The generated Cat maps have
multiple positive LEs, and thereby show better complexity
compared with other Cat maps. These works can generate
continuous-time and discrete-time hyperchaotic maps with
multiple and even theoretically the maximum number of
positive LEs [36], [41]. However, the effects of these method-
ologies rely heavily on the debugging parameters. In addi-
tion, these methodologies can only construct high-dimensional
chaotic maps with the desired numbers of positive LEs, but
the LE values cannot be determined exactly.

To generate high-dimensional chaotic maps with expected
dynamic properties, this study proposes an nD polynomial
chaotic system (nD-PCS). The nD-PCS is constructed from
n parametric polynomials, and its parameter matrix is con-
figured through dimension expansion. Theoretical analysis
shows that the n LEs of the nD-PCS are determined by its
partial control parameters. By customizing these parameters,
high-dimensional chaotic maps can be obtained with any
desired LEs. Because the dynamics of a high-dimensional
chaotic map can be reflected by its LEs, the generated
high-dimensional chaotic maps can exhibit complex and robust
dynamic properties. To demonstrate the effectiveness of the
nD-PCS, we provide two examples of new chaotic maps and
implement them in a microcontroller-based hardware platform.
The test results show that these two chaotic maps can generate
chaotic signals with high randomness. Performance evalua-
tions show that the nD-PCS can generate high-dimensional
chaotic maps having desired LEs, better performance, and
more uniformly distributed outputs, compared with existing
high-dimensional chaotic maps. Finally, a chaos-based secure
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communication is developed, and the simulations show that the
nD-PCS performs better than other high-dimensional chaotic
maps in this application.

The remainder of this paper is organized as follows.
Section II presents the nD-PCS and a methodology for
configuring its parameter matrix and discusses its parameter
space. Section III analyzes the chaotic behaviors of nD-PCS.
Section IV presents two new high-dimensional chaotic maps
generated by using nD-PCS as examples. Section V evaluates
the properties of nD-PCS and compares its performance with
those of other high-dimensional chaotic maps. Section VI
applies the nD-PCS to a secure communication scheme, and
Section VII concludes the paper.

II. n-DIMENSIONAL POLYNOMIAL CHAOTIC SYSTEM

This section presents the nD polynomial chaotic system
(nD-PCS). First, the structure of nD-PCS is presented. Then,
a construction method is introduced to configure the parame-
ter matrix of the nD-PCS. Finally, the parameter space for
configuring the parameter matrix is discussed.

A. nD-PCS

The nD-PCS is generated from n parametric polynomials.
First, we initialize the n general polynomials of arbitrary
orders. Then, we perform a modular operation on these poly-
nomials, and the nD-PCS is defined as

x(i +1) =F(x({)) mod N, (D

where x(i) = {x1(),x200), -, x, ()} e R™! is the
observed state of the system in the i-th observation time,
N is the module coefficient that is an integer, and F(x) is
a polynomial function of I" — I", which is defined as

x1@+1) =anx1(@)+apx2@)"? + - 4+ apx, ()"

X0 + 1) = a21x1 () 4+ axnxz (i) + - - + a2 X, () @

X (0 + 1) = anix1 ()™ + anax2())? + -+ - + apnxn (i)
The polynomial function F(x) can be expanded as
F(x(@i)) =D -x(), 3)
where the matrix D is expressed as

ary 6112X2(i)cl2_1 ce. alnxn(i)cl’l_l
azlxl(i)czl—l an R aznxn(i)cz’l_l

D= , . . . G

anlxl(i)cnl_1 an2x2(i)C”2_1 e Qnn

All the parameters in D can be represented as two matrices
A and C, and

ari a2 Aln
azl az - azp

A= . . ) 5
anl  ap2 Ann
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and
I cn2 Cln
1 1 o ooy
C=] . . A (6)
Cnl  Cn2 1

The parameter matrix A contains the parameters of the
polynomials, whereas the coefficient matrix C contains the
exponent coefficients of the variables in the polynomials. It is
clear that the main diagonal elements of C are all one, and
the elements ¢y, ¢22, ..., ¢y can thus be omitted, whereas
the other elements of C can be arbitrary constants. Because
all the main diagonal elements of C are one, the dynamic
properties of the proposed nD-PCS are mainly determined
by the parameter matrix A. By setting the elements of A as
appropriate values, the nD-PCS can show robust and expected
dynamic properties.

B. Methodology for Constructing A

The parameter matrix A was constructed using dimension
expansion. Proposition 1 [42] is introduced.

Proposition 1: Let Ay and A> be an iD and a jD matrices,
respectively. The n eigenvalues of the (i + j)D matrix,

(A M

are composed of the eigenvalues of A1 and Aj if at least one
of M| and M3 is a zero-block matrix. M| and My are ani X j
and a j x i matrices, respectively.

Utilizing Proposition 1, an nD parameter matrix A is
constructed from the special 1D matrix. Detailed descriptions
of the construction procedure are as follows:

o Step I: Generate a 1 x | special matrix as an initial matrix
with a predefined matrix value.

o Step 2: Place the matrix and a predefined parameter in the
main diagonal position of a block matrix of size 2 x 2,
as in Eq. (7). To increase the parameter space, the location
of the initial matrix was randomly set.

o Step 3: For the two matrix blocks M; and M» in the
antidiagonal position, select one randomly and set the
value of its element as zero. The elements in the other
are assigned to some given values.

o Step 4: Set the current composite matrix to be the initial
matrix.

o Step 5: Repeat the Step 2 to Step 4 (n — 1) times using
the new initial matrix each time.

Algorithm 1 presents the pseudocode of the above procedure
for generating the parameter matrix A with inputs a, b,
g, h, and n. The data sequence a = {ai}l’.’:1 contains the
main diagonal elements of A, and the data sequence b =
{b,-}g:l)'"/ 2 contains the other elements of A. The binary
sequence g = {gi}?;f determines the spatial locations of a,
and the binary sequence h = {hi}?;ll determines the spatial
locations of b in the parameter matrix A.

Algorithm 1 Generation of the Parameter Matrix A

Input: a = {¢;}/_|, b = {b,-}ggl)'”/z, g ={g)'~] and h =
{h,-}?:_ll, where a; and b; are predefined values, and g;, h; €
{0, 1}.

I: A =[a];

2: fori =2 ton do

3: if gi—1 ==1 then

4 A=A, A =a],

s M, € RO-Dx1 M, ¢ RIXG-D,

6: else

7

8

9

A=A A =g,
M; € RIXG=D M, ¢ RG-Dx1,
. end if
10: if h;_; == 1 then
11: M; = 0, elements of M, are fetched from b.
12:  else
13: M, = 0, elements of M; are fetched from b.
14:  end if

. _ A1 M1
15: A_(M2 Az)'

16: end for
Output: an n-D coefficient matrix A.

C. Parameter Space

There are three types of parameters used to construct an
n-D parameter matrix A: main diagonal entity (MDE), block
matrix entity (BME), and spatial location configuration (SLC).
The elements in a and b are MDEs and BMEs, respectively,
whereas the binary values in g and h are SLCs. Clearly,
the sequence a contains n MDEs for constructing an nD
parameter matrix A. As shown in Algorithm 1, n — 1 times of
dimension expansion are required to construct an nD matrix,
and i — 1 BMEs are used in the i-th expansion. Thus, the total
number of BMEs is #ppr = (n — 1) - n/2. For simplicity
of calculation, all MDEs and BMEs were randomly chosen
from a dataset with M possible values randomly. Then the
parameter spaces of MDEs and BMEs are

Pype = M" and Ppyp = M(n71)~n/2’

respectively. A binary value in g indicates the direction of the
matrix expansion, whereas that in h controls the position of the
added zero sub-matrix in Eq. (7). A number of n — 1 iterations
are required to construct an nD parameter matrix, and thus,
each of g and h has n — 1 elements. The total number of SLCs
required to construct an nD A is #s.c = 2(n — 1). Because
each SLC is a binary number, the parameter space of all the
SLCs in g and h is

Pgpc = 2%sie — 72(m—=1)

Because all the MDEs, BMEs, and SLCs are independent
of each other, the entire parameter space to construct an
nD parameter matrix A can be obtained by multiplying the
parameter spaces of MDEs, BMEs, and SLCs, namely,

Py = Pype X Ppye x Psic
— 22=1) | py(nt1)n/2.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:03:49 UTC from IEEE Xplore. Restrictions apply.



HUA et al.: nD-PCS WITH APPLICATIONS

TABLE I

PARAMETER SPACES OF CONSTRUCTING THE nD PARAMETER MATRIX A
WITH DIFFERENT DIMENSIONS n

n  Pupk PemE Psrc Pa

3 M3 M3 16 16M°

4 M* M6 64 64 M0

5 M? M1 256 256 M1°

6 MS M 1024 1024021

n  M" I N Ve

Table I lists the parameter spaces of constructing the nD
parameter matrix A with different dimensions 7. It shows that
a large number of parameter matrices can be generated using
different settings of parameters. This indicates that one has a
great flexibility to obtain a large number of high-dimensional
chaotic maps with different parameter matrix A.

III. ROBUST CHAOTIC BEHAVIORS ANALYSIS

The robust chaotic behaviors indicate that a chaotic system
has chaotic behaviors in the entire chaotic range, and no
periodic windows exist [43]. A chaotic system with continuous
chaotic ranges can exhibit robust chaotic behavior. When
the parameter matrix A of the nD-PCS is constructed using
Algorithm 1, the dynamic properties of the nD-PCS are
determined using the partial parameters of A. By customizing
these parameters, nD-PCS can exhibit complex and robust
chaotic behaviors. This section investigates the relationship
between the elements of A and the behavior of the nD-PCS.
Among the different measures for describing chaos, the LE
is one of the most widely used and accepted methods [5],
[44]. This section first introduces chaos in the sense of LE for
high-dimensional dynamical systems, and then analyzes the
chaotic behaviors of the nD-PCS using LE.

A. Chaos in the Sense of LE

The LE defines chaos by characterizing the divergence rate
of two trajectories of a dynamical system. If a dynamical
system has a positive LE, the two close trajectories will be
dissipative and separate in every unit time, thereby leading
the system to be chaotic. If a dynamical system has more
than one positive LE, its close trajectories are dissipative in
several directions, and thus the system achieves hyperchaotic
behaviors.

The definition of chaos in the sense of LE can be defined
as Definition 1 [44].

Definition 1: A nonlinear system can generate chaos in the
sense of LE if (1) at least one of its LEs is positive and (2) it
is globally bounded.

Referring to Definition 1, one can judge whether a dynami-
cal system has chaotic behavior. A multidimensional dynami-
cal system has several LEs that describe the separation of close
trajectories from different directions. For an nD discrete-time
differentiable dynamical system

x1( + 1) = G (x1(), x2@), - -, xu (i)

x4+ 1) = Ga(x1(), x2(i), - -, x4(i))
G(x): :

xn(i + 1) = Gn(-xl(i)’XZ(i)a T ’xn(i)),

787

its n LEs can be calculated as

= lim — Zln MX(Z)I (8)

t—o0

where j = 1,2,---,n, and /I’f(i) ~ iﬁ(i) are the n eigenvalues
of J(x(i)). J(x(i)) is the Jacobian matrix of the nD dynamical
system with the observed state x(i), which can be calculated
as

0G 0G| 0G|

o (.)|x(i) o (.)|x(i) mh{(z‘)

0Ga 0G2 0G»
Iy = | (z>"‘"’ ox (z>"‘"’ axn(l)"“”

oG, aG' oG,

o (l)|x(z) ox (l)|x(z) 6x,,(l)lx(l)

B. Chaotic Behaviors of the nD-PCS

The n eigenvalues of the nD parameter matrix A are closely
related to the partial parameters used in the construction of A.
First, we introduce Lemma 1 to illuminate this relationship.

Lemma 1: The n eigenvalues of the nD matrix A con-
structed by Algorithm 1 with parameters a, b, g, and h are
the n elements of a.

Proof: From the construction procedure in Algorithm 1,
the nD matrix A is constructed by iteratively expanding the
dimension, and the iD matrix is generated from the lower
(i — 1)D matrix and some parameters, namely

ai Pixi-n
A‘ J— 1 X1 , 9
! (Q(i—l)xl A(i—l)x(i—l)) ©)

or

(10)

A — Ai-xi-1) Qu-nx1
e Pix-1 a; ’

where a; is the ith element of sequence a. One of the Py, ;_1)
and Q(;—1)x1 is a zerovector, and the elements of the other are
fetched from the sequence b.

Thus, the nD matrix A, in the last iteration is generated

as follows:
a Picu-1
Apun = n i 11
e (Q(nl)xl AG—1)x(n—1) (1D
or
An-Dx@m-1) Qu-1nx1
A = . 12
e ( Plx(n—l) dp (12)

One of the Pyy(;,—1) and Q,—1)x1 is a zerovector. The
characteristic polynomial of matrix A, ., is calculated as
follows:

det(AE, x, — Anxn)
_ ‘iE(nl)x(nl) —Ap-Dxm-1) Qu-1x1
N Plx(nfl) A —ap
=0, (13)
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or
det(AE,xn, — Anxn)
_| A—an Pixmn-1
Qu-nx1 AEu-nx@m-1) = A@u-D)xn-1)
=0, (14)

where 4 denotes the eigenvalue of the matrix A, ,, and E is
an identity matrix. Referring to Proposition 1, when one of
the Py (s—1) and Q(,—1)x1 is a zerovector, the eigenvalues of
Ay x, are composed of a, and the eigenvalues of A, —1)x(n—1)-
This indicates that

det(AE,x, — Anxn)
= (4 —ay) - det(AE(—1)x(n—1) — A—1)x(n—1))

= 0. 5)

Similarly, one can obtain that the characteristic polynomial
of matrix A, —1)x(n—1) is calculated as follows:

det(ZE(—1)x(—1) — Ap—1)x(n—1))
= (4 —ap-1) - det(AE-2)x (n-2) — A-2)x(n-2))

=0. (16)

Finally, the characteristic polynomial of the matrix A, x,
can be obtained as

det(AE,x, — Anxn)
=U—a)(A—ay-1)---(A—a)(A —Ax1)
=0. (17)

Because A« is the first element of the sequence a, namely
A1 = aj, then

detOEnsn — Anxn) = (2 — an)(A —an_1) -+ (2 —ay)
= 0. (18)

Thus, the n eigenvalues of the matrix A, x,, denoted as
A1 ~ Ay, are the n elements of the sequence a, which means

Lemma 2: The nD-PCS in Eq. (1) with parameter matrix
A constructed by Algorithm 1 exhibits chaotic behavior if the
elements in sequence a satisfy Jlaj| > 1 for j =1,2,--- ,n.

Proof: The Jacobian matrix of nD-PCS can be calculated
as Eq. (20), as shown at the bottom of the page. Let the nD
matrix O be

1 (i) (i)
xp (i)t 1 xp (i) 1
0= : : . : 2D
xi@™ @t 1

and denote the Hadamard product as *. The Jacobian matrix
J(x(7)) in Eq. (20) can be represented as

Jx(@)=A*xCx0. (22)

According to the calculation in Eq. (18), the eigenvalues
of the matrix A are determined only by the main diagonal
elements a;;. These eigenvalues cannot be changed when the
off-main diagonal elements of A are multiplied by any value.
From Eq. (22), we can obtain J(x(i)) jx = ajk - Cjk-0jk, Where
0jk is an element in the matrix O. Because cyx = o = 1,
J(x(i)) has the same main diagonal elements as A. Then, the n
eigenvalues of J(x(i)) and A are the same.

Referring to Lemma 1, the n eigenvalues of A are the
n elements of sequence a. Thus, the n eigenvalues of the
Jacobian matrix J(x(i)) are also n elements of the sequence
a. This indicates that the eigenvalues of the Jacobian matrix
J(x(i)) in different observed states are the same and are
independent of the observed state x(i). Suppose that the n
eigenvalues of J(x(i)) are /I’f(’) ~ iﬁ(l). Combined with
Eq. (19), we obtain:

20—

_ax0)
J _'IJ' - -

,1’;(“‘) j=1,2,---,n.

(23)
According to the LE calculation of the discrete-time dynam-

ical system in Eq. (8), the n LEs of the nD-PCS are calculated
as

:aj,

that [ ;
LE; = lim — > n|2}"|
Jj=a;, j=1,2,---,n. (19) et
-1
This completes the proof. n = lim 1 Zln laj]
Referring to Lemma 1, we can deduce Lemma 2 that tmeot =5
illuminates the chaotic behavior of the nD-PCS. = Inlaj|, (24)
6x1(i+1)| . 6x1(i+1)| . 6x1(i+1)| .
ox1G) 9 Tom@ M@ oxn() O
ox2(i + 1)| o+ 1)| . ox2(i + 1)| .
Jx@) = | @ 0 o ¢ o)
Oxni + D anG T D, Oxni + D,
o) 0 Tam@ 0 oxai) 9
ar aiz - c1p - xp(i) 127! ain -+ Cin - Xp ()
azy - a1 - xp (i) ! an azy - o - Xp ()21
= ) ) (20)
Anl - Cnl - xl(i)cnl_l an2 - Cp2 'x2(i)6”2_1 Ann
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where j = 1,2,---,n. Because d|a;| > 1, for j =
1,2,---,n, one obtains that the nD-PCS has at least one
positive LE. Moreover, because the modular operation in
Eq. (1) can transform any input to a fixed range, and nD-PCS
is globally bounded. Thus, the nD-PCS can satisfy the require-
ments of chaos’s definition in the sense of LE in Definition 1
and thereby exhibits chaotic behavior. This completes the
proof. [ ]

Referring to Lemma 2, we can see that when the elements
of the sequence a satisfy 3|a;| > 1, for j = 1,2,--- ,n,
the constructed parameter matrix A exists eigenvalues that are
outside the unit circle, thereby allowing the nD-PCS to exhibit
chaotic behaviors. Each LE of the nD-PCS is independently
determined through Eq. (24) by using one element of the
sequence a. By customizing all the elements aj, az, ..., a,
of a to construct the parameter matrix A, one can allow the
nD-PCS to own n LEs with any large values. Because the
dynamic properties of a chaotic system can be reflected by
its LEs [36], the nD-PCS can exhibit robust chaotic behaviors
and expected dynamical properties by customizing the values
of its n LEs. The n is the dimension of the proposed system.
Therefore, the theoretical minimum value of n can be equal
to one.

IV. TWO ILLUSTRATIVE EXAMPLES

To demonstrate the effectiveness of nD-PCS in Eq. (1), this
section provides two examples of high-dimensional chaotic
maps constructed by the proposed method: a four-dimensional
polynomial chaotic map (4D-PCM) and a seven-dimensional
polynomial chaotic map (7D-PCM). Then, a hardware plat-
form was developed to demonstrate the easy hardware imple-
mentation of the proposed chaotic maps. Finally, we tested the
randomness properties of the chaotic signals generated by the
two chaotic maps.

A. Construction of Two Examples of
High-Dimensional Chaotic Map

When constructing the parameter matrix A, all the elements
in sequences a and b are randomly selected from an integer set
M ={1,2,---,500}, and all the elements in sequences g and
h are randomly generated binary numbers. For simplicity, all
the exponent coefficients in C of Eq. (6) are set to ¢;; = 2, and
the modular coefficient is set to N = 1. One is the flexibility
to set them as other values.

1) 4D-PCM: When generating a 4D-PCM, a 4D para-
meter matrix should be constructed. Then, the lengths of
the data sequences a, b, g, and h are four, four, three,
and three, respectively. These generated parameters are a =
{421, 33,233,251}, b = {224,171,420,492,314,91}, g =
{1,1,0}, and h = {0, 1,0}. According to the construction
process in Algorithm 1, the 4D parameter matrix A can be
generated as follows:

251 492 314 91
0 421 224 0

A=l 0o 0 33 o0 (23)
0 171 420 233

789

When all the exponent coefficients in C are two, and the
modular coefficient is set to one in Eq. (1), a 4D-PCM can be
generated as:

x1( + 1) = 251x1 (i) + 492x2(1)* + 314x3(i)?
+ 91x4(i)> mod 1

x2(i + 1) = 421x2(i) + 224x3())> mod 1

x3(i +1) =33x3() mod 1

x4(i+1)=171x2()* + 420x3()* + 233x4() mod 1.

(26)

The equilibrium point is a point of a dynamical system that
maps to itself in its domain. For the 4D-PCM, its equilibrium
points (X1, X2, X3, X4) are the solutions of the equations

X1 = (251%) + 49287 + 31487 + 91%}) mod 1
%2 = (421%, +224%3) mod 1

x3=2733%x3 mod 1

X4 = (17183 + 420%2 4 233%4) mod 1.

27)

By resolving the
4D-PCM has many

above equation, one can get that the
equilibrium points including (0.9667,
0.662,0.313,0.362), (0.613,0.982,0.625,0.737), (0.650,
0.627,0.781,0.761), (0.679, 0.246,0.938, 0.520), (0.237,
0.359,0.469, 0.800) and many other points. According to
Eq. (23), the eigenvalues of the Jacobian matrix are equal
to the four elements in sequence a and have no relationship
with the observed states. Then, the four eigenvalues for every
equilibrium point are 11 = 251, A, = 421, A3 = 33, and
A4 = 233. This indicates that all the equilibrium points of
the 4D-PCM are unstable node-foci. According to Eq. (24),
the four LEs of the 4D-PCM are LE; = In(251) = 5.5255,
LE, = In(421) = 6.0426, LE3; = In(33) = 3.4965 and
LEs = In(233) = 5.4510. It is clear that the 4D-PCM has
four positive LEs, and one can allow it to show expected and
robust dynamic properties by customizing the elements in
sequences a. With four positive LEs, the 4D-PCM exhibited
hyperchaotic behavior.

2) 7D-PCM: To construct a 7D-PCM, the data sequences
a and b are randomly generated from the data set M,
and the binary sequences g and h are randomly generated.
These parameters are a = {93, 55, 51,247,99,449,51}, b =
{23,279, 387, 156, 90, 170, 106, 256, 454, 315, 51, 196, 28,
251, 216,499, 406, 243, 448, 69, 196}, g = {0,1,1,1,0, 1},
and h = {0,1,1, 1,0, 1}. Then, the 7D parameter matrix A
can be generated using Algorithm 1 as

449 51 196 28 251
55 23 0 0 0

216 0

0 0
0 0 93 0 0 0 0
0 0
0 0
0

A = 279 387 51 0 0 . (28)
156 90 170 247 O
0 106 256 454 315 99

499 406 243 448 69 196 51

When all the exponent coefficients in C are set to two, and
the modular coefficient is set to one in Eq. (1), a 7D-PCM
can be generated. When setting x(i + 1) = x(i), it can
be calculated that the 7D-PCM also has many equilibrium
points. According to Eq. (23), the eigenvalues of the Jacobian
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Fig. 1. The hyperchaotic sequences of the constructed 7D-PCM with seven
positive LEs in 3D phase space. (a) x| — xp — x3 space. (b) xp — x3 — x4
space. (c) x3 — x4 — x5 space. (d) x4 — x5 — x¢g space. (€) x5 — xg — X7 space
and (f) xg — x7 — x1 space.

matrix of the 7D-PCM are the seven elements of a, indicating
that 41 = 449, 1o = 55, 13 = 93, 44 = 51, A5 = 247,
A6 = 99, and A7 = 51. Then, all the equilibrium points of
the 7D-PCM are unstable node-foci. According to Eq. (24),
the seven LEs of the 7D-PCM are LE; = In(449) = 6.1070,
LE> = In(55) = 4.0073, LE3 = In(93) = 4.5326, LE4s =
In(51) = 3.9318, LE5s = In(247) = 5.5094, LEs = In(99) =
4.5951 and LE7 = In(51) = 3.9318. With seven positive LEs,
the 7D-PCM exhibits complex dynamics and can generate
hyperchaotic behavior. In Fig. 1, the hyperchaotic sequences of
the 7D-PCM are plotted with the initial state x(0) = 0.774
in the 3D phase space. These results show that the chaotic
sequences are uniformly distributed in the 3D phase space.

B. Hardware Implementation

When a chaotic system is employed in industrial applica-
tions, implementing it on a hardware platform is a neces-
sary step. A microcontroller-based platform was developed
to demonstrate the easy hardware implementation of the
4D-PCM and 7D-PCM.

Because the microcontroller has many favorable character-
istics such as easy programming, low power consumption, and
strong environmental adaptability, it is widely used in indus-
trial applications. In our experiment, a microcontroller-based
platform was developed, which includes a high-performance
microcontroller STM32F407VET6, 12-bit D/A converter
TLV5618, oscilloscope TDS3054C, and other peripheral
circuits. The mathematical models of 4D-PCM and 7D-PCM
were first programmed using the C language, and the
programs were then downloaded to the microcontroller.
The D/A converter converts the generated digital chaotic
signals into analog voltage signals, which are displayed by
an oscilloscope. Fig 3 shows the hardware devices used in
the microcontroller-based platform. Algorithm 2 presents the
pseudocode of the microcontroller-based experiment, and its
flowchart is shown in Fig. 2. In this flowchart, the vectors

Algorithm 2 The Pseudocode of the Microcontroller-Based

Hardware Experiment

Input: The output sequence length K, interpolation number
M, parameter matrix A and coefficient matrix C, and initial
value x(0).

1: for i =0to K do

22 x1( 4+ 1) = anx1(@) + arpx20@)"2 + -+ - + a1,x, ()M

mod 1;

Xn(i + 1) — anlxl(i)cnl + anzxz(i)crﬂ + o4 annxn(i)
mod 1;
stepy = (x1( + 1) —x1(0))/M;

s

for j=1to M —1do

5

6: .

7. stepn = (xn(i + 1) — xn(0))/M;

8.

9 value; = (x1() + j x stepy + 15) x 4096/30;

11 value, = (x, (i) + j x step, + 15) x 4096/30;

12 Transfer the valuey, values, - - -, value, to TLV5618;
13:  end for

14: end for

Output: The results valuey, values, ---
iteration for oscilloscope displaying.

, value, in each

(Input K, M, A, C, x(0),j =1,i=0]

Yes A
1> K
e

Ej

[x(i1) < F(x(1) mod 1 (Eq. (1))]
1

[ step — (xGt)-x() /M|

[value  (x(i)4-step+15-1,1)-4096/30]

—{ Transfer the value to TLV5618 ‘

The flowchart of the hardware implementation.

Fig. 2.

x(i) = {x1(), x20), ..., x,(0)}7, step = {stepy, stepa, ...,
step,}T, and value = {value, valuey, ..., value,)".

For the implementation resources, the MCU frequency is
168 MHz, and an external clock was chosen as its clock
source. The core of STM32F407 is an ARM 32-bit Cortex-M4
CPU with an FPU. At room temperature, the experiment
was operated with a 3.3V power supply voltage and an
approximately 40 ~ 87mA power supply current. The initial
states for the 4D-PCM and 7D-PCM were set to x(0) = 0.74x
and x(0) = 0.774, respectively. Fig. 4 displays the outputs of
the first 55 iterations of the 4D-PCM and 7D-PCM captured by
the oscilloscope. Each sequence x; oscillates randomly within
a fixed range, which indicates the correctness and feasibility
of the implementation of the 4D-PCM and 7D-PCM.
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Fig. 3. Hardware devices of microcontroller-based platform.

C. Randomness Test

Because the state space in digital platforms cannot have
infinite states, all self-evolved systems with external distur-
bances will finally result in periodic behaviors when imple-
mented on a digital platform. Different chaotic systems may
exhibit different chaos degradation times. In this subsection,
we test the randomness properties of the chaotic sequences
of the 4D-PCM and 7D-PCM to demonstrate their ability
to resist chaos degradation. At present, there are many test
standards for testing the randomness of random sequences,
such as NIST, DIEHARD, and TestUO1. To the best of our
knowledge, the TestUO1 standard can test much longer random
sequences and is much stricter than any other test standard.
Many existing chaotic systems cannot pass all the test suites
of the TestUOI standard. This is because the longest binary
sequence that can be measured by TestUOI can reach 10Tb.
TestUO1 offers a collection of utilities for empirical statistical
testing of PRNGs [45]. TestUOI includes eight test batteries
that aim to find the non-random area of random number
sequences from different aspects. These eight test batteries
include the SmallCrush, Crush, BigCrush, Rabbit, Alphabit,
BlockAlphabit, PseudoDIEHARD, and FIPS-140-2 test suites.
Each test suite applies a number of statistical tests to the tested
random sequence, and each statistical test can generate a p-
value. The tested random sequence can pass the corresponding
statistical test if the generated p-value falls into the interval
[0.001, 0.999].

The TestUO1 test standard can directly use the float numbers
within the range [0, 1] as input. However, the generated chaotic
sequences in our systems are exactly float numbers within
[0, 1]. Thus, these chaotic signals can be directly used as
tested random numbers. Specifically, we set the initial values
of the tested 4D-PCM and 7D-PCM as x(0) = 0.74«1 and
x(0) = 0.77«1, respectively, and the produced first-dimension
chaotic signal is used as random numbers. Because the Rabbit,
Alphabit, and BlockAlphabit test suites can take variable
lengths of random sequences as input, we use a fixed length
of 32 Gb in these three test suites. The other five test suites
take a random sequence with a fixed length of as input, and the
BigCrush test suite is the most stringent test suite that applies

TABLE 11
THE TEST RESULTS OF TESTUO1 FOR THE 4D-PCM AND 7D-PCM

Evaluated data | 4D-PCM | 7D-PCM
SmallCrush About 6 Gb 15/15 15/15
Crush About 1 Tb 144/144 144/144
BigCrush About 10 Tb 160/160 160/160
Rabbit 32 Gb 40/40 40/40
Alphabit 32 Gb 17/17 17/17
BlockAlphait 32 Gb 102/102 102/102
PseudoDIEHARD About 5 Gb 126/126 126/126
FIPS-140-2 About 19 Kb 16/16 16/16

160 statistical tests to approximately 10 Tb data. Table II
lists the test results of the 4D-PCM and 7D-PCM under these
eight test suites. Since the initial state has only one significant
digit, we exclude the first 40000 states. It can be seen that the
4D-PCM and 7D-PCM can pass all the statistical tests in all
the test suites, which indicates that they can generate a large
number of sequences with high randomness.

V. PERFORMANCE EVALUATIONS

This section analyzes the performance of the nD-PCS from
the following three aspects: LE, sample entropy (SE) [46],
and information entropy (IE). When generating the parameter
matrix A, all the elements in sequences a and b are ran-
domly selected from the integer set M = {1,2,---,500},
and all the elements in g and h are randomly generated
binary values. We also compared the nD-PCS with some
existing high-dimensional chaotic map generation methods and
3D chaotic maps. These competing high-dimensional chaotic
map generation methods include Shen’s method [39], Liu’s
method [38], Chen’s method [41] and Wu’s method [47],
whereas the competing 3D chaotic maps include the maps
proposed by Xie [48], Ageel [49], Lai [50], and Karawia [51].

When comparing the performance of high-dimensional
chaotic maps produced by various chaotic map generation
methods, a large number of high-dimensional chaotic maps
with different dimensions should be generated. However, for
these competing high-dimensional chaotic map generation
methods, the authors only provided a few examples of chaotic
maps with fixed dimensions in the literature. When gener-
ating chaotic maps with higher dimensions, some parameter
settings reported cannot result in the expected properties, and
therefore, these parameters should be adjusted. To provide
a relatively fair comparison, we set the parameters in the
chaotic map generation methods using the following rules:
(1) if the parameter settings reported can result in any nD
chaotic maps with expected properties, we directly reference
these parameter settings; (2) if the parameters reported cannot
result in chaotic maps for some dimensions with expected
performance, we adjust these parameters to ensure that all the
generated nD chaotic maps can show the properties expected
in the literature; and (3) under the premise that the generated
nD chaotic maps can possess the properties expected in the
literature, we set the parameters to the same level as that in
our proposed nD-PCS.

As a result, the parameters are set as a = —0.1 and € €
[1,20] for Shen’s method, « = 1, b € [3,5] and ¢ € [0, 5]
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Fig. 4. Simulation results captured from hardware platform for (a) 4D-PCM and (b) 7D-PCM. The time sequences from top to bottom in (a) are the outputs

of x1,x2,x3, x4 in the 4D-PCM while in (b) are the outputs of xy, xp, - --

for Liu’s method, ¢ € [100,500] and ¢ = 0.01 for Chen’s
method, and » = 0.1 and a € [1.5,1.7] for Wu’s method.
The parameters are randomly selected within their respective
ranges when generating an nD chaotic map. The parameters
in all the competing 3D chaotic maps are assigned the same
values as those in the literatures.

A. LE

As mentioned in Section III-A, LE indicates the existence
of chaos. A positive LE indicates that the corresponding
dynamical system exhibits chaotic behavior if the system
is globally bounded. A high-dimensional chaotic map has
multiple LEs, and more than one positive LE indicates
hyperchaotic behavior, which is a more complicated behavior
than chaotic behavior. According to the discussions in [36],
the dynamic properties of a high-dimensional chaotic map can
be reflected by the number of positive LEs and their values.
A high-dimensional chaotic map with more and larger positive
LEs usually exhibits richer dynamic properties. Thus, for each
chaotic map, we calculated the number of positive LEs and the
largest LE (LgtLE).

Two groups of experiments were designed for the proposed
nD-PCS and the aforementioned chaotic map generation meth-
ods and 3D chaotic maps. The first group tests the LEs of 3D
chaotic maps. For each of the five chaotic map generation
methods, we first randomly generated one 3D chaotic map
and then calculated its LEs. Table III lists the three LEs of the
3D chaotic maps generated by the 3D chaotic maps and these
3D chaotic maps generated by five chaotic map generation
methods. It can be seen that the 3D chaotic maps generated
by Liu’s method [38], Chen’s method [41], Wu’s method [47],
and the proposed nD-PCS have three positive LEs. However,
the 3D chaotic map generated by the nD-PCS has much larger
LEs than the other 3D chaotic maps.

The second group of experiments tested five chaotic map
generation methods with different system dimensions. For
each generation method with dimensions n € {4,5,---, 13},
we randomly generated 100 nD chaotic maps and calcu-
lated their mean numbers of positive LEs and mean LgtLEs.
Fig. 5(a) plots the mean number of positive LEs, whereas

, x7 in the 7D-PCM.

TABLE III

THE LES FOR DIFFERENT 3D CHAOTIC MAPS AND THESE 3D CHAOTIC
MAPS GENERATED BY DIFFERENT GENERATION METHODS

Number of
LE LE; LEs positive LE

Xie’s [48] 0.0365 0.0096 —0.6063 2
Ageel’s [49] 0.8785 0.0000 —14.5394 1
Lai’s [50] 0.3111 0.0000 —1.2453 1
Karawia’s [51] | 0.9451 0.2557 —4.8134 2
Shen’s [39] 1.4699 0.0000 —1.7689 1
Liu’s [38] 3.2335 1.5496 0.2102 3
Chen’s [41] 3.2425 3.2425 3.1820 3
Wu’s [47] 0.3215 0.2060 -5.1326 2
nD-PCS 5.4190 5.2595 5.1338 3

4 10 1 - Shen's

= - -~ Liu's

2 Fﬁ s —¥-Chen's

= 5 - Wu's

g — -5-nD-PCS

o [

Gt o

z 2

5 =
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g = 2

s

of

4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13
Dimension n Dimension n
(a) (b)
Fig. 5. The LEs for 100 nD chaotic maps generated by different generation
methods with dimension n € {4, 5, --- , 13} (a) the mean numbers of positive;

(b) the mean LgtLEs.

Fig. 5(b) plots the mean LgtLEs. As shown in Fig. 5(a),
both the proposed nD-PCS and Chen’s method [41] can
generate nD chaotic maps with the maximum number of
positive LEs, namely, n. The nD chaotic maps generated by
Shen’s method [39] can own |[n — 2]/2 positive LEs, and
the high-dimensional chaotic maps generated by the other two
methods are not fixed. From Fig. 5(b), it can be seen that
the chaotic maps generated by the nD-PCS have the largest
LgtLEs compared with the other methods. In addition, from
the LE calculation in Eq. (24), the LEs of the chaotic maps by
the nD-PCS are independently determined by the parameters
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TABLE IV

THE SES FOR DIFFERENT 3D CHAOTIC MAPS AND THESE 3D CHAOTIC
MAPS GENERATED BY DIFFERENT METHODS

SE1 SE, SE3
Xie’s [48] 0.7882 0.7882 0.7882
Ageel’s [49] 0.1993 0.1887 0.1809
Lai’s [50] 0.0432 0.0469 0.0464
Karawia’s [51] 0.4980 0.3601 0.4157
Shen’s [39] 0.0709 0.0672 0.0636
Liu’s [38] 1.3577 1.3656 1.3611
Chen’s [41] 2.1028 2.0852 2.1844
Wu’s [47] 0.5341 0.5270 0.5362
nD-PCS 2.1968 2.1930 2.1911

in the sequence a. They can achieve any desired value by
predefining the elements of a in the generation process.

B. SE

SE is a type of approximate entropy that can be used
to test the degree of complexity of the time series output
using chaotic maps. A time series with a positive SE shows
irregular properties. A larger SE indicates more irregularity
in the time series; it further indicates more complexity of the
corresponding chaotic map.

Our experiments used the calculation method introduced
in [46] to obtain the SEs of different high-dimensional chaotic
maps. First, we tested the SEs of the three time series outputs
by different 3D chaotic maps. Table IV lists the three SEs of
the 3D chaotic maps produced by the chaotic map generation
methods and other 3D chaotic maps. This shows that the
3D chaotic map generated by the proposed nD-PCS has the
largest SE. In addition, we tested the SEs of five chaotic map
generation methods with dimensions n € {4,5,---, 13}. For
each method, we randomly generated 100 nD chaotic maps
and initial states x(0) € [0, 1]. Because each nD chaotic map
can generate n time series and each time series has an SE,
the SE of an nD chaotic map is calculated by averaging the
n SEs. Fig. 6 plots the mean SEs of the 100 chaotic maps
generated using different generation methods with different
dimensions n. It can be seen that with an increase in dimension
n, the nD chaotic maps generated by each generation method
have similar SEs. The proposed nD-PCS can generate nD
chaotic maps with the largest mean SEs. These results verify
that the nD-PCS can produce high-dimensional chaotic maps
with complex chaotic behaviors.

C. IE

IE is a widely used measure to characterize the ran-
domness of a signal. It can be used to test the random-
ness of the observed states generated by an nD chaotic
map. The observed state of an nD chaotic map x(i) =
{x1(), x20), - -+, x,())}T € R™! has n dimensions. When
uniformly dividing the output range of each dimension into
I intervals, the nD phase space can be divided into the I”
sub-phase space. Then, the IE of the output sequence of an
nD chaotic map can be calculated as follows:

m
1E = =" Pr(k)log, Pr(k),
k=1

(29)

793

Mean SE

4 5 6 7 8 9 10 11 12 13
Dimension n

Fig. 6. The mean SEs for 100 nD chaotic maps generated by different
generation methods with dimension n € {4,5,---, 13}.

-~ Shen's
-~ Liu's

0
35 7 9 11 13 15 34 5 6 7 8 9 10

The number of intervals 1 Dimension n
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Fig. 7. 1Es for different chaotic maps. (a) The IEs for different 3D chaotic
maps against different numbers of intervals; (b) the mean IEs for 100 nD
chaotic maps generated by five chaotic map generation methods against
different dimensions by fixing the number of intervals I = 3.

where Pr(k) denotes the probability of the observed states
in the k-th sub-phase space. It is clear that the IE is a
positive value and has a theoretical maximum value when
the probabilities of the observed states in each sub-phase
plane are the same. This means that when Pr(k) = 1/I1"
(k = 1,2,---,1I"), the IE can reach the maximum value
and [ Emax = nlog, I. A larger IE indicates a more uniform
distribution of the observed states, and further implies more
complex properties of the related chaotic map.

Two groups of experiments were conducted to calculate the
IE of the output sequences for different chaotic maps. The
first group analyzes the IEs against the number of intervals
I ={3,4,---,15} by fixing the dimension n = 3. For each
3D chaotic map, the initial state is set to x(0) € [0, 1], and a
number of I* output states are generated to calculate its IE.
Fig. 7(a) plots the mean IEs of 100 3D chaotic maps generated
by different chaotic map generation methods and the IEs of
the other 3D chaotic maps. It is clear that the 3D chaotic
map generated using the proposed nD-PCS has the largest IE
among all the 3D chaotic maps. Table V shows the maximum
IEs of the 100 3D chaotic maps randomly generated using the
five chaotic map generation methods with different numbers
of intervals. As shown, the 3D chaotic maps generated using
the nD-PCS have the largest IEs, and their maximum IEs are
very close to the theoretical maximum values.

The other group of experiments was designed to test the
IEs against the system dimension n = {4,5,---,12} by
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TABLE V
THE MAXIMUM IES FOR 100 3D CHAOTIC MAPS GENERATED BY DIFFERENT CHAOTIC MAP GENERATION
METHODS AGAINST DIFFERENT NUMBERS OF INTERVALS [
Number of intervals /
3 4 5 6 7 8 9 10 11 12 13 14 15
Shen’s [39] | 3.2152 4.2126 5.1338 5.4789 4.2854 3.4973 2.7920 2.4973 1.9644 1.6873 1.2462 1.2544 1.5180
Liu’s [38] 4.4842 5.7786 6.5592 7.5441 7.6273 8.2756 8.3487 8.9660 9.2095 9.7438 9.6947 10.1166 10.2891
Chen’s [41] | 2.2236 2.9872 3.5218 3.9496 4.3597 4.6666 4.9825 5.2591 5.5143 5.7275 5.9560 6.1597 6.3206
Wu’s [47] 3.9273 4.6659 5.3400 5.8691 6.2594 6.6285 7.0772 7.4021 7.5949 7.8164 8.0016 8.2149 8.4829
nD-PCS 4.6424 5.8886 6.8560 7.6556 8.3273 8.9251 9.4375 9.9005 10.3185 10.6983 11.0491 11.3727 11.6746
Huax 4.7549 6.0000 6.9658 7.7549 8.4221 9.0000 9.5098 9.9658 10.3783 10.7549 11.1013 11.4221 11.7207
TABLE VI Gageosy o1 Xko1 + XD/ V2 (o boaa Xi + %)/ V2
THE MAXIMUM IES OF THE nD CHAOTIC MAPS GENERATED BY b X b X
DIFFERENT METHODS WITH DIMENSION 2=l 2k
n={4,5---,12} BY FIXING I =3
nD chaotic map Generation Methods
n | Shen’s Liv’'s Chen’s Wu’'s
[39] [38] [41] [47] nD-PCS Hax kth frame

4 141705 6.0864 1.7290 5.0873  6.1608 | 6.3399 Fig. 8. The transmitted signal format in the proposed DCSK.

5 [4.4563 7.6503 1.3479 6.4362 7.7183 | 7.9248

6 |3.2189 9.1772 2.0628 7.8038 9.2759 | 9.5098

7 |2.6805 10.7148 2.2942 9.1394 10.8516 | 11.0947

8 1.5354 12.3587 2.1756 10.2567 12.4252 | 12.6797 | barboicrrXiom + iom

9 [0.6026 13.8415 1.5461 11.9150 14.0070 | 14.2647 9_0 V2

10 | 0.2393 15.4980 1.9498 12.9367 15.5899 | 15.8496 by

11 | 0.1061 17.0571 1.6220 14.1957 17.1734 | 17.4346

12 1 0.5207 18.5959 2.5147 15.7751 18.7576 | 19.0196 f

fixing the number of intervals / = 3. For each chaotic map
generation method with different n, 100 nD chaotic maps are
randomly generated. For each chaotic map, the initial state is
set to x(0) € [0, 1], and a number of 3"*! output states are
generated to calculate its IE. Fig. 7(b) displays the mean IEs
of the 100 nD chaotic maps produced by different generation
methods. This shows that the nD chaotic maps generated by
the nD-PCS can achieve higher mean IEs than the nD chaotic
maps generated by other methods. Table VI lists the maximum
IEs of the 100 nD chaotic maps. As can be seen, the maximum
IEs of the proposed method are significantly larger than
those of other generation methods and are very close to the
theoretical maximum values. These results demonstrate that
the proposed nD-PCS can generate high-dimensional chaotic
maps with uniform distribution outputs.

VI. SECURE COMMUNICATION APPLICATIONS

Differential chaos shift keying (DCSK) is a widely used
technique in secure communication [13]. It exhibits a strong
ability to resist noise interference. When a chaotic sys-
tem is used to transmit data, its trajectory distribution can
significantly affect the performance of resisting bit errors.
Because the high-dimensional chaotic maps generated using
the nD-PCS can produce more uniformly distributed chaotic
outputs than existing chaotic maps, they can show better
performance in resisting channel noise. In this section, we first
propose a simple new DCSK and then test the performance of
different chaotic maps in this DCSK.

A. Structure of the Proposed DCSK
Fig. 8 illustrates the transmitted signal of the proposed
DCSK. It shows that each frame contains two sections. The

Fig. 9.

The transmitter of the proposed DCSK.

previous section of the kth frame is the multiplication of
the information bit by; with an M-length chaotic sequence
Xy, where M is a spreading factor in the DCSK. The latter
section is formed by the addition of two parts. The first part
is the multiplication of the information bits box, baky1 and
chaotic sequence &c, while Lhe second part is a time-reversed
chaotic sequence Xy. The Xy is generated by flipping over
the chaotic sequence X; and can be represented as

Xe()=Xe M +1—4i), 0<i<M. (30)

The proposed DCSK is mainly composed of the transmitter
and receiver parts, and its structures are described as follows:

1) Transmitter: The transmitter of the proposed DCSK is
illustrated in Fig. 9. It can be observed that the M-length
chaotic sequence Xy = {Xokamry1,X2kM 12, > Xkt )M} 1S
generated by a chaotic generator. In one branch, it directly
multiplies to information by;. In the other branch, X first
goes through an M time delay to generate a delayed chaotic
sequence Xj_ps, which is multiplied to the information bits
boy and bogy1. Then, the multiplication result is added to the
time-reversed chaotic sequence Xi_y. The generation of the
k-th frame signal e¢; can be expressed as

boxi, 2kM <i < (2k+ 1)M,

(bakbars1Xi—m + Xi—m) /N2,
Qk + )M <i <2(k + 1)M.

e =

2) Receiver: The receiver of the proposed DCSK is shown
in Fig. 10. Because many transmission channels are noise
channels, the transition signal can be blurred by noise during

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 10,2023 at 14:03:49 UTC from IEEE Xplore. Restrictions apply.



HUA et al.: nD-PCS WITH APPLICATIONS

Fig. 10. The receiver of the proposed DCSK.

transmission. Thus, the received signal r; is different from
the transmitted signal e¢; and can be represented as r; =
e; + ni, where 5; denotes the additive noise. For the k-th
frame, the information bits by and by41 can be concurrently
demodulated by the top and bottom branches of the receiver,
respectively.

To extract the information bit by, the receiver signal r; is
multiplied by 7;_js, where 7;_ps is the time-reversed signal
of r;i_p and can be obtained using the same rule in Eq. (30).
Then, the correlator output for bit by can be calculated as

2(k+1)M
i—(2k+zl)M+1

2 2(k+1)M
=5 Z

i=Qk+1)M+1

X (buXi—m + Ni—m)

V2 2k+1)M
= Z

i=Qk+1)M+1
NG 2(k+1)M

+ 2

i=(k+1)M+1
+ bakbogy1 Xi—mNi—m + Nifli—m + bauXi—mni). (31)

Zoy = riti—m

(bokbok+1Xi—m + Xi—p + 7i)

2
borxi_y

(Dok+1Xi—MXi—m + Xi—mHi—m

To extract the information bit b1, the receiver signal r;
is multiplied by its delayed signal r;_j;. Then, the output of
the correlator for bit bor41 can be calculated as

2k+1)M

>

i=(2k+1)M+1
NG 2(k+1)M

Zok41 riti—M

=5 > (bwbarxiom +Fiom + i)
i=(k+1)M+1
X (bogXi—pm + Ni—m)
J3 Akhm .
= 7 Z b2k+1xi,M
i=Qk+1)M+1
/3 2km B B
+ > Z (bok+1Xi—MXi—M + Xi—MNi—M

i=(2k)M+1
+ borbokr1Xi—mNi—m +Nifi—m +bokxi—mni). (32)
The first items in Eqs. (31) and (32) are the main compo-
nents for extracting the transmitted information bits, whereas
the remaining items are interference components containing
noise. Despite noise, the information bits can be extracted by

1, ifZ,>0,
b, =
—1, else.
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Fig. 11. The mean BERs of the proposed DCSK using different 3D chaotic
maps under (a) spread factor M = 40 and SNR € {1,2,---,21}, and
(b) noise level SNR = 13 dB and spread factors M € {10, 20, - - - , 100}.

B. Simulation Results

Here, we test the ability of the proposed DCSK to tolerate
noise. Furthermore, we consider that the chaotic generator is
a 3D chaotic map generated using the chaotic map generation
methods and the other 3D chaotic maps. The parameters of the
chaotic maps were set to be the same as those in Section V.
We add the Gaussian noise in our simulations because it is the
most widely occurring noise during transmission.

Two groups of experiments were developed to calculate the
bit error rates (BERs) of the proposed DCSK for different
3D chaotic maps. The first group analyzes the BERs against
various noise levels by fixing the spread factor M = 40.
For each 3D chaotic map, the BERs of the proposed DCSK
were calculated under different signal-noise-ratios (SNRs)
{1,2,---,21}. To obtain a stable BER, we repeated each
experiment 100 times with different system parameters to
calculate the mean BER value. Fig. 11(a) plots the mean BERs
of the proposed DCSK with different 3D chaotic maps under
a fixed spread factor M = 40 and SNR € {1,2,---,21}. Itis
clear that when using the 3D chaotic map generated using the
proposed nD-PCS, the DCSK can achieve much smaller BERs
than using other 3D chaotic maps.

The other group of experiments investigated the BERs
against various spread factors M by setting the noise strength
as SNR = 13 dB. The system parameters of different chaotic
maps were set to be the same as those in the first group of
experiments. Fig. 11(b) shows the mean BERs in 100 experi-
ments for different 3D chaotic maps at SN R = 13 and spread
factor M € {10, 20, ---, 100}. The results show that the 3D
chaotic maps generated by the nD-PCS can always achieve
smaller BERs than the other 3D chaotic maps. Furthermore,
the chaotic maps generated by the nD-PCS exhibit a strong
ability to resist transmission noise in secure communication
applications, compared with existing maps.

VII. CONCLUSION

This study first analyzed the relationship between the
parameter matrix of a high-dimensional chaotic map and its
LEs, and then proposed an n-dimensional polynomial chaotic
system (nD-PCS) that can generate nD chaotic maps with
desired LEs. The nD-PCS is constructed from n parametric
polynomials, and its parameter matrix is constructed using
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matrix expansion. Theoretical analysis shows that the n LEs
of the nD-PCS are determined by its partial control parame-
ters. Thus, by customizing these parameters, one can obtain
high-dimensional chaotic maps with any desired LEs and
further exhibit the expected dynamic properties. To demon-
strate the effects of the nD-PCS, we provided two examples
of high-dimensional chaotic maps: a 4D polynomial chaotic
map and a 7D polynomial chaotic map; we then imple-
mented them in a microcontroller-based hardware platform
and tested their randomness properties using TestUO1. Prop-
erty analysis shows that these two high-dimensional chaotic
maps have the desired LEs and thus exhibit complex dynam-
ics and hyperchaotic behaviors. The performance analysis
shows that the high-dimensional chaotic maps generated by
the nD-PCS have the desired LEs, more complex dynamic
properties, and better distribution outputs, compared with
other high-dimensional chaotic maps. Finally, we developed
a secure communication scheme, and the simulation results
demonstrate that the chaotic maps generated by the proposed
nD-PCS exhibit much better performance in this application
than other high-dimensional chaotic maps. Our future work
will investigate the hyperchaotic behaviors in fractional order,
because the fractional-order chaotic systems have many unique
and different dynamic behaviors compared with integer-order
chaotic systems.
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