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Abstract—Different from existing methods that use matrix
multiplications and have high computation complexity, this paper
proposes an efficient generation method of r-dimensional (nD)
Cat maps using Laplace expansions. New parameters are also
introduced to control the spatial configurations of the nD
Cat matrix. Thus, the proposed method provides an efficient
way to mix dynamics of all dimensions at one time. To investi-
gate its implementations and applications, we further introduce
a fast implementation algorithm of the proposed method with
time complexity 0(n4) and a pseudorandom number genera-
tor using the Cat map generated by the proposed method. The
experimental results show that, compared with existing genera-
tion methods, the proposed method has a larger parameter space
and simpler algorithm complexity, generates nD Cat matrices
with a lower inner correlation, and thus yields more random
and unpredictable outputs of nD Cat maps.

Index Terms—Arnold’s cat map, cryptography, Laplace expan-
sion, n-dimensional (D) Cat map.

I. INTRODUCTION

S A TYPE of dynamical systems closely related to nat-

ural processes, chaotic systems are quite sensitive to
their initial conditions. This indicates that their trajectories are
exactly decided by their initial states. Any small difference in
their initial states yields significantly different outcomes after
long time system evolution [1]-[3]. This is commonly referred
as butterfly effect [4]. Examples of chaotic systems include the
logistic map [5], Chua’s circuit [6], and Chen—Lee system [7].
With significant properties of initial state sensitivity, ergod-
icity, and unpredictability, chaotic systems have been widely
reported in various subjects including mathematics, physics,
computer sciences, biology, engineering, economics, robotics,
geology, neuron science, and chemistry [8]-[11]. Among all
chaos-based applications, cryptography is the most popular
one [12]-[18]. This is because many properties of chaotic
systems can be found similar in cryptography [19], [20].
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For example, the initial condition sensitivity and ergodicity
of a chaotic system are analogous to the diffusion and con-
fusion properties [21] in cryptography, and the deterministic
dynamics in a chaotic system corresponds to the deterministic
pseudorandomness in cryptography [22], [23].

Among various developed chaotic maps, the Cat map is
a 2-D chaotic map named after Vlamimir Arnold [24], [25].
Except for the common properties of chaotic systems, the Cap
map has many unique properties.

1) It is in the integer form and can be easily adapted to
an arbitrary finite precision [24], which benefits to the
difference between the precision infiniteness of chaotic
systems and precision finiteness of cryptosystems [26].

2) It is invertible and its inverse is also in the integer form
because its Cat matrix has determinant 1.

3) It is area preserving [24], indicating that the Cat map
can be directly used as a permutation function, which is
the fundamental building blocks for cryptography.

4) It is topologically transitive [27] and thus it is chaotic
with high randomness.

5) It is an Anosov diffeomorphism and structurally sta-
ble [25], indicating that small perturbations in the system
do not affect the qualitative behaviors of the map’s tra-
jectory, and thus the Cat map itself can resist a certain
level of noise.

With these significant properties, the Cat map has been
studied in both theory and practice and used in different
subjects. Examples include the Cat map period distribu-
tions [28], [29], Cat map properties [30], Quantum Cat
maps [31]-[34], Cat maps in other domains [35], and Cat map-
based pseudorandom number generator (PRNG) [36], image
encryption [24], and watermarking [18].

A Cat map usually contains a transformation matrix called
the Cat matrix. Several Cat map generation methods have been
developed to construct different Cat matrices such that the
generated Cat maps have high randomness and large param-
eter spaces. According to the dimensions of the Cat matri-
ces, these generation methods can be roughly classified into
2-D [24], [25], 3-D [24], [37]-[39], and n-dimensional (nD)
Cat map generation methods [40]-[42]. A 2-D Cat matrix is
a 2 x 2 matrix containing four elements, while a 3-D Cat
matrix is a 3 x 3 matrix with nine elements. When being used
in a cryptosystem, they commonly have a parameter space
less than the required size to resist brute-force attacks [43],
and thus they have to be used with additional components
to ensure security [24]. On the other hand, an nD Cat map
with a parametric nD Cat matrix seems to have a quite large
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parameter space. However, because of using a large number
of matrix multiplications and dependency relationships among
the elements in the Cat matrix, existing nD Cat map genera-
tion methods produce nD Cat matrices with highly correlated
matrix elements, which may downgrade the security of cryp-
tography applications [40]. A detailed literature review on
these methods is given in Section II.

In this paper, we propose a new nD Cat map generation
method using Laplace expansions to iteratively construct an
nD Cat matrix. Its properties are discussed and theoretical
analysis is provided. The main contributions of this paper can
be summarized as follows.

1) To overcome the high computation complexity of exist-
ing methods that are rooted in matrix multiplications, we
propose a new nD Cat matrix generation method that is
the first time to use Laplace expansions to efficiently
generate nD Cat matrices.

2) We further propose new parameters to control the spatial
configurations of an nD Cat matrix. This provides an
efficient way to mix dynamics of all dimensions at one
time.

3) We introduce a new fast algorithm to implement the pro-
posed method. It can reduce the time complexity from
0(n%) to O(n*).

4) We provide theoretical analysis and comprehensive per-
formance evaluations of the proposed method with
respect to the parameter space, algorithm complex-
ity, matrix element correlation, Shannon entropy, and
Kolmogorov entropy. The comparison results show that
the proposed method have a larger parameter space, less
computation complexity, more independent, and random
matrix elements and can generate outputs with better
randomness and unpredictability than existing methods.

5) To investigate the real-world application of the proposed
method, we introduce a new PRNG using the Cat maps
generated by the proposed method. The randomness
quality of the proposed PRNG is evaluated using two
test standards.

The rest of this paper is organized as follows. Section II
briefly reviews the existing Cat map generation methods,
Section III introduces our nD Cat map generation method
using Laplace expansions, Section IV analyzes the proposed
method, Section V compares the proposed method with exist-
ing methods, Section VI proposes a new PRNG and evaluates
its performance, and Section VII concludes this paper.

II. EXISTING CAT MAP GENERATION METHODS

This section briefly reviews the parametric Arnold’s, 3-D,
and nD Cat map generation methods, and discusses their
properties.

All discrete Cat maps can be represented as a general form

Y(t4 1) = C™PY(r) mod N (1)

where CQD is an nD Cat matrix generated by the method
# and [CP| = 1, YO) = (@), yn0),...,y.®]", and
Y4+ 1) =[y(t+ 1), 206+ 1), ..., y.(t+ D]” are the input
and output of the nD Cat map. N is the number of finite states.
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Based on the way how to construct the nD Cat matrix C’;D,

there exist several Cat map generation methods.

A. Arnold’s Cat Map Generation Method

The original Cat map called the Arnold’s Cat map is a 2-D
Cat map. Its Cat matrix C,zx'D is defined by [25]

e3P = [i ﬂ @)

In practice, the Arnold’s Cat matrix Ci‘D is commonly
extended into a parametric form for cryptography applica-
tions [24] and defined as follows:

1 a
2D _ 3
para. |:b ab + 1} )
where a and b are integers. Obviously, C%}Ra. =1and C,%'a]?a.

is indeed a Cat matrix with area preserving, invertibility, and
other properties.

B. 3-D Cat Map Generation Methods

To enhance the security level of the Cat-map-based cryptog-
raphy and other applications, several 3-D Cat map generation
methods were developed.

Lian et al. [37] extended C%:a]?a. into the x — z and
y — z planes, and then proposed a parametric 3-D Cat
matrix CE‘D, as

1 0 a
CE’D = bc 1 abc + ¢ 4)
bcd+b d abcd+ ab+ cd+ 1

where a, b, ¢, and d are integer parameters.

Chen ef al. [24] constructed a parametric 3-D Cat matrix by
firstly extending C%;i?a_ with respect to the x, y, and z direc-
tions and then mixing all coupled Cat matrices using matrix
multiplications. Consequently, their 3-D Cat matrix C%‘D is the
product of three extended Cat matrices of pairwise-coupled
dynamics as

3- X d .
CgP = CECLCy

axazby + 1 a
= | b +aby(ab; +1) ab,+1
by(axby + 1) by
ay + axaz(ayby + 1)
ayb; + ax(ayby + 1)(a b, + 1) (5)

(axby + 1)(ayby + 1)

where ay, by, ay, by, a;, and b, are six integer control
parameters.
Also based on C%}i?a_, Liu et al. [38] introduced a para-

metric 3-D Cat matrix CE,‘D by mixing dynamics on all three
dimensions into the extended dimension as

1 a 0
CP=|b ab+1 0 (©6)
c d 1

where parameters a, b, ¢, and d are integers.
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Recently, Pan and Li [39] also introduced their parametric
3-D Cat matrix adding two control parameters ¢ and d, but
in a formulation different from Lian et al’s [37] in (4). In
particular, Pan’s 3-D Cat matrix C%‘D is defined as follows:

1 a c
CP=|b ab+1 b (7)
d abcd cd+1

where a, b, ¢, and d are integer control parameters.

C. nD Cat Map Generation Methods

Besides the efforts on generating 3-D Cat matrices, high-
dimensional Cat map generation methods have also been
explored.

Falcioni et al. [40] proposed their nD Cat matrix C"D by
replacing parameters in Cpara with matrix ones as deﬁned

I P
nD mxm a
CE’ = 8
F |:Ib IbIa+Imxm:| ®

where I is the mth order identity matrix with 1 < m < n, and
P, and P, are arbitrary parameter matrices of size m x (n—m)
and (n — m) x m, respectively. It is easy to verify that

CP| = 1y ’(PbPa 4+ — P
= I -1
=1. 9

When m = 1 and n = 2, this nD Cat matrix becomes the
parametric 2-D Cat matrix C%‘;?a_ in (3).

Tang and Tang [41] proposed an nD Cat map gen-
eration method by coupling 2-D dynamics developed by
Chen et al. [24]. It firstly couples dynamics in any two of the
nDs, and then mixes all these coupled matrices together as

C'V{' CT1 2 l|1'l1)3 o C{lr CT23 .C¥]n)—1‘n (10)

where each coupled Cat matrix C”I;q (g > p) is an identical
= apqa T (C] p) =
bpy and C”D (q q = a,,qbpq + 1. In total, C”D is a
mixed matrlx of ( ) nD pairwise-coupled Cat matrices. Since
|C”D | = 1, then |C”D|_1

Startmg with C2D = C%;?a, Nance [42] recursively con-
structed his nD Cat matrix CV,(ID using matrix union, which is
defines as

matrix except for elements C”D (p q)

n
C’K,D=BIBZ-..B,,=]_[BP (11)
p=1
where the pth basis Cat matrix B, (1 < p < n) is obtained by
expanding Cf\f ~DD with respect to the pth diagonal elements as

(n—1)D (n—1)D
CNI 0px1 CNII
B,=| 015 1 015 (—p—1)
(n—1)D (n—1)D
C’\;lm 0n—p-1)x1 C’\7|v
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where 0 denotes the zero matrix and C("I b C(” b

C(nI I)D, and C(" DD are four submatrices of C(" I)D par-

tltloned with respect to the pth row and pth column that is

(n—l)D (n—1)D
c=hD _ C CNn
N - C(n D C(n D
Ny Ny

Since all |B,| = 1, then |C’KID| =1 and CKID is indeed an nD
Cat matrix.

D. Discussion

When given the number of finite states, the trajectory of the
Arnold’s Cat map can be predicted. The parameter space of the
parametric Arnold’s Cat matrix ngaé?a. is obviously too small
for cryptography applications. The 3-D Cat matrices gener-
ated by above-mentioned methods have the largest parameter
space of M® (M is the number of possible values of each
matrix parameter) attained by Cé‘D. Taking M = 256 as an

example, then (256)° = 248 « 2128 which is far smaller than
the required size to resist brute-force attacks [43]. This implies
that applications directly using these parametric 3-D Cat matri-
ces are insecure. Consequently, these 3-D Cat matrices are
commonly used with additional components [24].

The parametric nD Cat matrices have many matrix elements.
However, because of many matrix multiplications involved in
their generation methods, their computation complexity is high
and their matrix elements are strongly correlated with each
other. Correlated elements are difficultly coprime even with
coprime parameters. For a Cat map system, coprime elements
often result in a long period of outputs [28], which is desired
for many applications [44]. Also, when used in cryptography
applications, correlated elements might reduce the actual key
space of the security system and thus it is vulnerable for the
brute-force attacks [40]. This is because with correlated ele-
ments, the actual number of distinctive Cat matrices that can
be generated could be less than the parameter space where
parameters are commonly used as keys.

III. PROPOSED METHOD

This section presents the proposed nD Cat map generation
method in detail. First, a theorem for the nD Cat matrix is
introduced. Based on this theorem, we then give a lemma
of extending a Cat matrix from (n — 1)D to nD. Finally, we
propose our method to generate nD Cat matrices.

A. Theorem for nD Cat Matrix

An nD Cat matrix is an n X n square matrix with the
constraint that its determinant is 1. First of all, we intro-
duce Theorem 1 that allows us to construct an nD Cat matrix
conditionally.

Theorem 1: For an n x n square matrix X, if an element Xj;
with a cofactor Al’-](- = 1 satisfies the relation

n
Xyj= (D1 Y Xy(—DHAL
k=1,ksi

(12)

for all other elements and their cofactors, then |X| = 1 and X
is an nD Cat matrix.
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Appendix A provides a detailed proof of Theorem 1. From
Theorem 1, if an element in an n X n square matrix has a
cofactor of value 1 and the relation (12) is satisfied, the deter-
minant of this square matrix is constant 1 and thus it is an nD
Cat matrix.

B. Extending (n — 1)D Cat Matrix to nD

From Theorem 1, it can be known that when some depen-
dency relationships are satisfied, an nD Cat matrix can be
constructed. Lemma 1 gives a definition of extending an
(n — 1)D Cat matrix into an nD one.

Lemma 1: If an n x n matrix X extended from an (n — 1)D
Cat matrix C”~ DD a5 the submatrix associated with the ele-
ment Xj;, and its elements and submatrices satisfy the relation
in (12), the n x n matrix X is an nD Cat matrix.

Proof: Since C"~ DD js the submatrix associated with
element Xj;, then

A = ’C(”‘I)D’ —1.

Because (12) is also satisfied, X is then an nD Cat matrix as
Theorem 1 states. |

Lemma 1 indicates that an nD Cat matrix C"® can be gen-
erated in a parametric way, where the parameters consist of a
given (n — 1)D Cat matrix C”~ PP the location of the ele-
ment X; associated with C~YP_ and 2(n — 1) additional
matrix elements. Fig. 1 illustrates the procedures of extending
an (n — 1)D Cat matrix to nD. As can be seen, two ran-
dom spatial parameters (i,j) divide the (n — 1)D Cat matrix
[Fig. 1(a)] into four parts: 1) ngL—l)D; 2) CgR_l)D; 3) Cg’L_l)D;
and 4) C(L'}_I)D, and then add new elements on the ith row and
Jjth column expect Cﬁ'j) , whose value is computed using (12).
The generated nD Cat matrix is shown in Fig. 1(d).

C. Proposed nD Cat Map Generation Method

Suppose 1-D Cat matrix C'"P = [1]', any Cat matrix with
a desired dimension can be constructed using Lemma 1 and
C!P. The proposed nD Cat matrix generation method using
Laplace expansions is defined as follows:

CYs =LILJP Q)
where I = {i1,i,...,ip—1} and J = {j1,/2,....jn—1} are
two integer lists and iy, jx € [1,k+ 1] for all k € [1,n — 1];
P={P,P%...,P" '}and Q = {Q!, Q% ..., Q" 1} are two
vector lists and PX and Q* are two k-length vectors for all
k € [1,n — 1]. Algorithm 1 describes the detailed procedures
of our proposed nD Cat map generation method. Fig. 2 shows
an example of generating a 6-D Cat matrix. All dependent
elements in each Cat matrix can be determined via (12). For
example, C%:? in Fig. 2(b) can be calculated by (14) and Cg:zD
in Fig. 2(c) can be calculate by (15)

(13)

3D =ab+1
C3% = abed + cd + ef — bee — adf + 1.

(14)
15)

Twe just use C''P a5 a dummy case for generating high-dimensional Cat
matrices, because it involves no dynamics mixing.
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Fig. 1. Extending an (n — 1)D Cat matrix to nD. (a) (n — 1)D Cat
matrix C*—DP_ (b) Extending matrix with respect to the element located
at (i, j). (c) Adding new elements on the ith row or the jth column except Cl"?
(d) Computing the element C,”;) using (12) and generating new nD

Cat matrix C"P.

In the rest of this paper, when generating an nD Cat matrix
using our proposed method, Cgﬁrs* indicates that all parame-
ters in I and J are restricted to be constant 2 (Fig. 2) and all
parameters in P and Q are randomly determined, while CD,
denotes that all parameters in I, J, P, and Q are randomly

determined.

IV. METHOD DISCUSSION

Because most parameters to generate an nD Cat matrix
using Laplace expansions are highly independent, users have
great flexibility to select different parameters to generate a
large number of nD Cat matrices. This section discusses
the parameter settings and proposes a computation efficiency
improvement method for generating nD Cat matrices with
Laplace expansions.

A. Parameter Settings

In the proposed nD Cat map generation method in
Algorithm 1, the parameters in I and J control the locations of
the dependent elements and they are called the spatial config-
uration parameters (SCPs), and the parameters in P and Q are
newly added independent matrix elements in each iteration of
the matrix expansion and they are called matrix entries param-
eters (MEPs). Two SCPs are needed to generate an nD Cat
matrix C"P from C”~DP_Each SCP is an integer within range
of [1, n] and thus has n possible choices [Fig. 1(b)]. Therefore,
when generating C"° from C'"P, the total number of SCPs
Ngcp and different choices Cgcp can be calculated as

Ngcp =2(n—1)
Cgop=n* x (n—1)* x -+ x 22
= (">
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Fig. 2.
matrix C*P. (e) 5-D Cat matrix C3°P. (f) 6-D Cat matrix C®P.

Example of generating a 6-D Cat matrix. (a) 1-D Cat matrix C!'"® (dummy). (b) 2-D Cat matrix C2P. (¢) 3-D Cat matrix C3P. (d) 4-D Cat

. : D
Algorithm 1 Proposed nD Cat Map Generation Method Cpy o

=LIJ,P,Q)

Input: 1= {i}, i, ..
Inmput: J = {ji,j2,...

., Ip—1} 1s an vector with iy € [1,k+ 1] forall k € [1,n — 1]
,jn—1} 1s an vector with j; € [1,k+ 1] for all k € [1,n — 1]

Input: P = {Pl,Pz, ..., P" 1} is a vector list and Pris a k-length vector for all k € [1,n — 1]
Input: Q = {Q", Q%,..., Q" !} is a vector list and Q¥ is a k-length vector for all k € [1,n — 1]

1. CP =11];
2. fork=1ton—1do

3. Extend C* into a (k+ 1) x (k + 1) matrix C**DP by placing its partitions C’Z,lz, C’z,%, C’I‘fL’ and Cfg with respect to

the associated element location (ix, ji);

4 Set elements in the i;-th row and ji-th column in the extended matrix with respect to the parameter vectors PX and QF

as follows . . L .
(_k+l)D _ Pm if m < Jk and C(k-i.-l)D _ Qm if m < i )
Tk Pk ifm>ji mJk Q. ifm>i’
5:  Calculate element Cl(f;il)D using (12).
6: end for
Ensure: nD Cat matrix C"P with |C"P| = 1
TABLE I

When extending an (n — 1)D Cat matrix C”"~DP to C"P,
2(n — 1) independent matrix elements are needed [Fig. 1(c)].
Thus, the total number of MEPs can be computed as

Nyvpp =20—1D) 4+2(n—=2) +--- +2
=n’—n.

If we assume that all MEPs are selected from a symbol set with
M possible values, then the total number of different choices
to form (n* — n) MEPs is Cpfgp = M" . Finally, due to
the independency of SCPs and MEPs, the whole parameter
space is simply the production of their individual parameter
spaces, namely Cq = CgcpCpgp. Which can be seen in
Table I. Thus users have great flexility to choose different
parameter settings to generate a large number of different nD
Cat matrices.

B. Computation Efficiency Improvement

Computing the unknown element in (12) requires to per-
form n multiplications and n additions and to evaluate the
determinants of (n — 1) matrices with size of (n — 1) x
(n — 1). Calculating the determinant of an n X n matrix
requires the computation complexity of order O(n) when
using some methods like the Gaussian elimination, lower-
upper (LU) matrix decomposition, or QR decomposition

PARAMETER SPACES OF nD CAT MAPS GENERATED
USING LAPLACE EXPANSIONS

Dimensions | C C C
2 4 Mg 4Mg
3 36 M6 36M6
4 576 M12 576 M 12
5 | 14400 M?20 14400020
n| )2 MM (p)2Mnn

(Q is an orthogonal matrix and R is an upper triangular
matrix) [45]. Thus, computing the unknown element by (12)
costs the computation complexity of order O(n*). Extending
an (n — 1)D Cat matrix to nD also requires the computation
complexity of order O(n*) because it needs to compute only
the unknown element in (12). Therefore, generating an nD Cat
matrix from the 1-D Cat matrix C''P requires the computa-
tion complexity of order O(n’). In order to further improve
the computation efficiency, we introduce Theorem 2.
Theorem 2: In the context of (12), X;; can be alternatively

computed as
X; = ()1 -G (16)

with the aid of an auxiliary matrix G, whose element G;; = 0
and all other elements are identical to those in X.
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Appendix B provides the mathematical proof of Theorem 2.
As a result, computing the unknown element in an extended
Cat matrix using (16) instead of (12) only requires to compute
two additions and the determinant of an n x n matrix. Its com-
putation complexity is of order O(n?). Thus, generating an nD
Cat matrix needs the computation complexity of order O(n*).
In this way, we can successfully reduce the computation
complexity of the proposed method for one magnitude.

C. Chaotic Behavior Analysis

The “chaos” phenomenon is difficult to exactly define and
qualitatively measure since everyone has a different viewpoint
about what the chaos is. The Lyapunov exponent (LE) [46] is
to describe the exponential divergence of two close trajecto-
ries. It can be used to measure whether a dynamical system
has chaotic behaviors. With a positive LE value, the difference
of two close trajectories of a dynamical system will exponen-
tially increase, and ultimately make the two trajectories totally
different. Thus, a dynamical system with a positive LE value
can be considered as chaotic. For high dimension dynamical
systems, they have more than one LE value and the largest
LE (IgtLE) value is an indictor of its chaotic behaviors.

An nD discrete dynamical system can be defined by

Al

AZ

Xt+1)=FX®) = X() a7)

an
where X(t) = [x1(t),x2(®),...,x,(H] and X(t + 1) =
X1+ D), xo(t4+ 1), ..., x,(t+1)]7 are the input and output. If

Al (i=1,2,...,n) are differentiable functions, the Jacobian
matrix J of the system IF(-) can be defined as follows:

Oq1 Ol Opl
o
8A2 8A2 8&2
J=| 3, o, (18)
dAan  Opn 0An
N N

Therefore, in each iteration, J(¢) corresponds to the itera-
tion output X(¢). If J(r) has m eigenvalues, given by u;(¢),
the n LE values of the system IF(-) are defined as follows:

k
B
A= kll)rgo{E;lnuj(t)}

where j = 1,2, ..., n. Chaotic behaviors of the system IF(-)
is demonstrated by the IgtLE value among 2.

To analyze the chaotic behaviors of the nD Cat maps gen-
erated by the proposed method, we perform the following
experiment: for our nD Cat map generation method, we set
M =2 (MPEs are restricted to {0, 1}) and randomly generate
5x2" nD Cat maps for n € {3,4, ..., 10}. The 1gtLE values of
these nD Cat maps are calculated. Fig. 3 plots the mean IgtLE
values for different dimensions n. As can be seen, the mean
IgtLE values of nD Cat maps are all positive and they become
bigger when the dimension »n increases. This means that the

19)
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Mean IgtLE
b n

w

3 4 5 6 7 8 9 10
The dimension of Cat maps n

Fig. 3.
method.

Mean IgtLE values of nD Cat maps generated by the proposed

TABLE II
PARAMETER SPACES OF DIFFERENT nD
CAT MAP GENERATION METHODS

nD Cat matrices | Parameter Numbers | Parameter Spaces”
Nscp  NmEp Cs |
CpP [41] 0 n%-n M
crP 407! 1 n2/2 nMn*/2
CiP 1421 0 2 M2
D 2
Cllires 0 n?—n M"2 m
ceb 2(n—1) n?—n (n)2 Mn"—n

! Results are given with respect to the maximum parameter space.
2 Results are estimated when MEPs are from M possible values.

proposed method can generate nD Cat maps with complex
chaotic behaviors.

V. PERFORMANCE EVALUATIONS AND COMPARISONS

In this section, the performance of the proposed nD Cat map
generation method is compared with several other methods.

A. Parameter Space

The computation precision of implementing a chaotic map
in software or hardware is finite, implying that the chaotic
complexity of a chaotic map in real numbers will inevitably
degrade [47]. Consequently, the parameter space of an nD
Cat map generation method is always limited. Moreover, the
parameter space is also closely related to the total number of
distinctive Cat matrices, which is known as the security key
space in cryptography applications [24], [37]. Therefore, an nD
Cat map generation method with sufficiently large parameter
space is desired to against the brute-force attacks.

Table II shows the parameter spaces of different nD Cat
map generation methods. It is clear that the proposed method
has the largest parameter space in all listed methods. This
is because, compared with other methods that use only the
matrix entries as the parameters, the proposed method intro-
duces parameters to control the spatial configurations of an nD
Cat matrix. These spatial parameters can significantly increase
the parameter space of an nD Cat matrix.
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TABLE III
ALGORITHM COMPLEXITY OF DIFFERENT nD CAT MAP GENERATION METHODS

nD Cat matrices Operations Time complexity4

Element addition = Matrix multiplication2 Determinant® 3D 5D 10D 100D Order | Memory cells
crP 41 n(n —1)/2 (n(n—1)/2—1)On(n) 0 57 1135 44045 1008473 O(n®) 2n?
crP (401" (n/2)? Onr(n/2) 0 6 22 150 100%°52% O(n?®) n?
CrP 421 0 Sr_g(k—1)Onm (k) 0 54 746 22300 100*9°32 O(n®)|2n% 4+ (n —1)2
Cour Coa | 2(n—1) 0 ,Op(k) |39 232 3042 100%793% O(n?) n?

! Time complexity is given with respect to its maximum complexity.
2 . . . . P
O (k) denotes the time complexity of multiplying two k X k matrices.

3 0p (k) denotes the time complexity of computing the determinant of a k X k matrix. .
4 We simply consider Oz (k) = Op (k) = O(k®), although Ops (k) = O(k%37) in [48] and Op (k) = O(k>-37%) in [45).

crl an

CrP [42]

Fig. 4. Matrix element correlation analysis of different nD Cat map generation methods.

B. Algorithm Complexity

Because of the high complexity of generating a multidi-
mensional Cat matrix, the computation and memory costs
are quite important factors to evaluate whether an nD Cat
map generation method is suitable for the applications.
Table III lists the algorithm complexity of different nD Cat
map generation methods. As can be seen, for generating
an nD Cat matrix, the proposed method requires n> mem-
ory cells and its computation complexity is O(n*), which
is one magnitude less than the Tang and Tang’s [41] and
Nance’s [42] methods.

C. Matrix Element Correlation

In the process of the nD Cat matrix generation, the set-
tings of matrix elements are totally decided by the generation
method. The Cat matrices generated by different methods have
different degrees of inner correlations between their matrix
elements. As discussed in Section II-D, an nD Cat matrix
with low inner correlation is commonly preferred for many
applications.

To analyze the correlations of matrix elements in nD Cat
matrices generated by different methods, we perform the
following correlation analysis: for each nD Cat map gen-
eration method *, we randomly generate 1000 Cat matrices

C:?,C:Z?,...,C:I])OOO for M = 4 (MEPs are restrict to
{0,1,2,3}). Suppose p and ¢ are two different indexes
(1<p,g=< n2), the correlation coefficient (CE) between pth

and gth matrix elements in CP is defined as follows:

E[(SP B 'L‘LSP)(SII B N«Sq)]
USPUSQ

CE? (p, ) = (20)
where 1 and o are the mean value and standard deviation and
Sp and S, are sequences of matrix elements in the form of

Sy =1{CPlpl..... C° Ipl}
Sq={CPIql,....C° [q1}.

They contain the pth and gth elements in these 1000 ran-
domly generated matrices, respectively. Thus, CECZD(p, q) is
the correlation coefficient between the sequences S, and S,.
The CE value closing to 0 means low correlation between
Sy and S, while closing to 1 means high correlation.

Fig. 4 plots the magnitudes of these correlation coeffi-
cients for 3-D, 4-D, 5-D, and 6-D Cat matrices generated
by various methods. As can be seen for each color matrix,
the values in the pth row denote the correlation coefficients
between the pth matrix element and all the n? matrix ele-
ments, namely CEC* (p, 1), CEC* (p, 2), ..., CES¥ (p, n?),

because CEC* (p, q) = CEC* (¢, p) and CE* (p,p) = 1,

2n
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TABLE IV
STATISTICS OF nD CAT MATRIX ELEMENTS THAT COULD BE
CONTROLLED BY DIFFERENT NUMBERS OF MEPS IN
DIFFERENT METHODS

# of matrix nD _Cat matrices
elements with | CP [41] crP a0 cpP 421 crR. cnR
Constant 0 0 m? —m 0 0 0
Constant 1 1 m 0 1 0
1 MEP n—1 2m(n—m) 0 n?>—n 0
1+ MEP n?—n (n —m)? n? n—1 n?

"'misa parameter in CFD with 1 < m < n — 1 (see Eq. (8) for details).

all magnitudes are on the main diagonal symmetry and the
magnitudes on the main diagonal line are 1, marked as red.
It is easy to see that Cgﬁrs* generated with specific spatial
configurations have patterns in their element correlation plots,
while CID . generated with randomly determined spatial con-
figurations have CE values close to 0. Besides, it is noticeable
that multidimensional Cat matrices generated by the proposed
method have smaller CE values, and thus have less correlated
matrix elements than those of other methods.

All these methods have their own characteristics in gen-
erating multidimensional Cat matrices. For example, if the
generated multidimensional Cat matrices always contain a con-
stant element in a fixed position, the correlation between this
element and any other elements is always 0. On the other
hand, the more elements controlled by a single MEP, the
less correlation between two Cat matrix elements. For the
multidimensional Cat matrices generated by various methods,
Table IV lists the statistics of their elements that could be con-
trolled by different numbers of MEPs. It is clear that ClL..
generated by the proposed method with fixed spatial param-
eters has the largest number of elements controlled by one
MEP, implying that most of matrix elements in the nD Cat
matrices are independent. Considering spatial parameters, no
element in CD . is a constant and all of them are determined
in a more complicated way involving both SCPs and MEPs.
Consequently, for the Cat matrices generated by the proposed
method, any two of their elements are uncorrelated as shown
in Fig. 4.

D. Shannon Entropy

Due to the finite precision of digital devices, the nD Cat
maps are commonly used in discrete forms in real-world
applications as shown in (1). In (1), Y(r) and Y(¢ + 1) are
observations of the outputs of the nD Cat map with respect to
time ¢ and 7 + 1. Each observation has n channels and each
channel has N states. Thus observation Y(¢) has the change to
attain a finite number N" of states.

The randomness of the discrete nD Cat map can be
measured by the Shannon entropy [17] defined as follows:

N}'I
H = — " Pr(k) log, Pr(k)
k=1

(22)

where Pr(k) denotes the probability of seeing an observation
Y(¢) in the kth state. Then we have 0 < H < nlog, N and
a bigger Shannon entropy value indicates better randomness.
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Fig. 5. Shannon entropy values of nD Cat maps for N = 2. (a) Mean of
Shannon entropy values of nD Cat maps versus map dimension 7. (b) Sorted
Shannon entropy scores of 10-D Cat maps for each generation method.

Hpin = 0 implies that the system is completely predictable
and Hpmax = nlogy, N when if and only if all observations
absolutely uniformly distribute over the N states.

Two experiment groups of Shannon entropy analysis are
performed to evaluate the randomness of various nD Cat
map generation methods. The first group of experiments is
to analyze the Shannon entropy values against the Cat map
dimension n by fixing N = 2. For each Cat map generation
method, we randomly generate SN" nD Cat maps and com-
pute the Shannon entropy values of these nD Cat maps for
n € {3,4,...,10}. The observation time series is of length
21+ with respect to the initial state Y (0) = 1,,«1.

The mean Shannon entropy results of different methods are
given in Fig. 5(a). As can be seen, the values of all gener-
ation methods increase as the dimension n increases except
for the Cat maps generated by the Nance’s [42] method.
The low randomness of the Nance’s method is caused by
its small parameter space and high matrix element correla-
tions, which can be seen in Table II and Fig. 4, respectively.
The nD Cat maps generated by the proposed methods achieve
high Shannon entropy values for all test dimensions. Fig. 5(b)
shows the Shannon entropy values of 10-D Cat maps gen-
erated by different methods in the ascending order. Our
methods Cgﬁrs* and CZD have bigger Shannon entropy val-
ues than other methods in the first 4000 10-D Cat maps.
Tang and Tang’s [41] method can achieve the biggest Shanon
entropy values when the number of 10-D Cat maps is over
4000. At last, our proposed and Tang and Tang’s [41] meth-
ods can achieve the same biggest Shannon entropy values.
Fig. 5(b) also shows that the outputs of 10-D Cat maps
generated by our methods CSErs* and Cﬁﬁrs have similar ran-
domness. This is because their MEPs are randomly selected
from the same data set. Table V lists the maximum Shannon
entropy values for nD Cat maps generated by different meth-
ods with various dimensions. It is noticeable that the proposed
and Tang and Tang’s [41] methods are able to generate nD
Cat maps with high Shannon entropy values that are quite
close to the theoretical maximum Shannon entropy values
Hpyax = nlogy N = n.

The second group of experiments is to analyze the Shannon
entropy values against the state number N by fixing the dimen-
sion n = 3. The state number N = {2, 3, ..., 10} and for each
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TABLE V
MAXIMUM SHANNON ENTROPY VALUES OF nD CAT MAPS
GENERATED BY DIFFERENT METHODS WITH N = 2

Dimensions nD Cat matrices
n Hpax | CFP 411 CPP (401 CRP (421 | C2B. R
3 3 2.781 2.561 2.000 2.781  2.781
4 4 3.890 3.000 2.000 3.890  3.890
5 5 4.945 3.579 1.000 4.945 4945
6 6 5.973 4.579 1.000 5973 5973
7 7 6.986 4.584 1.000 6.986  6.986
8 8 7.993 5.904 1.000 7.993  7.993
9 9 8.997 5.907 1.000 8.997 8.997
10 10 9.998 6.907 1.000 9.998  9.998
——C»
—c
el
I=cn
e O3D
= +8‘sv = T
ES +C§,U 2 [
£ ||—ci £ L
S=c f
= ou: p / /
g g
=1 =1
£3 2 4
wv %)
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The number of states in a channel N Experiment number
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Fig. 6. Shannon entropy of 3-D Cat maps. (a) Mean of Shannon entropy
values of 3-D Cat maps versus the number of channel states N. (b) Sorted
Shannon entropy scores of 3-D Cat maps with N = 10 for each generation
method.

TABLE VI
MAXIMUM SHANNON ENTROPY VALUES OF 3-D CAT MAPS
GENERATED BY DIFFERENT METHODS

3D Cat Number of finite states NV

matrices 2 3 4 5 6 7 8 9 10
Hpax 3.000 4.755 6.000 6.966 7.755 8.422 9.000 9.510 9.966
CPP 371 | 2781 3.697 3.807 4.954 6.507 5.833 4.807 5.285 7.762
ch [24] | 2.781 3.697 3.807 4.954 6.507 5.833 4.807 5.285 7.762
CﬁD [38] | 2.561 3.582 3.585 4.907 5.170 5.807 4.585 5.170 5.907
ch [39] | 2.561 3.697 3.585 4.954 6.285 5.833 4.585 5.285 7.539
C-?—D [41] | 2.781 3.697 3.807 4.954 6.507 5.833 4807 5.285 7.762
CE‘D [40] | 2.561 3.582 3.585 4.907 5.170 5.807 4.585 5.170 5.907
cﬁ;D [42] | 2.000 3.697 3.585 4.954 5700 5.833 4.585 5.285 6.954
c3D 2781 3.697 5805 6.786 7.605 8.288 8.875 9.389 9.854

OUI’S*
c3b 2781 4496 5.805 6.801 7.616 8.314 8.875 9426 9.855

ours

3-D Cat map generation method, randomly generating 5N3
3-D Cat maps and computing their Shannon entropy values
using an observed time series of length N* with respect to
initial state Y(0) = 131. The mean Shannon entropy values
of different methods are shown in Fig. 6(a). It is clear that on
average the 3-D Cat maps generated by the proposed method
have higher mean Shannon entropy values than other meth-
ods. Fig. 6(b) shows the Shannon entropy values of 3-D Cat
maps generated by different methods in the ascending order
with N = 10. Compared with other listed generation methods,
the proposed method has the fastest rate to achieve its highest
Shannon entropy values.

Table VI lists the maximum Shannon entropy values of 3-D
Cat maps generated by different methods with different state
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Fig. 7. Mean Kolmogorov entropy values of nD Cat maps generated by
different methods.

numbers N. As can be seen, the proposed method outper-
forms all other listed generation methods. Its generated 3-D
Cat maps can achieve the highest Shannon entropy values for
N = {2,3,...,10} that are extremely close to the theoreti-
cal maximum scores. These further verify that the Cat maps
generated by the proposed method are more stable to generate
random-like outputs.

E. Kolmogorov Entropy

The Kolmogorov entropy [49] can measure whether extra
information is needed to predict the trajectory of a dynamical
system, which is defined as follows:

KE = lim t ! lim lim K, (¢)
7—0 g—>0m—00

(23)

where m is the embedding dimension, K, - (¢) is defined by

Km,t(S) = - Z

i1seesim=n(e)

plit, ..., im)logp(iy, ... in). (24)

Divide the phase plane into m nonoverlapping partitions
®iys ..., Pi,, then p(iy, ..., iy) is the probability of correctly
predicted trajectory in partition ¢;, at time 7, in partition ¢;, at
time 27, ..., in partition ¢;,, at time mt. Positive Kolmogorov
entropy value indicates chaotic behaviors of the dynamical
system and a bigger value means better unpredictability.

For different nD Cat map generation methods, we inves-
tigate their Kolmogorov entropy values against the Cat map
dimension n. When generating nD Cat matrices, the number
of possible values is set as M = 4 (MPEs are restricted to
{0, 1, 2, 3}). For each generation method with different dimen-
sions n, we randomly generate 10n Cat maps and then obtain
trajectories of these nD Cat maps with the number of finite
states N = 4 and initial value Y (0) = 1,«1. For each iteration
output Y (#) = [y1(1), y2(2), . .., y.(£)]7, we convert it into float
number within the range of [0, 1] by

i 47 i
4n ’

The generated trajectories are with length of 12000 and
we use the method proposed in [50] to calculate their
Kolmogorov entropy values. Fig. 7 plots the mean values of
Kolmogorov entropy results of different generation methods.

yi = (25)
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TABLE VII
MAXIMUM KOLMOGOROV ENTROPY VALUES OF nD CAT MAPS
GENERATED BY DIFFERENT METHODS

Dimensions nD Cat matrices
n crP 4] cpP o) cpP42) | e ek
3 0.000 0.000 0.000 0.765  0.868
4 0.693 0.000 0.000 0.759  0.769
5 0.063 0.000 0.000 0.761  0.753
6 0.416 0.223 0.000 0.767  0.755
7 0.128 0.575 0.000 0.754  1.931
8 0.401 0.337 0.000 0.756  1.981
9 0.275 0.406 0.000 0.758  1.933
10 0.359 0.223 0.000 0.756  1.932

As can be seen, the nD Cat maps generated by the proposed
methods can achieve positive mean Kolmogorov entropy val-
ues and the values become bigger as the dimension 7 increases.
For other methods, their randomly generated nD Cat maps
achieve quite small mean Kolmogorov entropy values that are
close to 0. This is because the trajectories of the discrete Cat
map are periodic [29] and its period is small when the ele-
ments of its Cat matrix are highly correlated. Table VII lists
the maximum Kolmogorov entropy values of nD Cat maps
generated by different methods with various dimensions n.
It is obvious that the proposed method is able to generate nD
Cat maps with bigger Kolmogorov entropy values than other
methods.

VI. PROPOSED PSEUDORANDOM NUMBER GENERATOR

To show the effectiveness of the nD Cat maps generated by
our proposed method, as an example, this section introduces
a PRNG using the 5-D Cat maps generated by the proposed
method.

Here, we set N = 1 and the initial value Y(0) as a float
number in (1). Given I, J, P, and Q, we use (13) to produce
a 5-D Cat matrix Cgﬂ?s. Suppose {Y()|t = 1,2,...} is the
output of Cg'ul?s with the initial value Y(0). Y(¢) is with size
of 5 x 1. The proposed PRNG is defined as follows:

T() = Bin[z Y(t)]31:32

where Bin[a]31.37 is a function to convert the float number «
into a 52-bit binary stream using the IEEE 754 standard [51]
and then fetch its 31st and 32nd digital numbers.

(26)

A. Diehard Statistical Test

Diehard statistical test suit [52] is a battery of statistical
tests that is widely used for measuring the quality of a PRNG.
It contains 15 subtests and shows good performance for data
sequences with a large size. These 15 empirical subtests are
designed to find the nonrandomness areas in a large-size data
sequence and total 234 p-values are generated. For a ran-
dom number sequence with high quality, these p-values are
expected to randomly distribute to pass the Diehard statistical
test. If six or more p-values with 0 or 1 are obtained, a data
sequence is considered to fail the test. The size of the test
sequence is suggested as 11468 800 byte.

Fig. 8 plots the Diehard statistical test results of a ran-
dom number sequence generated by the proposed PRNG.
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Fig. 8. Diehard statistical test results.

TABLE VIII

TESTUOI RESULTS FOR BINARY SEQUENCES

WITH DIFFERENT LENGTHS
Test b i
estbatenies | poubbits | Alphabit | BlockAlphabit
Lengths

220 37/38 17117 17/17

225 38/38 17/17 17/17

230 38/38 17/17 17/17
TABLE IX

PERFORMANCE COMPARISONS OF DIFFERENT nD
CAT MAP GENERATION METHODS

nD Cat matrices
Comparison items | C2P [41] C2P [40] CP [42] CB, CcrP
Parameter space 2 1
Algorithm complexity
Matrix element correlation
Shannon entropy
Kolmogorov entropy

[SSSIRUS IV N S
B
[V RV R ]

2
2
2
2

—_——

The sorted 234 p-values are all distributed on or nearby the
uniform distribution line (the red line in Fig. 8). This means
that the generated random number sequence can pass the
Diehard statistical test.

B. TestUOI Test

TestUO1 is a random number test package that provides con-
vinced empirical description for the quality of the PRNG [53].
It contains six test batteries and three of them (Rabbits,
Alphabit, and BlockAlphabit) are used to test the random-
ness of binary sequences. Rabbits applies 38 subtests while
Alphabit and BlockAlphabit apply 17 subtests. Each subtest
will generate a p-value and the random number sequence is
considered to pass the subtest if the generated p-value is within
the range of [0.001, 0.999].

In our experiment, binary sequences with different lengths
are generated by the proposed PRNG and tested by Rabbits,
Alphabit, and BlockAlphabit. The test results are shown in
Table VIII. As can be seen, binary sequences with different
lengths can pass almost all the subtests except for one subtest
in Rabbits.
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VII. CONCLUSION

In this paper, we have introduced an efficient method of
generating nD Cat maps using Laplace expansions. It can
iteratively generate any dimension Cat matrix from a 1-D
Cat matrix. Unlike existing nD Cat map generation methods,
which only consider MEPs to control the matrix elements, the
proposed method also introduces SCPs to control the spatial
configurations.

Theoretical analysis and experiment evaluations have been
done to show that the proposed nD Cat map generation method
can combine the dynamics of different dimensions and gen-
erate an nD Cat matrix with (72 — n) independent matrix
elements. The performance of the proposed method has been
compared with other nD Cat map generation methods and the
comparison results are shown in Table IX. As can be seen,
the proposed method can achieve the best performance in the
parameter space, matrix element correlation, Shannon entropy,
Kolmogorov entropy, and the second-best performance in algo-
rithm complexity. To investigate its real-world applications, we
have proposed a new PRNG using the 5-D Cat maps gener-
ated by the proposed method. Our future work will explore its
applications in secure communication and data encryption.
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APPENDIX A
PROOF OF THEOREM 1

Here proves Theorem 1 in Section III-A.
Proof: Compute the determinant of an n x n matrix X using
Laplace expansions

n

X

IX| = Zqu(—l)”+quq
p=1

n .
= Xj(—DWAS + 3" Xy(— DAL
k=1, ki
Because Af; =1 and X satisfies

n

Xj= (D 1— Y7 Xy (=1 A

k=1 ki
Then
X] = Xy(— DAY +1 - X;(=1)F
= X;i(— D™+ 1 - X;(-1D)'V = 1.
Therefore, X is an nD Cat matrix. [ |

APPENDIX B
PROOF OF THEOREM 2

Here proves Theorem 2 in Section IV-B.
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Proof: The determinant of matrix G can be expanded as

n
Gl =) Gpg(—1)P AT
p=1

n
= Gy(—D™MAT + > Gy(—D!AL.
k=1,k#i

Because G;j = 0 and for arbitrary elements G, in auxiliary
matrix G with either p # i or g # j, we have Gyy = Xy,
the above equation can be rewrote as

n
Gl = 0=D™AT + 5 Xg(=1)*74j
k=1 ki

n

- Z Xy (— DAY,
k=1,ki

Substitute this equation to (12), we then obtain (16). [ |
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