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A B S T R A C T

Due to more complex behavior and larger number of control parameters, high-dimensional chaotic map
generation methods may provide more satisfactory performance in various practical applications compared to
low-dimensional counterparts. Designing 𝑛-dimensional (𝑛D) chaotic map generation methods for generating
chaotic maps in arbitrary dimensions with desired dynamics is an interesting but challenging task. In this paper,
we propose a universal framework called the 𝑛D circularly shifting chaotic map generation method (𝑛D-CS),
which utilizes existing one-dimensional chaotic maps as seed maps to generate 𝑛D chaotic maps with complex
and robust behaviors. Theoretical analysis proves that when specific criteria are met by its control parameters,
our 𝑛D-CS can exhibit complex and robust hyperchaotic behavior in the sense of Lyapunov exponent. To
demonstrate the effectiveness of our 𝑛D-CS, we first employ it to generate three examples of three-dimensional
hyperchaotic maps. The results indicate high-performance indicators of these new chaotic maps. Furthermore,
we compare the 𝑛D chaotic maps generated by our 𝑛D-CS to those produced by existing methods. The results
demonstrate that our chaotic maps have a better overall performance.
1. Introduction

Chaos is a phenomenon that shows complex and ostensible ir-
regular behavior [1], often referred to as the butterfly effect. It is
commonly observed in initial-sensitive dynamic systems, where even
small disturbances in initial states can result in significantly differ-
ent outcomes as time progresses [2]. Consequently, chaos theory has
been developed to explore various natural and man-made phenom-
ena that exhibit chaotic behaviors, such as weather forecasting [3],
fluid dynamics [4], population growth [5], and financial markets [6].
Chaotic maps, which are discrete nonlinear mathematical models used
to study chaotic behaviors [7], possess several distinctive characteris-
tics, including initial state sensitivity, unpredictability, ergodicity, and
parameter controllability [8,9]. The initial state sensitivity implies that
even minor deviations from the initial states can lead to substantially
different behaviors. Unpredictability refers to the inability to accurately
predict long-term behavior. Ergodicity indicates that every state in
the phase space has the opportunity of being accessed. Parameter
controllability signifies that the exhibited behaviors are influenced by
parameters, and different parameter settings enable diverse behav-
iors. These characteristics make chaotic maps compelling candidates
for various practical applications [10,11], including image encryp-
tion [12], secure communication [13], and pseudo-random number
generation [14].
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Chaotic maps can be classified into two categories based on their
dimensionality: low-dimensional chaotic maps and high-dimensional
chaotic maps. In general, low-dimensional chaotic maps possess sim-
ple structures and low complexity [15,16]. For example, the classi-
cal one-dimensional (1D) logistic chaotic map [17], formed by mul-
tiplying a quadratic function with a single control parameter, has
been extensively utilized in applications like image encryption and
pseudo-random number generation [18,19]. In more recent studies,
Talhaoui et al. [20] introduced a 1D cosine fractional chaotic map
with favorable cryptography properties and high sensitivity to initial
conditions. Additionally, Xu et al. [21] proposed a two-dimensional
sine improved logistic iterative chaotic map capable of exhibiting hy-
perchaotic behavior and a high level of randomness. However, many
low-dimensional chaotic maps exhibit limitations, such as narrow and
discontinuous chaotic intervals, the easy occurrence of chaos degra-
dation, and relatively simple and unstable chaotic behaviors [22,23].
These deficiencies make the generated chaotic sequences easy to pre-
dict, thereby impacting the performance of applications that rely on
chaotic maps [24].

In contrast, high-dimensional chaotic maps possess more complex
structures along with wider continuous chaotic intervals [25], lead-
ing to complex behaviors that yield impressive performance across
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various evaluation metrics and applications [26]. Nevertheless, con-
structing high-dimensional chaotic maps is a more demanding task
compared to constructing low-dimensional ones, primarily due to the
presence of intricate structures and control parameters. This necessi-
tates a designer with a comprehensive understanding of the underlying
mechanisms and mathematical principles of chaotic maps. In general,
there are two approaches to constructing high-dimensional chaotic
maps. The first approach refers to designing high-dimensional chaotic
maps with specific dimensions. For example, Sun et al. [27] developed
a new six-dimensional non-degenerate hyperchaotic map with six pos-
itive Lyapunov exponents (LE) to improve the performance of image
compression and reconstruction.

Another approach is to design 𝑛-dimensional (𝑛D) chaotic map
generation methods that can generate chaotic maps of arbitrary dimen-
sions [28,29]. This approach offers users the flexibility to customize
their desired chaotic maps according to specific demands. For example,
Natiq et al. [30] proposed an 𝑛D chaotic map generation method uti-
izing sinusoidal functions to enhance the nonlinearity of the generated
haotic maps. Simulation results demonstrate its ability to generate
haotic maps with good ergodicity and wide hyperchaotic behavior.
eanwhile, Huang et al. [31] devised a method for generating 𝑛D non-

degenerate chaotic maps based on a discrete memristor model. The
chaotic maps they generated exhibit complex dynamic behaviors, such
as state transition phenomena, initial-boosting behaviors, and large LE.
While these studies provide valuable insights into designing 𝑛D chaotic
map generation methods, the performance of the generated chaotic
maps heavily depends on empirical parameter tuning and the insights
of designers. This reliance does not always guarantee the stable perfor-
mance of the generated chaotic maps. Furthermore, the validation of
their chaotic behaviors is solely based on experiment, lacking concrete
theoretical guarantees. Therefore, these limitations underscore the need
for developing 𝑛D chaotic map generation methods in a more robust
manner.

In light of the above, we propose the 𝑛D circularly shifting chaotic
map generation method (𝑛D-CS), an innovative framework that utilizes
𝑛−1 existing 1D chaotic maps as seed maps to generate new 𝑛D chaotic
maps. Within the 𝑛D-CS framework, the positions of the seed maps in
each dimension form a circularly shifting relationship. The 𝑛D-CS is
characterized by multiple tunable parameters, enabling users a high
degree of flexibility in generating numerous new chaotic maps. This is
achieved by selecting different seed maps and adjusting the values of
control parameters. Moreover, the hyperchaotic behavior of the 𝑛D-CS
is validated through formulaic analysis. To demonstrate the effective-
ness of the 𝑛D-CS framework, we first present three examples of new
hree-dimensional (3D) chaotic maps generated by 𝑛D-CS and evaluate

their performance. The results indicate that the generated chaotic maps
exhibit stable performance across various evaluation metrics and posses
high-performance indicators. Furthermore, we conduct a comparative
analysis between the 𝑛D chaotic maps generated by our 𝑛D-CS and
those by previous methods. The results highlight the superior overall
performance of our 𝑛D-CS. To sum up, we outline the contributions of
his paper as follows.

1. We introduce 𝑛D-CS as a universal method for generating 𝑛D
chaotic maps. This method enables the effective generation of
a substantial quantity of new chaotic maps with desired dimen-
sions by utilizing existing 1D chaotic maps as seed maps.

2. We theoretically prove that the chaotic maps generated by 𝑛D-
CS can show hyperchaotic behavior in the sense of LE under a
parameter-controlled criterion.

3. We present three examples of 3D chaotic maps generated by
𝑛D-CS and elaborately evaluate their performance using various
metrics to demonstrate the effectiveness of 𝑛D-CS.

4. We conduct a comprehensive comparison between 𝑛D-CS and
other methods for chaotic map generation. The results demon-
strate that the chaotic maps generated by 𝑛D-CS possess stable
performance and generally outperform those generated by other
methods.
2

The rest of this paper is organized as follows. Section 2 introduces
D-CS and provides a theoretical analysis of its behavior. Section 3
resents three new 3D chaotic maps generated by 𝑛D-CS as examples
nd analyzes their properties. Section 4 evaluates the comprehensive
erformance of 𝑛D-CS and compares it with several representative 𝑛D
haotic map generation methods, and Section 5 concludes this paper.

. 𝒏D-CS

This section presents the general form of the proposed 𝑛D-CS and
provides a theoretical demonstration of its hyperchaotic behavior.

2.1. General Form of 𝑛D-CS

The 𝑛D-CS is an 𝑛D discrete chaotic system, where each dimension
consists of a linear function, 𝑛−1 existing 1D chaotic seed maps, and a
modular operation. The mathematical definition of 𝑛D-CS is given by

𝐱𝑖+1 = 𝐆(𝐱𝑖,L,F,𝑀), (1)

here 𝐱𝑖 = [𝑥1,𝑖, 𝑥2,𝑖,… , 𝑥𝑛,𝑖]𝑇 ∈ R𝑛×1 represents the state vector of 𝑛D-
S at the 𝑖th observation time, and 𝐆(𝐱𝑖,L,F,𝑀) is a function that takes
he current state 𝐱𝑖 as input and produces the subsequent state 𝐱𝑖+1 as
utput. L = {𝐿1(⋅), 𝐿2(⋅),… , 𝐿𝑛(⋅)} denotes the set of 𝑛 linear functions,
= {𝐹1(⋅), 𝐹2(⋅),… , 𝐹𝑛−1(⋅)} denotes the set of 𝑛 − 1 existing 1D seed

haotic maps, and 𝑀 is a positive integer representing the modulus
oefficient. Specifically, the general form of 𝑛D-CS in Eq. (1) can be
xpressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥1,𝑖+1 = 𝐿1(𝑥1,𝑖) + 𝐹1(𝑥2,𝑖) +⋯+ 𝐹𝑛−1(𝑥𝑛,𝑖) mod 𝑀
𝑥2,𝑖+1 = 𝐹𝑛−1(𝑥1,𝑖) + 𝐿2(𝑥2,𝑖) +⋯+ 𝐹𝑛−2(𝑥𝑛,𝑖) mod 𝑀

⋮

𝑥𝑛,𝑖+1 = 𝐹1(𝑥1,𝑖) + 𝐹2(𝑥2,𝑖) +⋯+ 𝐿𝑛(𝑥𝑛,𝑖) mod 𝑀.

(2)

Table 1 presents the mathematical expressions, derivatives, and
typical control parameter values of six well-known 1D chaotic maps.
These 1D chaotic maps will serve as seed maps for 𝑛D-CS in gener-
ating new chaotic maps in the following sections. Besides, for unified
representation, each linear function in L can be expressed as

𝐿𝑘(𝑥) = 𝑙𝑘𝑥, (3)

where 𝑘 ∈ {1, 2,… , 𝑛} and 𝑙𝑘 is the parameter of the 𝑘th linear function.

2.2. Proof of Chaos

‘‘Chaos’’ is an observed phenomenon without a universally accepted
definition to describe its existence. Among the various definitions of
chaos, LE is a widely accepted and employed method that quantifies
the divergence rate between two trajectories evolving from neighboring
initial states [37]. A positive LE indicates that the two trajectories
starting from neighboring initial states will separate in every time unit
and eventually exhibit completely different behaviors. The larger the
LE, the more complex the dynamic behaviors of the chaotic map.

In general, a dynamic system with a positive LE and a globally
bounded phase space can show chaotic behavior. If the dynamic system
has more than one positive LE, it can display hyperchaotic behavior.
Therefore, the definition of chaos in the sense of LE is specified as
Definition 1 [38].

Definition 1 ([38]). A dynamic system can exhibit chaotic behavior
in the sense of LE if it satisfies two conditions: (1) its phase space is
globally bounded; (2) it has at least one positive LE.

According to Eq. (2), the outputs of 𝑛D-CS are globally bounded
within [0,𝑀)𝑛, thanks to the modular operation. This implies that the
condition (1) of Definition 1 can always be satisfied by 𝑛D-CS. To make
𝑛D-CS meet the condition (2) of Definition 1, we will gradually deduce

the circumstance under which 𝑛D-CS possesses at least one positive LE.
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Table 1
Six well-known 1D chaotic maps.

Map ID Chaotic map Expression (𝐹 ) Derivative (𝑓 ) Typical
parameter
value (�̃�)

Value of max(|𝑓 |) when
𝑎 = �̃� and 𝑥 ∈ [0, 1)

1 Chebyshev map [32] 𝑥𝑖+1 = cos(𝑎 arccos(𝑥𝑖))
d𝑥𝑖+1
d𝑥𝑖

= 𝑎 sin(𝑎 arccos(𝑥𝑖))∕(1 − 𝑥2𝑖 )
1∕2 �̃� = 2 ≈ 4

2 Cubic map [33] 𝑥𝑖+1 = 𝑎𝑥𝑖 − 𝑥3𝑖
d𝑥𝑖+1
d𝑥𝑖

= 𝑎 − 3𝑥2𝑖 �̃� = 3 3
3 Fraction map [34] 𝑥𝑖+1 = 1∕(𝑥2𝑖 + 0.1) − 𝑎𝑥𝑖

d𝑥𝑖+1
d𝑥𝑖

= −2𝑥𝑖∕(𝑥2𝑖 + 0.1)2 − 𝑎 �̃� = 1 ≈ 21.5396

4 Logistic map [17] 𝑥𝑖+1 = 𝑎𝑥𝑖(1 − 𝑥𝑖)
d𝑥𝑖+1
d𝑥𝑖

= 𝑎(1 − 2𝑥𝑖) �̃� = 4 4
5 Quadratic map [35] 𝑥𝑖+1 = 𝑎 − 𝑥2𝑖

d𝑥𝑖+1
d𝑥𝑖

= −2𝑥𝑖 �̃� = 2 ≈ 2

6 Sine map [36] 𝑥𝑖+1 = 𝑎 sin(𝜋𝑥𝑖)
d𝑥𝑖+1
d𝑥𝑖

= 𝑎𝜋 cos(𝜋𝑥𝑖) �̃� = 1 𝜋
𝐀
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Let us start with the definition of LE. For an 𝑛D dynamic system, it
possesses 𝑛 LEs that can be calculated as [39]

LE𝑘 = lim
𝑡→∞

1
𝑡
ln(𝜆𝑘(𝐉𝑡)), (4)

where 𝑘 ∈ {1, 2,… , 𝑛}, and 𝜆𝑘(𝐉𝑡) denotes the 𝑘th eigenvalue of the
matrix 𝐉𝑡. The matrix 𝐉𝑡 is obtained as the product of the Jacobian
matrices of 𝑛D-CS from observation time 0 to 𝑡 − 1, and 𝐉𝑡 can be
expressed as

𝐉𝑡 =
𝑡−1
∏

𝑖=0
𝐉𝐱𝑖 , (5)

where 𝐉𝐱𝑖 represents the Jacobian matrix of 𝑛D-CS at the 𝑖th observation
time and with the observation state 𝐱𝑖. The Jacobian matrix 𝐉𝐱𝑖 can be
expressed as

𝐉𝐱𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑥1,𝑖+1
𝜕𝑥1,𝑖

|𝐱𝑖
𝜕𝑥1,𝑖+1
𝜕𝑥2,𝑖

|𝐱𝑖 ⋯
𝜕𝑥1,𝑖+1
𝜕𝑥𝑛,𝑖

|𝐱𝑖
𝜕𝑥2,𝑖+1
𝜕𝑥1,𝑖

|𝐱𝑖
𝜕𝑥2,𝑖+1
𝜕𝑥2,𝑖

|𝐱𝑖 ⋯
𝜕𝑥2,𝑖+1
𝜕𝑥𝑛,𝑖

|𝐱𝑖
⋮ ⋮ ⋯ ⋮

𝜕𝑥𝑛,𝑖+1
𝜕𝑥1,𝑖

|𝐱𝑖
𝜕𝑥𝑛,𝑖+1
𝜕𝑥2,𝑖

|𝐱𝑖 ⋯
𝜕𝑥𝑛,𝑖+1
𝜕𝑥𝑛,𝑖

|𝐱𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑙1 𝑓1(𝑥2,𝑖) ⋯ 𝑓𝑛−1(𝑥𝑛,𝑖)
𝑓𝑛−1(𝑥1,𝑖) 𝑙2 ⋯ 𝑓𝑛−2(𝑥𝑛,𝑖)

⋮ ⋮ ⋯ ⋮
𝑓1(𝑥1,𝑖) 𝑓2(𝑥2,𝑖) ⋯ 𝑙𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

where 𝑓1(⋅), 𝑓2(⋅),… , 𝑓𝑛−1(⋅) are the derivatives of the seed maps in the
set F of 𝑛D-CS.

Then, based on the knowledge of linear algebra and matrix analysis,
we can get that the eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 and the singular
values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 of an 𝑛D matrix satisfy that

𝜎1 ≥ |𝜆𝑘| ≥ 𝜎𝑛, (7)

where 𝑘 ∈ {1, 2,… , 𝑛}, and 𝜎1 and 𝜎𝑛 are the maximum and minimum
ingular values of the 𝑛D matrix, respectively. On this basis, we denote
1(𝐉𝑡) ≥ 𝜎2(𝐉𝑡) ≥ ⋯ ≥ 𝜎𝑛(𝐉𝑡) as the singular values of 𝐉𝑡. Therefore, the
LEs of 𝑛D-CS calculated by Eq. (4) satisfy that

E𝑘 = lim
𝑡→∞

1
𝑡
ln(|𝜆𝑘(𝐉𝑡)|) ≥ lim

𝑡→∞
1
𝑡
ln(𝜎𝑛(𝐉𝑡)), (8)

here 𝑘 ∈ {1, 2,… , 𝑛}. Noteworthily, if the LE calculation results in a
omplex number, only the real part of the result is considered [40]. By
bserving Eq. (8), we can learn that the values of the 𝑛 LEs of 𝑛D-CS
an be inferred from the singular values of 𝐉𝑡. Therefore, we introduce
heorem 1 [41] and Theorem 2 [42] to explore the characteristics of
he singular values of 𝐉𝑡.

heorem 1 ([41]). Suppose the singular values of a matrix are arranged
n non-increasing order, i.e., 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛. Then, for any two matrices
,𝐁 ∈ C𝑛×𝑛, they hold that 𝜎𝑘(𝐀𝐁) ≥ max{𝜎𝑘(𝐀)𝜎𝑛(𝐁), 𝜎𝑘(𝐁)𝜎𝑛(𝐀)} for
∈ {1, 2,… , 𝑛}.

heorem 2 ([42]). For a matrix 𝐀 = (𝑎𝑝𝑞) ∈ C𝑛×𝑛, let us denote
𝑘 =

∑𝑛
𝑞=1,𝑞≠𝑘 |𝑎𝑘𝑞| and 𝑐𝑘 =

∑𝑛
𝑝=1,𝑝≠𝑘 |𝑎𝑝𝑘| for 𝑘 ∈ {1, 2,… , 𝑛} as the sum

f the absolute values of the off-diagonal elements in row 𝑘 and column 𝑘 of
3

, respectively. Moreover, we denote 𝑠𝑘 = max{𝑟𝑘, 𝑐𝑘}. Then, all the singular
alues of 𝐀 are included in ⋃𝑛

𝑘=1 𝐼𝑘, where 𝐼𝑘 = [(|𝑎𝑘𝑘| − 𝑠𝑘)+, |𝑎𝑘𝑘| + 𝑠𝑘]
nd (⋅)+ = max{0, ⋅}.

According to Theorem 1 and Eq. (5), the minimum singular value
f 𝐉𝑡 can be expressed as

𝑛(𝐉𝑡) = 𝜎𝑛(𝐉𝐱𝑡−1𝐉𝑡−1)

≥ 𝜎𝑛(𝐉𝐱𝑡−1 )𝜎𝑛(𝐉𝑡−1)

≥ 𝜎𝑛(𝐉𝐱𝑡−1 )𝜎𝑛(𝐉𝐱𝑡−2 )⋯ 𝜎𝑛(𝐉𝐱0 )

=
𝑡−1
∏

𝑖=0
𝜎𝑛(𝐉𝐱𝑖 ),

(9)

here 𝜎𝑛(𝐉𝐱𝑖 ) is the minimum singular value of 𝐉𝐱𝑖 and 𝑖 ∈ {0, 1,… , 𝑡−
}. Furthermore, according to Theorem 2 and Eq. (6), all the singular
alues of 𝐉𝐱𝑖 are bounded within the following interval
𝑛
⋃

𝑘=1
𝐼𝑘 =

𝑛
⋃

𝑘=1

[

(|𝑙𝑘| − 𝑠𝑘)+, |𝑙𝑘| + 𝑠𝑘
]

, (10)

here 𝑠𝑘 = max{𝑟𝑘, 𝑐𝑘}, 𝑟𝑘 =
∑𝑛

𝑞=1,𝑞≠𝑘
|

|

|

𝑓(𝑞−𝑘)mod 𝑛(𝑥𝑞,𝑖)
|

|

|

, and 𝑐𝑘 =
𝑛−1
𝑝=1

|

|

|

𝑓𝑝(𝑥𝑘,𝑖)
|

|

|

. As observed, 𝑠𝑘 (or 𝑟𝑘, 𝑐𝑘) is the sum of the absolute
alues of each function 𝑓 (⋅) ∈ D at some point 𝑥 ∈ [0,𝑀), and the lower
ound of the singular values of 𝐉𝐱𝑖 is determined by the expression
|𝑙𝑘| − 𝑠𝑘

)+. Therefore, if
(

|𝑙𝑘| − 𝑠𝑘
)+ > 1 holds for 𝑘 ∈ {1, 2,… , 𝑛},

ll the singular values of 𝐉𝐱𝑖 are greater than 1, indicating 𝜎𝑛(𝐉𝑡) > 1
ccording to Eq. (9).

Based on the above analysis, we present Proposition 1 to state the
ondition for 𝑛D-CS to exhibit chaotic behavior and provide the proof.

roposition 1. The 𝑛D-CS can exhibit chaotic behavior if

𝑙𝑘| > 1 +
𝑛−1
∑

𝑗=1
max

(

|

|

|

𝑓𝑗 (𝑥)
|

|

|𝑥∈[0,𝑀)

)

(11)

olds for 𝑘 ∈ {1, 2,… , 𝑛}.

roof. If Eq. (11) holds for 𝑘 ∈ {1, 2,… , 𝑛}, we can derive that

𝑙𝑘| − 𝑠𝑘 > 1 +
𝑛−1
∑

𝑗=1
max

(

|

|

|

𝑓𝑗 (𝑥)
|

|

|𝑥∈[0,𝑀)

)

− 𝑠𝑘

= 1 +
𝑛−1
∑

𝑗=1
max

(

|

|

|

𝑓𝑗 (𝑥)
|

|

|𝑥∈[0,𝑀)

)

−
𝑛−1
∑

𝑗=1

|

|

|

𝑓𝑗 (𝑥)
|

|

|𝑥∈[0,𝑀)

≥ 1

(12)

nd

|𝑙𝑘| − 𝑠𝑘
)+ = max

{

0, |𝑙𝑘| − 𝑠𝑘
}

= |𝑙𝑘| − 𝑠𝑘 > 1. (13)

herefore, according to Eq. (10), the singular values of 𝐉𝐱𝑖 are all
reater than 1, namely 𝜎1(𝐉𝐱𝑖 ) ≥ 𝜎2(𝐉𝐱𝑖 ) ≥ ⋯ ≥ 𝜎𝑛(𝐉𝐱𝑖 ) > 1. Furthermore,
y combining Eq. (9), we can conclude that the minimum singular
alue of 𝐉𝑡 satisfies that

𝑛(𝐉𝑡) ≥
𝑡−1
∏

𝜎𝑛(𝐉𝐱𝑖 ) > 1. (14)

𝑖=0
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Eventually, referring to the LE calculation method described in Eq. (8),
we can calculate the LEs of 𝑛D-CS by

E𝑘 ≥ lim
𝑡→∞

1
𝑡
ln(𝜎𝑛(𝐉𝑡)) > 0, (15)

where 𝑘 ∈ {1, 2,… , 𝑛}. Since the 𝑛 LEs of 𝑛D-CS are all positive, and the
utputs of 𝑛D-CS are globally bounded within [0,𝑀)𝑛, conditions (1)

and (2) of Definition 1 are satisfied. This implies that 𝑛D-CS exhibits
chaotic behavior. Additionally, when the dimensionality of 𝑛D-CS is
reater than 1, it can exhibit hyperchaotic behavior. This completes
he proof of Proposition 1. □

The chaotic maps generated by 𝑛D-CS can show chaotic behaviors
y ensuring that their control parameters surpass the boundary deter-
ined by Eq. (11). If a 1D chaotic map has the maximum absolute value

f its derivative within 𝑥 ∈ [0,𝑀), enabling it to satisfy Eq. (11), it can
e utilized as the seed map. Hence, users have great flexibility to select
he seed maps and control parameter values of 𝑛D-CS to generate their

desired chaotic maps with robust and complex dynamic behavior.

3. Three 3D examples of 𝒏D-CS

This section presents three examples of new 3D chaotic maps gen-
erated by 𝑛D-CS and evaluates their performance.

3.1. Examples of new chaotic maps

We utilized 𝑛D-CS to generate three new 3D chaotic maps by
employing the fraction [34], logistic [17], and sine [36] maps listed in
Table 1 as seed maps. The control parameters of these seed maps were
set to their typical values: 1 for the fraction map, 4 for the logistic map,
and 1 for the sine map. The modulus coefficient of 𝑛D-CS was set to
𝑀 = 1 for simplicity. Thus, when 𝑥 ∈ [0, 1) and the control parameter of
each seed map is set to its typical value, the maximum absolute values
of the derivatives (i.e., max(|𝑓 |)) for the fraction, logistic, and sine maps
are calculated as 21.5396, 4, and 𝜋, respectively.

3.1.1. 3D Fraction-Logistic Circularly Shifting chaotic map
When using the fraction and logistic maps as the seed maps of 𝑛D-

S, the 3D Fraction-Logistic Circularly Shifting (3D-FL-CS) chaotic map
an be generated. The mathematical representation of the 3D-FL-CS is
efined as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥1,𝑖+1 = 𝑙1𝑥1,𝑖 +
1

𝑥22,𝑖+0.1
−𝑥2,𝑖 + 4𝑥3,𝑖(1−𝑥3,𝑖) mod 1

𝑥2,𝑖+1 = 4𝑥1,𝑖(1−𝑥1,𝑖) + 𝑙2𝑥2,𝑖 +
1

𝑥23,𝑖+0.1
−𝑥3,𝑖 mod 1

𝑥3,𝑖+1 =
1

𝑥21,𝑖+0.1
−𝑥1,𝑖 + 4𝑥2,𝑖(1−𝑥2,𝑖) + 𝑙3𝑥3,𝑖 mod 1,

(16)

where 𝑙1, 𝑙2, and 𝑙3 are the control parameters of the 3D-FL-CS. Accord-
ing to Proposition 1, the control parameters 𝑙𝑘 (𝑘 ∈ {1, 2, 3}) should
satisfy the following equation in order for the 3D-FL-CS to exhibit
chaotic behavior:

|𝑙𝑘| > 1 +
2
∑

𝑗=1
max

(

|𝑓𝑗 (𝑥)|𝑥∈[0,1)
)

> 1 + 21.5396 + 4 = 26.5396. (17)

3.1.2. 3D Fraction-Sine Circularly Shifting chaotic map
By utilizing the fraction and sine maps as the seed maps of 𝑛D-CS,

we can construct the 3D Fraction-Sine Circularly Shifting (3D-FS-CS)
chaotic map. The mathematical definition of the 3D-FS-CS is shown as

⎧

⎪

⎪

⎨

⎪

⎪

𝑥1,𝑖+1 = 𝑙1𝑥1,𝑖 +
1

𝑥22,𝑖+0.1
−𝑥2,𝑖 + sin(𝜋𝑥3,𝑖) mod 1

𝑥2,𝑖+1 = sin(𝜋𝑥1,𝑖) + 𝑙2𝑥2,𝑖 +
1

𝑥23,𝑖+0.1
−𝑥3,𝑖 mod 1

𝑥3,𝑖+1 =
1

2 −𝑥1,𝑖 + sin(𝜋𝑥2,𝑖) + 𝑙3𝑥3,𝑖 mod 1,

(18)
4

⎩

𝑥1,𝑖+0.1
where 𝑙1, 𝑙2, and 𝑙3 are the control parameters. It has been demonstrated
in Proposition 1 that the 3D-FS-CS can exhibit chaotic behavior when
its control parameters 𝑙𝑘 (𝑘 ∈ {1, 2, 3}) satisfy that

|𝑙𝑘| > 1 +
2
∑

𝑗=1
max

(

|𝑓𝑗 (𝑥)|𝑥∈[0,1)
)

> 1 + 21.5396 + 𝜋 = 25.6812. (19)

3.1.3. 3D Logistic-Sine Circularly Shifting chaotic map
The 3D Logistic-Sine Circularly Shifting (3D-LS-CS) chaotic map is

generated by utilizing the logistic and sine maps as the seed maps of 𝑛D-
CS. Therefore, the mathematical expression of the 3D-LS-CS is defined
as
⎧

⎪

⎨

⎪

⎩

𝑥1,𝑖+1 = 𝑙1𝑥1,𝑖 + 4𝑥2,𝑖(1−𝑥2,𝑖) + sin(𝜋𝑥3,𝑖) mod 1
𝑥2,𝑖+1 = sin(𝜋𝑥1,𝑖) + 𝑙2𝑥2,𝑖 + 4𝑥3,𝑖(1−𝑥3,𝑖) mod 1
𝑥3,𝑖+1 = 4𝑥1,𝑖(1−𝑥1,𝑖) + sin(𝜋𝑥2,𝑖) + 𝑙3𝑥3,𝑖 mod 1,

(20)

where 𝑙1, 𝑙2, and 𝑙3 are the control parameters. According to Propo-
sition 1, the 3D-LS-CS can show chaotic behavior when its control
parameters 𝑙𝑘 (𝑘 ∈ {1, 2, 3}) satisfy that

|𝑙𝑘| > 1 +
2
∑

𝑗=1
max

(

|𝑓𝑗 (𝑥)|𝑥∈[0,1)
)

> 1 + 4 + 𝜋 = 8.1416. (21)

3.2. Performance evaluation

The performance of the newly generated 3D-FL-CS, 3D-FS-CS, and
3D-LS-CS is experimentally evaluated from several aspects: LE, sample
entropy (SE), correlation dimension (CD), information entropy (IE),
randomness test, trajectory, and fixed-point stability. The control pa-
rameters and initial states of the three 3D chaotic maps for different
evaluation indicators are listed in Table 2. The LEs of each chaotic
map are studied within a specified control parameter range, while the
control parameters of each chaotic map are randomly selected for the
remaining evaluation indicators. The initial states of each chaotic map
are randomly selected within [0, 1)3.

3.2.1. LE
As mentioned in Definition 1, a globally bounded dynamic sys-

tem exhibits chaotic behavior if it has at least one positive LE, and
hyperchaotic behavior if it has more than one positive LE. Fig. 1
depicts the three LEs of each newly generated 3D chaotic map, with
different colors representing different LE values. It can be observed
that all three LEs of the chaotic maps are positive across the entire
parameter space, indicating their capability to exhibit hyperchaotic
behavior. This observation further emphasizes the effectiveness of the
𝑛D-CS framework in generating chaotic maps with robust and complex
dynamics. Moreover, larger control parameter values correspond to
larger LEs. Thus, by adjusting the control parameter values in the 𝑛D-CS
framework, the generated chaotic maps can achieve larger positive LEs
and exhibit more complex dynamic behavior.

3.2.2. SE
The SE is a type of entropy used to measure the irregularity of a

sequence produced by a chaotic map [43]. A positive SE means that the
produced sequence shows irregular behavior, implying that the output
of the chaotic map is hard to predict. A larger SE value indicates a
higher level of irregularity. We apply the SE computation method
provided in [43] to determine the SE of the chaotic sequence. The
formula for SE is expressed as [43]:

SE = − ln
(

𝐴𝑚(𝑟)∕𝐵𝑚(𝑟)
)

, (22)

where 𝑚 represents the length of the compared segment, and 𝑟 indicates
the tolerance for accepting matches. For a sequence with 𝑁 points
{𝑢𝑗}𝑁𝑗=1, it forms 𝑁 − 𝑚 + 1 vectors 𝐱𝑚𝑖 = {𝑢𝑖+𝑘}𝑚−1𝑘=0 for 𝑖 ∈ {1, 2,… , 𝑁 −
𝑚+1}. The distance between two such vectors is denoted as 𝑑(𝐱𝑚𝑖 , 𝐱

𝑚
𝑗 ) =

max
(

|

|𝑢 − 𝑢 |

|

)

. Then, the number of vectors 𝐱𝑚 within

|

𝑖+𝑘 𝑗+𝑘
|𝑘∈{0,1,…,𝑚−1} 𝑗
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Table 2
The control parameters and initial states of the 3D-FL-CS, 3D-FS-CS, and 3D-LS-CS for different evaluation indicators.

Chaotic map Different evaluation indicators

LE SE, CD, IE, Randomness test, and Trajectory

Control parameters
3D-FL-CS 𝑙1 , 𝑙2 , 𝑙3 ∈ [27, 126] (𝑙1 , 𝑙2 , 𝑙3) = (122, 75, 107)
3D-FS-CS 𝑙1 , 𝑙2 , 𝑙3 ∈ [26, 125] (𝑙1 , 𝑙2 , 𝑙3) = (31, 49, 61)
3D-LS-CS 𝑙1 , 𝑙2 , 𝑙3 ∈ [9, 108] (𝑙1 , 𝑙2 , 𝑙3) = (38, 83, 27)

Initial states
3D-FL-CS 𝐱0 = (𝑥1,0 , 𝑥2,0 , 𝑥3,0) = (0.1419, 0.4218, 0.9157)
3D-FS-CS 𝐱0 = (𝑥1,0 , 𝑥2,0 , 𝑥3,0) = (0.8212, 0.0154, 0.0430)
3D-LS-CS 𝐱0 = (𝑥1,0 , 𝑥2,0 , 𝑥3,0) = (0.6868, 0.1835, 0.3685)
Fig. 1. The three LEs of (a) the 3D-FL-CS chaotic map, (b) the 3D-FS-CS chaotic map, and (c) the 3D-LS-CS chaotic map. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
𝑟 of 𝐱𝑚𝑖 is expressed as 𝐵𝑚
𝑖 (𝑟), while the number of vectors 𝐱𝑚+1𝑗 within

𝑟 of 𝐱𝑚+1𝑖 is defined as 𝐴𝑚
𝑖 (𝑟). Therefore, 𝐵𝑚(𝑟) = (𝑁 − 𝑚)−1

∑𝑁−𝑚
𝑖=1 (𝑁 −

𝑚 − 1)−1𝐵𝑚
𝑖 (𝑟) refers to the probability that two sequences will match

for 𝑚 points, and 𝐴𝑚(𝑟) = (𝑁 −𝑚)−1
∑𝑁−𝑚

𝑖=1 (𝑁 −𝑚−1)−1𝐴𝑚
𝑖 (𝑟) represents

the probability that two sequences will match for 𝑚 + 1 points. In our
experiment, we set 𝑚 = 2 and 𝑟 = 0.2std in accordance with [43], where
std refers to the standard deviation of the sequence, to explore the SE
of a chaotic sequence with a length of 𝑁 = 10,000.

In the case of a high-dimensional chaotic map, each dimension’s
output forms an individual sequence. Therefore, three SE values can
be calculated for a 3D chaotic map. Table 3 presents the obtained
SE values and their average, denoted as SE. It is evident that the SE
values of the three newly generated 3D chaotic maps are all positive,
indicating the presence of irregular outputs from these chaotic maps.
5

Furthermore, the standard deviation of the three SEs for each chaotic
map, denoted as std(SE), is relatively small, suggesting high consistency
in irregularities across all dimensions for each chaotic map. Around the
three chaotic maps, the 3D-FL-CS exhibits better SE performance than
the other two. Moreover, the standard deviation of the SEs of the three
3D chaotic maps, denoted as std(SE), is approximately 10−3, illustrating
the stable performance of the 𝑛D-CS-generated chaotic maps in terms
of SE.

3.2.3. CD
The CD is a type of fractal dimension that quantifies the spa-

tial dimensionality occupied by the sequence produced by a chaotic
map [44]. It serves as a useful tool for assessing the existence and
complexity of a strange attractor in a dynamic system. A positive CD
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Table 3
The SE values and average SE for each of our 3D chaotic maps.

SE1 SE2 SE3 std(SE) SE

3D-FL-CS 2.1860 𝟐.𝟏𝟗𝟓𝟎 2.1886 𝟎.𝟎𝟎𝟒𝟕 𝟐.𝟏𝟖𝟗𝟗
3D-FS-CS 𝟐.𝟏𝟗𝟑𝟔 2.1874 2.1827 0.0055 2.1879
3D-LS-CS 2.1890 2.1825 𝟐.𝟏𝟗𝟐𝟑 0.0050 2.1879

std(SE) 0.0011

Table 4
The CD values and average CD for each of our 3D chaotic maps.

CD1 CD2 CD3 std(CD) CD

3D-FL-CS 𝟏.𝟗𝟔𝟖𝟖 1.9660 𝟏.𝟗𝟔𝟖𝟓 𝟎.𝟎𝟎𝟏𝟓 1.9678
3D-FS-CS 1.9633 1.9672 1.9614 0.0030 1.9640
3D-LS-CS 1.9642 𝟏.𝟗𝟕𝟔𝟒 1.9665 0.0065 𝟏.𝟗𝟔𝟗𝟎

std(CD) 0.0026

value indicates the presence of a strange attractor in the dynamic
system, and a larger CD value suggests that the generated sequence
occupies a higher spatial dimensionality, indicating more complex
dynamic behavior of the system. We employ the CD calculation method
introduced in [44] to compute the CD for the sequence generated by
the chaotic map. For a sequence with 𝑁 points {𝑣𝑖}𝑁𝑖=1, where 𝑚 is the
mbedding dimension and 𝑟 represents the similarity scalar, the CD
alue is calculated as [44]

D = lim
𝑟→0

lim
𝑁→inf

log(𝐶𝑚(𝑟))
log(𝑟)

. (23)

he investigated sequence constructs a vector-valued series {𝐯𝑖}𝑁−𝑚+1
𝑖=1

here 𝐯𝑖 = [𝑣𝑖, 𝑣𝑖+1,… , 𝑣𝑖+𝑚−1]𝑇 , leading the correlation sum function
efined as [44]

𝑚(𝑟) =
2
∑

𝑖<𝑗 𝜃(‖𝐯𝑖 − 𝐯𝑗‖ − 𝑟)
(𝑁 − 𝑚)(𝑁 − 𝑚 + 1)

, (24)

here 𝜃(⋅) is the Heaviside step function, and ‖ ⋅ ‖ is usually a 𝑝-norm,
efined as ‖𝐱‖ = [

∑

𝑖 |𝑥𝑖|
𝑝]1∕𝑝. In our experiment, we set the embedding

imension 𝑚 as 2 to explore the CD of a chaotic sequence with a length
f 𝑁 = 10,000.

Similar to SE, a 3D chaotic map can calculate three CD values,
nd the results are presented in Table 4. It can be seen that the
D values of the chaotic maps are all positive, revealing that the
haotic sequences produced by our chaotic maps occupy a high spatial
imensionality. Additionally, among the three chaotic maps, the 3D-LS-
S exhibits a larger average CD value than the other two. Furthermore,
he relatively small standard deviations of the CDs affirm the stability
f the performance of the chaotic maps generated by our 𝑛D-CS.

.2.4. IE
The IE is a quantitative measure of the uncertainty or randomness

ithin a given set of data [45]. It can be used to evaluate the uncer-
ainty of the chaotic sequences generated by a chaotic map. For an 𝑛D
haotic map, it produces 𝑛 chaotic sequences, and its phase space can
e divided into multiple subspaces. Specifically, if the output of each
imension of an 𝑛D chaotic map is uniformly divided into 𝑃 parts, then
he entire phase space can be divided into 𝑃 𝑛 subspaces. Hence, the
E of the chaotic sequences generated by an 𝑛D chaotic map can be
alculated as

E = −
𝑃 𝑛
∑

𝑡=1
Pr(𝑡) log2(Pr(𝑡)), (25)

here Pr(𝑡) represents the probability that the output state falls into
he 𝑡th subspace. It can be observed from the equation above that the
E value can reach a theoretical maximum value IE𝑚𝑎𝑥 = 𝑛 log2(𝑃 )

when the probability of a state falling into each subspace is the same,
𝑛 𝑛
6

i.e., Pr(𝑡) = 1∕𝑃 holds for 𝑡 ∈ {1, 2,… , 𝑃 }. A larger IE value indicates
a higher degree of randomness for the generated states, and a larger 𝑃
value allows for more precise measurements of the IE value.

Table 5 presents the IE values of our 3D-FL-CS, 3D-FS-CS, and 3D-
LS-CS chaotic maps for various 𝑃 values. The states generated by each
chaotic map have a length of 𝑃 4. It is evident from the results that the IE
values of our maps consistently approach the theoretical maximum IE
value. This indicates that the sequences generated by our maps exhibit
a high degree of uncertainty. Among the three chaotic maps, both
the 3D-FS-CS and the 3D-LS-CS exhibit better IE performance than the
3D-FL-CS.

3.2.5. Randomness test
Due to the limited precision of digital platforms, a chaotic map

implemented on such platforms may eventually degrade to periodic
behavior as the evolution time increases. This phenomenon is known as
chaos degradation. However, a chaotic map with more robust chaotic
behavior demonstrates stronger ability to delay chaos degradation,
which is more desirable for practical applications. In this context, we
assess the ability of our newly generated chaotic maps by testing the
randomness of the sequences they produce. A chaotic map exhibits a
stronger ability to delay chaos degradation if it can generate longer
chaotic sequences that pass the randomness test.

Among the various randomness test standards, the TestU01 stan-
dard [46] is known for its stringent assessment of large amounts of
data from multiple perspectives. The TestU01 standard consists of eight
test batteries: SmallCrush, Crush, BigCrush, Alphabit, BlockAlphabit,
Rabbit, PseudoDieHARD and FIPS-140-2. The PseudoDIEHARD battery
encompassses most of the tests from the DIEHARD standard [47], while
the FIPS-140-2 battery includes a small suite of tests from the NIST
standard [48]. Each test battery comprises several subtests, with each
subtest generating a 𝑝-value when a chaotic sequence is evaluated. The
tested data is considered to pass the subtest if the resulting 𝑝-value falls
within the range of [0.001, 0.999]. Additionally, the BigCrush, Crush,
SmallCrush, PseudoDIEHARD, and FIPS-140-2 batteries utilize default
test data sizes, while the remaining batteries allow for user-specified
test data sizes. The BigCrush battery is typically designated for high-
volume testing and operates with a test data size of approximately
10Tb. In our experiment, we set the test data sizes for Rabbit, Alphabit,
and BlockAlphabit batteries to 1 Gb. Moreover, the output of each
dimension of every chaotic map serves as the test sequence for TestU01.
Eight bits are extracted from each dimensional output to compose
the sequence within its dimension. Table 6 presents the test results
for the three new 3D chaotic maps. It is evident that our chaotic
maps successfully pass all subtests across all test batteries, and the
three chaotic maps perform equally well. This result suggests that
the sequences generated by our chaotic maps exhibit a high level of
randomness, indicating a strong capability to delay chaos degradation.

3.2.6. Trajectory
For a chaotic map, the trajectory represents a collection of points

visited in phase space, providing insight into its behavior as it evolves
from an initial state. This visualization aids in understanding the distri-
bution of the chaotic map’s outputs. We present the trajectories of the
three newly generated 3D chaotic maps in Fig. 2, with their parameter
settings and initial states listed in Table 2. As illustrated in Fig. 2, the
initial state of each chaotic map is indicated by a red star, and the
trajectories of our chaotic maps are uniformly distributed, covering the
entire phase space without any discernible structure. This illustrates the
high level of randomness exhibited by the chaotic maps’ outputs.

3.2.7. Fixed-point stability
A fixed point is a point that is mapped to itself by a function.

Depending on its stability, a fixed point can be classified as either stable
or unstable. A stable fixed point means that other states near the fixed
point are attracted to it, and the dynamic system remains stabilized

as iterations progress, corresponding to the periodic behavior of the
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Table 5
The IE values of the 3D-FL-CS, 3D-FS-CS, and 3D-LS-CS chaotic maps against different 𝑃 values.
𝑃 3 5 7 9 11 13 15 17 19 21 23

IE𝑚𝑎𝑥 4.7549 6.9658 8.4221 9.5098 10.3783 11.1013 11.7207 12.2624 12.7438 13.1770 13.5707

3D-FL-CS 4.4458 6.7956 8.3180 9.4276 10.3098 11.0461 11.6714 12.2190 12.7048 13.1422 13.5390
3D-FS-CS 4.5056 𝟔.𝟖𝟓𝟗𝟓 𝟖.𝟑𝟑𝟓𝟕 9.4226 𝟏𝟎.𝟑𝟏𝟐𝟓 11.0463 𝟏𝟏.𝟔𝟕𝟐𝟏 12.2200 12.7048 13.1418 𝟏𝟑.𝟓𝟑𝟗𝟓
3D-LS-CS 𝟒.𝟓𝟒𝟐𝟖 6.8061 8.3103 𝟗.𝟒𝟑𝟐𝟑 10.3106 𝟏𝟏.𝟎𝟒𝟕𝟑 11.6708 𝟏𝟐.𝟐𝟐𝟏𝟓 𝟏𝟐.𝟕𝟎𝟓𝟗 𝟏𝟑.𝟏𝟒𝟑𝟐 13.5393
Table 6
The TestU01 test results of the 3D-FL-CS, 3D-FS-CS, and 3D-LS-CS chaotic maps.

Test batteries Data size 3D-FL-CS 3D-FS-CS 3D-LS-CS

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

SmallCrush ≈ 6 Gb 15∕15 15∕15 15∕15 15∕15 15∕15 15∕15 15∕15 15∕15 15∕15
Crush ≈ 1 Tb 144∕144 144∕144 144∕144 144∕144 144∕144 144∕144 144∕144 144∕144 144∕144
BigCrush ≈ 10 Tb 160∕160 160∕160 160∕160 160∕160 160∕160 160∕160 160∕160 160∕160 160∕160
Alphabit 1 Gb 17∕17 17∕17 17∕17 17∕17 17∕17 17∕17 17∕17 17∕17 17∕17
BlockAlphabit 1 Gb 102∕102 102∕102 102∕102 102∕102 102∕102 102∕102 102∕102 102∕102 102∕102
Rabbit 1 Gb 40∕40 40∕40 40∕40 40∕40 40∕40 40∕40 40∕40 40∕40 40∕40
PseudoDIEHARD ≈ 5 Gb 126∕126 126∕126 126∕126 126∕126 126∕126 126∕126 126∕126 126∕126 126∕126
FIPS-140–2 ≈ 19 Kb 16∕16 16∕16 16∕16 16∕16 16∕16 16∕16 16∕16 16∕16 16∕16
Fig. 2. The trajectories of (a) the 3D-FL-CS chaotic map, (b) the 3D-FS-CS chaotic map, and (c) the 3D-LS-CS chaotic map.
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ynamic system. On the contrary, an unstable fixed point indicates that
ther states near the fixed point are repelled by it, and the dynamic
ystem keeps oscillating, corresponding to the chaotic behavior of the
ynamic system.

The stability of a fixed point can be determined by examining the
radient of the dynamic system at that point. For a 3D dynamic system,
he gradient at a specific point is determined by the three eigenvalues
𝜆1, 𝜆2, and 𝜆3) of the Jacobian matrix (as presented in Eq. (6)) of the
ystem at that point. A fixed point is considered unstable if |𝜆𝑗 | > 1
olds for 𝑗 ∈ {1, 2, 3}; otherwise, it is considered stable. The fixed points
f our three newly generated 3D chaotic maps, denoted as (�̃�1, �̃�2, �̃�3),
re the solutions of the following equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃�1 = 𝑙1�̃�1 +
1

�̃�22+0.1
− �̃�2 + 4�̃�3(1− �̃�3) mod 1

�̃�2 = 4�̃�1(1− �̃�1) + 𝑙2�̃�2 +
1

�̃�23+0.1
− �̃�3 mod 1

�̃�3 =
1

�̃�21+0.1
− �̃�1 + 4�̃�2(1− �̃�2) + 𝑙3�̃�3 mod 1,

(26a)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃�1 = 𝑙1�̃�1 +
1

�̃�22+0.1
− �̃�2 + sin(𝜋�̃�3) mod 1

�̃�2 = sin(𝜋�̃�1) + 𝑙2�̃�2 +
1

�̃�23+0.1
− �̃�3 mod 1

�̃�3 =
1

�̃�21+0.1
− �̃�1 + sin(𝜋�̃�2) + 𝑙3�̃�3 mod 1,

(26b)

⎧

⎪

⎨

⎪

⎩

�̃�1 = 𝑙1�̃�1 + 4�̃�2(1− �̃�2) + sin(𝜋�̃�3) mod 1
�̃�2 = sin(𝜋�̃�1) + 𝑙2�̃�2 + 4�̃�3(1− �̃�3) mod 1
�̃�3 = 4�̃�1(1− �̃�1) + sin(𝜋�̃�2) + 𝑙3�̃�3 mod 1.

(26c)

Table 7 displays the fixed points of the three 3D chaotic maps under
arious control parameter settings, along with the absolute eigenvalues
7

Z

f their Jacobian matrices at these fixed points. We have included
nly the fixed points corresponding to several representative param-
ter settings, using dots to represent omitted experimental results.
s observed, each chaotic map exhibits multiple fixed points under
ifferent parameter settings. Moreover, the absolute eigenvalues of the
acobian matrix at each fixed point are all greater than 1, indicating
he instability of all the fixed points. This further confirms the chaotic
ehavior demonstrated by our chaotic maps.

. Performance comparison

This section compares the chaotic maps generated by our 𝑛D-CS
ith existing chaotic map generation methods using LE, SE, CD, and

E indicators. To generate our chaotic maps, we randomly select 1D
haotic maps from Table 1 as seed maps. The map IDs of selected seed
aps for different investigated dimensions are listed in Table 8. To en-

ure chaotic behavior, the control parameters of our chaotic maps must
eet specific conditions according to Proposition 1. As a result, the

ontrol parameters for each of our chaotic maps are randomly chosen
rom the range associated with the given condition listed in Table 8.
he lower bound of the range is the smallest integer greater than the
ondition, and the upper bound is 500 more than the lower bound for
comprehensive investigation. For example, when generating our 3D

haotic maps, we randomly select their control parameters within the
ange [25, 525]. Moreover, the initial state of each of our chaotic maps
s set as 𝐱0 = {0.5}𝑛×1.

For the 𝑛D chaotic maps generated by previous methods pro-
osed by Natiq et al. [30], Zang et al. [28], Huang et al. [31], and
hang et al. [29], their control parameters are chosen at random from



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 181 (2024) 114650Z. Wu et al.

Z
o
H
a

Table 7
The fixed points of the 3D-FL-CS, 3D-FS-CS, and 3D-LS-CS chaotic maps, the absolute eigenvalues of their Jacobian matrices at the respective
fixed points, and the stability of the fixed points.

Chaotic map Control parameters
(𝑙1 , 𝑙2 , 𝑙3)

Fixed points
(�̃�1 , �̃�2 , �̃�3)

Absolute eigenvalues
(|𝜆1|, |𝜆2|, |𝜆3|)

Stability

3D-FL-CS
(27, 28, 29) (0, 0, 0)

(0.2025, 0.0682, 0.0663)
(0.5914, 0.0224, 0.2243)

(26.8011, 26.8011, 31.0775)
(37.8848, 37.8848, 15.6067)
(21.4650, 33.1587, 33.1587)

unstable
unstable
unstable

(30, 31,−32) (0, 0, 0)
(0.4141, 0.3059, 0.0339)
(0.5139, 0.2205, 0.1794)
(0.6639, 0.3034, 0.6979)

(30.4729, 30.4729, 31.8556)
(31.4898, 30.8576, 30.8576)
(31.8871, 31.4290, 31.4290)
(32.1398, 26.6700, 34.4698)

unstable
unstable
unstable
unstable

⋯ ⋯ ⋯ ⋯

3D-FS-CS
(26, 27, 28) (0, 0, 0)

(0.7987, 0.1490, 0.4812)
(0.9079, 0.4835, 0.2899)

(26.1163, 26.1163, 29.2355)
(16.4951, 33.1204, 33.1204)
(17.8115, 32.2543, 32.2543)

unstable
unstable
unstable

(29, 30,−31) (0, 0, 0)
(0.9636, 0.4315, 0.4058)

(29.4846, 29.4846, 30.8878)
(30.9303, 24.0394, 34.8910)

unstable
unstable

⋯ ⋯ ⋯ ⋯

3D-LS-CS
(9, 10, 11) (0, 0, 0)

(0, 0, 0.5000)
(0.5000, 0, 0)
(0.5000, 0, 0.5000)

(17.2034, 6.4153, 6.4153)
(5.9200, 13.0800, 11.0000)
(9.0000, 6.9200, 14.0800)
(9, 11, 10)

unstable
unstable
unstable
unstable

(12, 13,−14) (0, 0, 0)
(0, 0.5000, 0)

(16.9134, 8.8935, 14.8068)
(14.4747, 12.4747, 13.0000)

unstable
unstable

⋯ ⋯ ⋯ ⋯
Table 8
Configurations of our 𝑛D-CS for generating 𝑛D chaotic maps with respect to different dimensions from 3 to 12.

Dimension 𝑛 Map IDs of the seed
maps from 𝐹1 to 𝐹𝑛−1

Condition of the control parameters
for 𝑘∈{1, 2,… , 𝑛}

Used parameter range

3 5,3 |𝑙𝑘| > 24.5396 [25,525]
4 6, 5, 3 |𝑙𝑘| > 27.6812 [28,528]
5 3, 5, 6, 3 |𝑙𝑘| > 49.2208 [50,550]
6 6, 3, 4, 3, 5 |𝑙𝑘| > 53.2208 [54,554]
7 5, 4, 6, 3, 2, 3 |𝑙𝑘| > 56.2208 [57,557]
8 1, 4, 2, 3, 5, 6, 3 |𝑙𝑘| > 60.2208 [61,561]
9 4, 3, 3, 6, 5, 3, 1, 2 |𝑙𝑘| > 81.7604 [82,582]
10 3, 3, 2, 3, 4, 1, 5, 4, 6 |𝑙𝑘| > 85.7604 [86,586]
11 6, 1, 3, 3, 3, 2, 2, 4, 4, 5 |𝑙𝑘| > 88.7604 [89,589]
12 2, 3, 4, 2, 1, 3, 4, 5, 6, 5, 3 |𝑙𝑘| > 90.7604 [91,591]
Table 9
Configurations of the competing chaotic map generation methods, where the settings of their control parameters follow their original papers.

Competing chaotic map generation methods Control parameters Initial state

Natiq et al.’s [30] 𝛽 = 6, 𝜎 ∈ [𝜋, 3𝜋], 𝜇 ∈ [1, 8]

𝐱0 ={0.5}𝑛×1Zang et al.’s [28] 𝑡 = ⌈1 +max
𝑘∈{1..𝑛}

(
∑𝑛

𝑗=1,𝑗≠𝑘 |𝑎𝑘,𝑗 |
)

⌉, 𝑎𝑖,𝑖 = 𝑡 for 𝑖 ∈ {1, 2,… , 𝑛},
𝑎𝑖,𝑗 ∈ [−1, 1] for 𝑖 ≠ 𝑗

Huang et al.’s [31] 𝜇 = 1, 𝑘 ∈ [1, 10]

Zhang et al.’s [29] 𝑏𝑖 ∈ [1, 6] for 𝑖 ∈ {1, 2,… , 𝑛}
the ranges specified in their original papers, and their initial states
are also set to 𝐱0 = {0.5}𝑛×1, as listed in Table 9. To elaborate,
ang et al.’s 𝑛D chaotic maps are generated based on the strictly
ver-one diagonally dominant matrix introduced in its original paper.
uang et al.’s 𝑛D chaotic maps are generated using the linear function
s the seed function. Zhang et al.’s 𝑛D chaotic maps are generated

using their cyclic symmetric Chebyshev framework. For each method
of generating chaotic maps, we generate 100 maps for every dimension
and calculate their average indicators for the following comparisons.

4.1. LE comparison

This part compares the chaotic maps generated by our 𝑛D-CS with
those of the competing 𝑛D chaotic map generation methods from the
perspective of LE. Since an 𝑛D chaotic map can calculate 𝑛 LEs, we take
8

the largest LE (LLE) of each 𝑛D chaotic map as the representative LE to
reveal its dynamic behavior. Then, the average LLE of the 100 chaotic
maps generated by each 𝑛D chaotic map generation method for each in-
vestigated dimension 𝑛 is computed, and the obtained results are listed
in Fig. 3. As shown, the chaotic maps generated by our 𝑛D-CS have
significantly larger LLEs in every investigated dimension than those
generated by the competing methods, suggesting that our chaotic maps
can exhibit more complex dynamic behavior than previous methods.

Furthermore, we also compare the number of positive LEs of the
generated chaotic maps, and Table 10 lists the average number of
positive LEs of the 100 chaotic maps generated by each 𝑛D chaotic map
generation method for each investigated dimension. It can be seen that
our 𝑛D-CS, Zang et al.’s method, and Zhang et al.’s method consistently
generate 𝑛D chaotic maps with 𝑛 positive LEs, whereas other methods
cannot. This demonstrates that our 𝑛D-CS can always generate chaotic
maps exhibiting robust hyperchaotic behavior and 𝑛 positive LEs.
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Table 10
The average number of positive LEs of chaotic maps generated by different 𝑛D chaotic map generation methods with dimension 𝑛 ∈ {3, 4,… , 12}.

Dimension 𝑛 Ours Natiq et al.’s [30] Zang et al.’s [28] Huang et al.’s [31] Zhang et al.’s [29]

3 3 1.97 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
6 6 6 6 6 6
7 7 7 7 7 7
8 8 8 8 7.99 8
9 9 9 9 9 9
10 10 10 10 9.97 10
11 11 11 11 10.99 11
12 12 12 12 11.99 12
Fig. 3. The average LLE of chaotic maps generated by various 𝑛D chaotic map
generation methods for investigated dimension 𝑛 ∈ {3, 4,… , 12}.

4.2. SE comparison

In this subsection, we compare our 𝑛D-CS with other 𝑛D chaotic map
generation methods based on the SE. Since an 𝑛D chaotic map has 𝑛 SEs,
each corresponding to a sequence produced by a specific dimension of
the chaotic map, we calculate the average value of the 𝑛 SEs as the SE
indicator of an 𝑛D chaotic map. Subsequently, we compute the SEs of
the 100 chaotic maps generated by each method for each investigated
dimension, and their average value serves as the final result, depicted
in Fig. 4. As can be seen, the SEs of our chaotic maps consistently
rank as the largest and maintain stability across different dimensions.
In contrast, the SEs of competing 𝑛D chaotic maps are relatively small
and exhibit unstable changes as the dimension 𝑛 increases. For example,
the SE of Natiq et al.’s 𝑛D chaotic maps boosts from 𝑛 = 3 to 𝑛 = 4 but
subsequently declines, while the SEs of Zhang et al.’s and Huang et al.’s
𝑛D chaotic maps show dips at dimensions 𝑛 = 4 and 𝑛 = 10, respectively.
Moreover, the SEs of Zang et al.’s 𝑛D chaotic maps are larger than
Huang et al.’s except when 𝑛 = 3. In summary, the results suggest that
our 𝑛D-CS consistently ensures larger and stable SEs for the generated
chaotic maps. This implies that chaotic maps generated by the proposed
𝑛D-CS exhibit lower level of regularity and more unpredictable outputs.

4.3. CD comparison

In this comparison, we conduct a comparative analysis of our 𝑛D-
CS against other 𝑛D chaotic map generation methods using the CD
perspective. Similar to the SE comparison, we calculate the average
9

Fig. 4. The average SE of chaotic maps generated by each 𝑛D chaotic map generation
method for investigated dimension 𝑛 ∈ {3, 4,… , 12}.

CD of the 𝑛 CDs of an 𝑛D chaotic map as its CD indicator. Then, we
calculate the average CD indicator of the 100 chaotic maps generated
by each method for each investigated dimension as the final result. As
depicted in Fig. 5, the chaotic maps generated by 𝑛D-CS consistently
exhibit the largest CD across all investigated dimensions. The CDs of
Zang et al.’s and Huang et al.’s 𝑛D chaotic maps closely approach ours,
whereas the CDs of Natiq et al.’s and Zhang et al.’s are notably smaller.
These results suggest that chaotic maps generated by our 𝑛D-CS possess
a larger CD, indicating higher spatial dimensionality compared to those
generated by other methods.

4.4. IE comparison

This subsection compares the performance of our 𝑛D-CS with other
𝑛D chaotic map generation methods from the perspective of IE. Two
groups of experiments are conducted to calculate the IE of the se-
quences produced by different chaotic maps. The first group of exper-
iments evaluates IE against investigated dimension 𝑛 ∈ {3, 4,… , 12}
while maintaining the number of divided parts 𝑃 = 3. For each chaotic
map generation method and each investigated dimension 𝑛, 100 𝑛D
chaotic maps are randomly generated. The initial state for each chaotic
map is set to 𝐱0 = {0.5}𝑛×1, and a total of 𝑃 𝑛+1 output states are
produced to calculate its IE. The average IE of the 100 chaotic maps
generated by each method for each investigated dimension is calculated
as the final IE indicator. Fig. 6 displays the average IEs of the 100
𝑛D chaotic maps generated by different methods. The results illustrate
that the 𝑛D chaotic maps generated by our 𝑛D-CS achieve higher IEs
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Table 11
The average IE of chaotic maps generated by each 𝑛D chaotic map generation method for investigated dimension 𝑛 = 3, with the number of divided parts 𝑃 ∈ {3, 5,… , 23}.
𝑃 3 5 7 9 11 13 15 17 19 21 23

IE𝑚𝑎𝑥 4.7549 6.9658 8.4221 9.5098 10.3783 11.1013 11.7207 12.2624 12.7438 13.1770 13.5707

Ours 4.5058 6.8175 8.3166 9.4279 10.3114 11.0450 11.6721 12.2194 12.7055 13.1423 13.5391
Natiq et al.’s [30] 4.2469 6.5049 7.9325 8.9506 9.7715 10.4711 11.0473 11.5577 12.0106 12.4173 12.7875
Zang et al.’s [28] 4.5007 6.8133 8.3157 9.4273 10.3110 11.0440 11.6710 12.2185 12.7044 13.1411 13.5378
Huang et al.’s [31] 4.0371 6.4435 7.8858 8.9587 9.8398 10.5796 11.2020 11.7573 12.2459 12.6722 13.0880
Zhang et al.’s [29] 4.4137 6.6313 8.0572 9.1188 9.9653 10.6655 11.2677 11.7893 12.2525 12.6682 13.0475
Fig. 5. The average CD of chaotic maps generated by each 𝑛D chaotic map generation
method for investigated dimension 𝑛 ∈ {3, 4,… , 12}.

Fig. 6. The average IE of chaotic maps generated by each 𝑛D chaotic map generation
method for investigated dimension 𝑛 ∈ {3, 4,… , 12}, with the number of divided parts
𝑃 = 3.

compared to those generated by other methods. This emphasizes that
the chaotic maps generated by our 𝑛D-CS yield uniformly distributed
states, reflecting a high degree of uncertainty.
10
The other group analyzes the IEs against the number of divided
parts 𝑃 = {3, 5,… , 23} while fixing the investigated dimension 𝑛 = 3.
Therefore, for each generated 3D chaotic map, the initial state is set to
𝐱0 = {0.5}𝑛×1, and a total of 𝑃 𝑛+1 output states are produced to calculate
the IE of the 3D chaotic map. Table 11 presents the average IEs of 100
3D chaotic maps generated by different methods. It can be seen that the
3D chaotic maps generated by our 𝑛D-CS exhibit the highest IE, which
is also very close to the theoretical maximum IE value.

5. Conclusion

In this paper, we introduce a novel 𝑛D chaotic map generation
method named the 𝑛D-CS. It is constructed from 𝑛− 1 existing 1D seed
maps and 𝑛 linear functions. Each dimension of 𝑛D-CS incorporates
the 𝑛 − 1 seed maps, a linear function, and a modular operation.
Theoretical analysis proves that the proposed 𝑛D-CS exhibits chaotic
behavior under the derived parameter-controlled criterion and consis-
tently generates 𝑛D chaotic maps with 𝑛 positive LEs. To demonstrate
the effectiveness of 𝑛D-CS, we present three examples of 3D chaotic
maps generated by 𝑛D-CS using the fraction, logistic, and sine maps
as seed maps. These newly generated chaotic maps are evaluated using
various indicators, including LE, SE, CD, IE, randomness test, trajectory,
and fixed-point stability. The results demonstrate that they exhibit
robust and complex dynamic behavior, a high level of irregularity,
randomness, and spatial dimensionality. Furthermore, to comprehen-
sively evaluate the performance of our 𝑛D-CS, we conduct vertical
and horizontal comparisons of chaotic maps of different dimensions
generated by 𝑛D-CS and other 𝑛D chaotic map generation methods. The
analysis results reveal that the chaotic maps generated by 𝑛D-CS surpass
those generated by the competing methods in various test indicators.

6. Future works

Our further work will explore the generation methods of 𝑛D chaotic
maps in the complex field or investigate the study of chaotic systems in
the complex domain. Extending the analysis to complex domains opens
up new avenues for understanding the behavior and characteristics of
chaos, potentially providing insights into phenomena not observable
within the real domain alone.
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